Applications

Reliable streams Messages

Best-effort global packet delivery

Best-effort local packet delivery

Transport Layer

Mike Freedman
COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/sprl4/cos461/

IP Protocol Stack: Key Abstractions

Application Applications

Transport [E1)ERSIEE R Messages
WEas' @l Best-effort global packet delivery
|PT '@ Best-effort local packet delivery

* Transport layer is where we “pay the piper”
— Provide applications with good abstractions
— Without support or feedback from the network

Transport Protocols

* Logical communication between processes
—Sender divides a message into segments
—Receiver reassembles segments into message

* Transport services
—(De)multiplexing packets
—Detecting corrupted data
—Optionally: reliable delivery, flow control, ...

Two Basic Transport Features

* Demultiplexing: port numbers
Server host 128.2.194.242

Service request for

128.2.194.242:80 Web server
(port 80)

(i.e., the Web server)
Echo server
(port7)

Client host

e Error detection: checksums

IP payload

detect corruption

User Datagram Protocol (UDP)

* Lightweight communication 8 byte header

between processes SRC port DST port
— Send and receive messages e length
— Avoid overhead of ordered,
: . DATA
reliable delivery

* No connection setup delay, no
in-kernel connection state
* Used by popular apps
— Query/response for DNS
— Real-time data in VoIP

Advantages of UDP

Fine-grain control
— UDP sends as soon as the application writes

No connection set-up delay
— UDP sends without establishing a connection

No connection state
— No buffers, parameters, sequence #s, etc.

Small header overhead
— UDP header is only eight-bytes long

Transmission Control Protocol (TCP)

e Stream-of-bytes service

— Sends and receives a
stream of bytes

* Connection oriented

— Explicit set-up and tear-
down of TCP connection

* Reliable, in-order delivery * Flow control

— Corruption: checksums — Prevent overflow of the

) .
— Detect loss/reordering: receiver’s buffer space
sequence numbers

— Reliable delivery: * Congestion control

acknowledgments and
retransmissions

— Adapt to network
congestion for the
greater good

Breaking a Stream of Bytes
into TCP Segments

TCP “Stream of Bytes” Service

Host A

A

AN

BRI

...Emulated Using TCP “Segments”

Host A

Segment sent when:

1. Segment full (Max Segment Size),
2. Not full, but times out, or

3. “Pushed” by application

TCP Segment

IP Datal

* IP packet | TCP bata (segment)
— No bigger than Maximum Transmission Unit (MTU)

—E.g., up to 1500 bytes on an Ethernet link

* TCP packet
— IP packet with a TCP header and data inside

— TCP header is typically 20 bytes long

* TCP segment
— No more than Maximum Segment Size (MSS) bytes
— E.g., up to 1460 consecutive bytes from the stream

TCPHdr‘ PHd >

Sequence Number

Host A

ISN (initial sequence number)

T

Sequence
number =
15t byte

Host B

Initial Sequence Number (ISN)

* Sequence number for the very first byte
— E.g., Why not a de facto ISN of 0?

* Practical issue: reuse of port numbers
— Port numbers must (eventually) get used again
— ... and an old packet may still be in flight
— ... and associated with the new connection

* So, TCP must change the ISN over time
— Set from a 32-bit clock that ticks every 4 microsec
— ... which wraps around once every 4.55 hours!

Reliable Delivery on a Lossy
Channel With Bit Errors

Challenges of Reliable Data Transfer

* Over a perfectly reliable channel: Done

e QOver a channel with bit errors
— Receiver detects errors and requests retransmission

* Qver a lossy channel with bit errors
— Some data missing, others corrupted
— Receiver cannot easily detect loss

* Over a channel that may reorder packets
— Receiver cannot easily distinguish loss vs. out-of-order

15

An Analogy

* Alice and Bob are talking o

— What if Alice couldn’t understand Bob? (% o
L)

— Bob asks Alice to repeat what she said

* What if Bob hasn’t heard Alice for a while?
— Is Alice just being quiet? Has she lost reception?
— How long should Bob just keep on talking?
— Maybe Alice should periodically say “uh huh”
— ... or Bob should ask “Can you hear me now?”

Take-Aways from the Example

* Acknowledgments from receiver
— Positive: “okay” or “uh huh” or “ACK”
— Negative: “please repeat that” or “NACK”

* Retransmission by the sender
— After not receiving an “ACK”
— After receiving a “NACK”

* Timeout by the sender (“stop and wait”)
— Don’t wait forever without some acknowledgment

TCP Support for Reliable Delivery

- Detect bit errors: checksum
— Used to detect corrupted data at the receiver
— ...leading the receiver to drop the packet

- Detect missing data: sequence number
- Used to detect a gap in the stream of bytes
— ... and for putting the data back in order

- Recover from lost data: retransmission
- Sender retransmits lost or corrupted data
- Two main ways to detect lost packets

TCP Acknowledgments

Host A

ISN (initial sequence number)

LTI
il

|

Sequence ACK sequence

number = number = next

1st byte expected byte
Host B

Automatic Repeat reQuest (ARQ)

* ACK and timeouts

— Receiver sends ACK when

. . Sender Receiver
it receives packet

. —J—Pack
—Sendt.erwarcsforACK T
and times out g

* Simplest ARQ protocol
— Stop and wait Time

— Send a packet, stop and

wait until ACK arrives

Quick TCP Math

* Initial Seq No = 501. Sender sends 4500 bytes
successfully acknowledged. Next sequence
number to send is:

(A) 5000 (B)5001 (C)5002

* Next 1000 byte TCP segment received.
Receiver acknowledges with ACK number:
(A) 5001 (B) 6000 (C) 6001

Quick TCP Math

* Initial Seq No = 501. Sender sends 4500 bytes
successfully acknowledged. Next sequence
number to send is:

(A) 5000 (B)5001 (C)5002

* Next 1000 byte TCP segment received.
Receiver acknowledges with ACK number:
(A) 5001 (B) 6000 (C) 6001

Flow Control:
TCP Sliding Window

Motivation for Sliding Window

¢ Stop-and-wait is inefficient
— Only one TCP segment is “in flight” at a time

* Consider: 1.5 Mbps link with 50 ms round-trip-time (RTT)
— Assume TCP segment size of 1 KB (8 Kbits)

— 8 Kbits/segment at 50 msec/segment = 160 Kbps
— That’s 11% of the capacity of 1.5 Mbps link

o0
0% -

Sliding Window

* Allow a larger amount of data “in flight”
— Allow sender to get ahead of the receiver

— ... though not too far ahead

Sending process

TCce Last byte written TCcp Last byte read
Last byte ACKed I Next byte expected [
Last byte sent Last byte received

Sliding Window

* Receive window size

— Amount that can be sent without acknowledgment
— Receiver must be able to store this amount of data

* Receiver tells the sender the window

— Tells the sender the amount of free space left

TCP Window Size TCP
I T [
OK to send
Last byte ACKed Next byte expected
Last byte sent Last byte received

Optimizing Retransmissions

Reasons for Retransmission

-{Packe, - —Pack, | —Pack
t (] ; ()
5| F Tl s ST
g 8 K 8 &
£ £ AC! E! O
= £ §/ =))
; ac|
”% 77%‘ : ket
5 5 =
g K g K g | 2 —
E A — F | At — Ei
ACK lost Early timeout
Packet lost DUPLICATE DUPLICATE

PACKET PACKETS

28

How Long Should Sender Wait?

* Sender sets a timeout to wait for an ACK
— Too short: wasted retransmissions
— Too long: excessive delays when packet lost

* TCP sets timeout as a function of the RTT
— Expect ACK to arrive after an “round-trip time”
— ... plus a fudge factor to account for queuing

* But, how does the sender know the RTT?
— Running average of delay to receive an ACK

Example RTT Estimation

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

250

iseconds)

RTT (mil

1 8 15 22 29 3% 43 50 57 64 71 78 8 92 99 106
time (seconnds)

—+— SampleRTT —=— Estimated RTT

Still, timeouts are slow (=RTT)

* When packet n is lost...

— ... packets n+1, n+2, and so on may get through

* Exploit the ACKs of these packets
— ACK says receiver is still awaiting nth packet
— Duplicate ACKs suggest later packets arrived
— Sender uses “duplicate ACKs” as a hint

* Fast retransmission
— Retransmit after “triple duplicate ACK”

Effectiveness of Fast Retransmit

* When does Fast Retransmit work best?
—High likelihood of many packets in flight
—Long data transfers, large window size, ...

* Implications for Web traffic

—Most Web transfers are short (e.g., 10 packets)
* So, often there aren’t many packets in flight

—Making fast retransmit is less likely to “kick in”
* Forcing users to click “reload” more often...

Effectiveness of Fast Retransmit

* When does Fast Retransmit work best?
(A) Short data transfers
(B) Large window size
(C) Small RTT networks

Starting and Ending a Connection:
TCP Handshakes

Establishing a TCP Connection

Each host tells
its ISN to the
other host.

* Three-way handshake to establish connection
— Host A sends a SYN (open) to the host B
— Host B returns a SYN acknowledgment (SYN ACK)
— Host A sends an ACK to acknowledge the SYN ACK

35

TCP Header

Source port ‘ Destination port

Sequence number

Flags: SYN

FIN Acknowledgment

RST Heren‘ o‘ Flags | Advertised window
PSH

URG Checksum Urgent pointer
ACK

Options (variable)

Step 1: A’s Initial SYN Packet

’ A’s port ‘ B’s port ‘
A's Initial Sequence Number
Flags: ?I\I(\IN Acknowledgment
RST 20 ‘ 0 ‘ Flags | Advertised window
PSH
URG Checksum Urgent pointer
ACK Options (variable)

A tells B it wants to open a connection...

Step 2: B’s SYN-ACK Packet

’ B’s port ‘ A’s port ‘
B’s Initial Sequence Number
Flags: SYN)
A's ISN plus 1
FIN s ISN plus
RST 20 ‘ 0 ‘ Flags | Advertised window
PSH
URG Checksum Urgent pointer
ACK Options (variable)

B tells A it accepts, and is ready to hear the next byte...
... upon receiving this packet, A can start sending data

38

Step 3: A’s ACK of the SYN-ACK

’ A's port ‘ B’s port ‘
Sequence number
Flags: SYN ,
FIN B’s ISN plus 1
RST 20 ‘ 0 ‘ Flags | Advertised window
PSH
URG Checksum Urgent pointer
ACK Options (variable)

A tells B it is okay to start sending
... upon receiving this packet, B can start sending data

39

SYN Loss and Web Downloads

Upon sending SYN, sender sets a timer
— If SYN lost, timer expires before SYN-ACK received
— Sender retransmits SYN

How should the TCP sender set the timer?
— No idea how far away the receiver is
— Some TCPs use default of 3 or 6 seconds

Implications for web download

— User gets impatient and hits reload

— ... Users aborts connection, initiates new socket

— Essentially, forces a fast send of a new SYN! w0

10

Tearing Down the Connection

B
72}
A
2 294 \z
o %Q‘v ta
r{ LN
A

time ———————>

FIN

b
STES

ACk

* Closing (each end of) the connection
— Finish (FIN) to close and receive remaining bytes
— And other host sends a FIN ACK to acknowledge
— Reset (RST) to close and not receive remaining bytes

41

Sending/Receiving the FIN Packet

* Sending a FIN: close()

— Process is done sending
data via socket

— Process invokes “close()”

— Once TCP has sent all
the outstanding bytes...

— ... then TCP sends a FIN

Receiving a FIN: EOF

— Process is reading
data from socket

— Eventually, read call
returns an EOF

Conclusions

* Transport protocols
—Multiplexing and demultiplexing
—Checksum-based error detection
—Sequence numbers
—Retransmission
—Window-based flow control

11

