
How to debug a ray 
tracer

and how to accelerate it



The rendering equation

For a specific wavelength and time



Phong reflectance model

http://en.wikipedia.org/wiki/Phong_reflection_model

http://en.wikipedia.org/wiki/Phong_reflection_model


A ray tracer



A ray tracer



A ray tracer

Calculate 
Phong



A ray tracer

Calculate 
Phong



A ray tracer

Calculate 
Phong

Calculate 
Phong



An alternate approach



Yet another alternate 
approach



Hybrid approaches



But let’s start with this

Calculate 
Phong

Calculate 
Phong



Things you will need to 
implement

Shoot rays Intersect rays 
with objects

Calculate values 
according to 
illumination 

model



Ray-sphere intersection
R0

Rd

Sc

https://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter1.htm

Sr

https://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter1.htm


Ray-sphere intersection
R0

Rd

Sc

https://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter1.htm

Sr

R(t) = R0 + t * Rd , t > 0

https://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter1.htm


Ray-sphere intersection
R0

Rd

Sc

https://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter1.htm

Sr

R(t) = R0 + t * Rd , t > 0

x = X0 + Xd * t 
y = Y0 + Yd * t 
z = Z0 + Zd * t

https://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter1.htm


Ray-sphere intersection
R0

Rd

Sc

https://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter1.htm

Sr

R(t) = R0 + t * Rd , t > 0

S = {(x, y, z) | (x - Xc)2 + (y - Yc)2 + (z - Zc)2 = Sr2}

x = X0 + Xd * t 
y = Y0 + Yd * t 
z = Z0 + Zd * t

https://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter1.htm


Ray-sphere intersection

https://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter1.htm

S = {(x, y, z) | (x - Xc)2 + (y - Yc)2 + (z - Zc)2 = Sr2}

x = X0 + Xd * t 
y = Y0 + Yd * t 
z = Z0 + Zd * t

(X0 + Xd * t - Xc)2 + (Y0 + Yd * t - Yc)2 + (Z0 + Zd * t - Zc)2 = Sr2

https://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter1.htm


Ray-sphere intersection

https://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter1.htm

S = {(x, y, z) | (x - Xc)2 + (y - Yc)2 + (z - Zc)2 = Sr2}

x = X0 + Xd * t 
y = Y0 + Yd * t 
z = Z0 + Zd * t

(X0 + Xd * t - Xc)2 + (Y0 + Yd * t - Yc)2 + (Z0 + Zd * t - Zc)2 = Sr2

A quadratic equation: A*t2 + B*t + C = 0

https://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter1.htm


Debugging: 
(2) Primary ray visualization: Provide code that will produce an image 
showing line segments indicating the paths of primary rays starting at the 
camera eye point and stopping at the first surface intersections. This option 
could be implemented by writing a .scn file with a representation for each 
ray (e.g., add "line" commands to the scene). Or, it could be implemented by 
extending rayview.cpp to show rays emanating from the camera provided in 
the .scn file as the scene is viewed interactively. You should restrict the 
number of rays displayed so that they are clearly visible. Commands for this 
feature do not need to be included in the runme file, but a description of your 
process should be included in the writeup.

What’s wrong here?



Debugging: 
(2) Primary ray visualization: Provide code that will produce an image 
showing line segments indicating the paths of primary rays starting at the 
camera eye point and stopping at the first surface intersections. This option 
could be implemented by writing a .scn file with a representation for each 
ray (e.g., add "line" commands to the scene). Or, it could be implemented by 
extending rayview.cpp to show rays emanating from the camera provided in 
the .scn file as the scene is viewed interactively. You should restrict the 
number of rays displayed so that they are clearly visible. Commands for this 
feature do not need to be included in the runme file, but a description of your 
process should be included in the writeup.



Debugging: 
(2) Primary ray visualization: Provide code that will produce an image 
showing line segments indicating the paths of primary rays starting at the 
camera eye point and stopping at the first surface intersections. This option 
could be implemented by writing a .scn file with a representation for each 
ray (e.g., add "line" commands to the scene). Or, it could be implemented by 
extending rayview.cpp to show rays emanating from the camera provided in 
the .scn file as the scene is viewed interactively. You should restrict the 
number of rays displayed so that they are clearly visible. Commands for this 
feature do not need to be included in the runme file, but a description of your 
process should be included in the writeup.





Common pitfalls



Common pitfalls



Common pitfalls



Acceleration



Acceleration

Test bounding box



Acceleration

Cache last intersection



Acceleration

Front to back



Acceleration

Use data structures



BSP Tree

http://en.wikipedia.org/wiki/Binary_space_partitioning
…

http://en.wikipedia.org/wiki/Binary_space_partitioning


BSP Tree

http://en.wikipedia.org/wiki/Binary_space_partitioning

http://en.wikipedia.org/wiki/Binary_space_partitioning

