
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #3
Scribe: Kevin Lai February 11, 2014

1 The Probably Approximately Correct (PAC) Model

A target concept class C is PAC-learnable by a hypothesis space H if there exists an
algorithm A such that for all c ∈ C, any target distribution D, and any positive ε and
δ, A uses a training set S = 〈(x1, c(x1)), (x2, c(x2)), ..., (xm, c(xm))〉 consisting of m =
poly(1ε ,

1
δ , ...) examples taken i.i.d. from D and produces h ∈ H such that Pr[errD(h) ≤

ε] ≥ 1− δ.
A few comments on notation. ε is called the accuracy parameter, and we call h “ε-good”

if errD(h) ≤ ε, where errD(h) is called the true error or the generalization error. δ is
the confidence parameter. ε and δ are user-specified parameters (eg. 5% and 1%). The
name “Probably Approximately Correct” comes from the fact that we want a hypothesis
that is approximately correct (ε-good) with high probability (namely 1−δ). The probability
is taken over the choice of S, which will determine which h the algorithm chooses. This
is a reasonable goal because there is always a small chance that the test data will be very
unrepresentative of D.

We assume that the training set and the test data are drawn from the same distribution
D. In general H will not necessarily be the same as C. Finally, we may also want m to be
polynomial in the size of each example or in the size of the target concept c.

2 Learning positive half-lines

We will now look at a series of examples of PAC-learnable concept classes, starting with
the class of positive half-lines. In this example, the domain X is the real line, and C =
H = {positive half lines}. A positive half-line is defined by a threshold (a real number): all
points to the left of the threshold are labeled negative, while all points to the right of the
threshold are labeled positive.

Figure 1: The target concept c is a half-line

To find a hypothesis, we will simply pick some h that is consistent with the test data.
We can do this by scanning the test data in ascending sorted order until we find the greatest
negatively labeled point and the smallest positively labeled point. We then set the threshold
of our half-line anywhere in this interval. Note that we can always find a consistent h because
H = C.

As shown in Figure 3, the generalization error of h will be the probability mass that
falls between the target concept c and our hypothesis h. Points in this region will be labeled



Figure 2: Half-line h outputted by our algorithm based on test data

differently by h and c. Any points that are either to the right or to the left of both h and
c will be labeled the same by h and c.

Figure 3: The generalization error of h is the probability mass between h and c

We need to show that the generalization error is low with high probability. Equivalently,
we can show that Pr[errD(h) > ε] ≤ δ. There are two cases where errD(h) > ε. Let B+ be
the event that h is more than ε probability mass to the right of c, and let B− be the event
that h is more than ε probability mass to the left of c.

To determine the probability that B+ or B− occur, we define two points on the number
line, as shown in Figure 4. Let r+ be a point to the right of c such that the interval [c, r+]
has ε probability mass. Likewise, let r− be a point to the left of c such that the interval
[r−, c] has ε probability mass.

Figure 4: r+ and r− are both ε probability mass away from c

Figure 5: R+ has probability mass ε

We will first calculate the probability of B+. Let R+ be the interval [c, r+], which has
probability mass ε. Now note that B+ can only occur if h is to the right of r+, which only
occurs if all xi 6∈ R+. If any of the training points were in R+, h would be to the left of r+

2



(since the training point would have a positive label). Observe now that Pr[xi 6∈ R+] ≤ 1−ε
because R+ has probability mass ε. Then:

Pr[B+] = Pr[x1 6∈ R+ ∧ x2 6∈ R+ ∧ xm 6∈ R+] ≤ (1− ε)m (1)

where the last inequality follows by independence of the xi’s. Note also that while the xi’s are
random, R+ is fixed because it depends on a fixed c. Also, by symmetry, Pr[B−] ≤ (1−ε)m.

Now we can bound the probability that errD(h) > ε:

Pr[errD(h) > ε] ≤ Pr[B+ ∨B−] (2)

≤ Pr[B+] + Pr[B−] (union bound) (3)

≤ 2(1− ε)m (4)

≤ 2e−εm (∀x, 1− x ≤ e−x) (5)

We want Pr[errD(h) > ε] ≤ δ, so we set (5) ≤ δ and solve for m to get m ≥ 1
ε ln 2

δ . This
shows that C is PAC-learnable by H.

If we set δ = (5), we can write this equivalent statement: with probability at least
1− δ, errD(h) ≤ 1

m ln 2
δ .

3 Learning intervals

Our next concept class C is the set of intervals on the real line. This will also be our
hypothesis space H. Each c ∈ C specifies an interval on the real line that will be labeled
positive. All points outside of the interval are labeled negative.

Figure 6: Test data generated by a target concept interval c. h is a consistent hypothesis
interval

Our algorithm will simply pick a consistent h ∈ H. We can then prove that the gener-
alization error of h is low with high probability by an analogous argument to the half-line
case. That is, C is PAC-learnable by H.

We will briefly summarize the argument. Let cl be the left boundary of c. We make an
interval of probability mass ε

2 on both sides of cl. Then the analysis will be the same as
in the half-line case, except with a constant factor difference. We repeat this argument for
the right boundary of c. At the end, we will have a union bound over four bad events, each
with probability e−

εm
2 , so m ≥ 2

ε ln 4
δ .

4 Learning axis-aligned rectangles

Our last example will be learning the concept class C of axis-aligned rectangles. We will use
the algorithm we had in the previous lecture, which finds the smallest axis-aligned rectangle
consistent with the data.

3



Figure 7: Test data generated by a target concept rectangle c. h is the smallest consistent
rectangle

To bound the probability that the generalization error is greater than ε, we create four
“bad” regions, each created by growing a rectangle from the interior of one wall of c until
the region has probability mass ε

4 .1 It does not matter that these rectangles overlap. Call
these regions R1, ..., R4. Next, we use an argument that is analogous to the half-line case
to bound the probability that no points land in each region individually. Let B1, ..., B4 be
the events that no points land in regions R1, ..., R4 respectively. Then:

Pr[errD(h) > ε] ≤ Pr[B1 ∨B2 ∨B3 ∨B4] (6)

≤ Pr[B1] + Pr[B2] + Pr[B3] + Pr[B4] (union bound) (7)

≤ 4(1− ε/4)m (8)

≤ 4e−
εm
4 (9)

Then we get m ≥ 4
ε ln 4

δ . As a final note, observe that we can extend this argument to
axis-aligned hyperrectangles in an arbitrary number of dimensions.

Figure 8: Regions analogous to R+ in the half-line case. We bound the probability that
no points fall in each of these regions. Each region has probability mass ε

4 and the regions
overlap

1If the region hits the opposite wall of c before the region reaches probability mass ε
4
, then we simply

stop growing the region. Thus, each region has probability mass at most ε
4
.

4



5 Proving PAC results in general

We just saw several examples of proving concept classes are PAC-learnable using proofs
tailored to each problem. However, it would be more convenient if we had some way to
prove PAC results in general. Fortunately, such a way exists for finite hypothesis spaces
(i.e. |H| <∞).

Theorem 1. Suppose an algorithm A always finds a hypothesis hA ∈ H consistent with m
examples where m ≥ 1

ε (ln |H| + ln 1
δ ). Then Pr[errD(hA) > ε] ≤ δ.

The proof of Theorem 1 also will lead to this similar statement: with probability at least
1 − δ, if hA is consistent, then errD(hA) ≤ 1

m(ln |H| + ln 1
δ ). This statement is essentially

saying that if an algorithm finds a consistent hypothesis and uses enough data relative to
the complexity of the hypothesis space and δ, the generalization error will be low.

6 Complexity and |H|
The ln |H| term in Theorem 1 is a measure of complexity of the hypothesis space. Intu-
itively, we can understand the logarithmic term as essentially the number of bits required
to uniquely label each h ∈ H, which would be the base two logarithm of |H|.

We did an exercise in class to demonstrate the relevance of |H|. Everyone wrote down
20 bits of their choosing, corresponding to the output of a hypothesis on the domain
{1, 2, ..., 20}. Professor Schapire then revealed the “training” data, which was a set of
10 bits, corresponding to the output of the target concept for {1,2,...,10}. We selected the
hypothesis with the lowest training error in the class. Then we evaluated that hypothesis’s
performance against the 10 bits output by the target concept for {11,12,...,20}. In our ex-
ample, the best hypothesis had a training error of 10% and a test error of 10%. However, as
Professor Schapire determined his bits using random coin tosses, in general the hypothesis
with the best training error will have an expected test error of 50%. In a large class, it
is likely to find a hypothesis with low training error, but that hypothesis will still have an
expected test error of 50%.

The purpose of the exercise was to demonstrate that with a bigger hypothesis space,
there is a greater chance for a poor hypothesis to match the training set well, despite having
poor generalization error. Thus, complexity in the hypothesis space will tend to increase
the probability of choosing a hypothesis that fits the training set well, simply by chance,
but which actually performs poorly on test data.

Example 1. Suppose C is the set of monotone conjunctions in n-dimensions. This will
also be our hypothesis space. |H| = 2n because each variable can either be included or
not included in our hypothesis. Since our algorithm from last lecture finds a consistent
hypothesis, Theorem 1 implies that if m ≥ 1

ε (n ln 2 + ln 1
δ ), then Pr[errD(hA) > ε] ≤ δ.

Since m only needs to be at most polynomial in the size of 1
ε ,

1
δ , and n, we have shown that

the class of monotone conjunctions is PAC-learnable.

Example 2. Now suppose that C is the set of all DNFs, and let this be our hypothesis
space as well. Now since we can think of every DNF as a boolean formula (given values
for n variables, the DNF outputs one of two answers), and every boolean formula can be
represented by a DNF, |H| is just the number of boolean formulas on n variables, which

5



is 22
n
. Using Theorem 1, we get that m ≥ 1

ε (ln 22
n

+ ln 1
δ ) = 1

ε (2
n ln 2 + ln 1

δ ), which is
exponential in the number of variables. This is consistent with our conclusions from last
lecture that DNFs likely can’t be learned efficiently with a small amount of data.

An informal way to see that the class of DNFs likely can’t be learned efficiently is to
look at our algorithm from last lecture for learning DNFs. In that algorithm, we included a
clause for each of the positive examples in our training set. In the worst case, this could give
us a hypothesis of size O(mn). If we approximate ln |H| with the size of each hypothesis,

then the error is ε ≥ O(mn)+ln 1
δ

m ≥ cn, where c is some constant. This is too large, as we
would like our error to be less than 1. So our previous algorithm does not efficiently learn
DNFs.

In general, we see that if our hypothesis space is not too complex, finding a consistent
hypothesis will allow us to achieve low generalization error with a reasonably small amount
of data. However, this conclusion does not say anything about computational efficiency.
Even if only a small amount of data is required, it may be difficult to design efficient
learning algorithms.

6


