The 3D Rasterization Pipeline

COS 426, Spring 2014

Princeton University

3D Rendering Scenarios

- Batch
- One image generated with as much quality as possible for a particular set of rendering parameters
- Take as much time as is needed (minutes)
- Useful for photorealistism, movies, etc.
> Interactive
- Images generated in fraction of a second (<1/10) with user input, animation, varying camera, etc.
- Achieve highest quality possible in given time
- Visualization, games, etc.

3D Polygon Rendering

- Many applications use rendering of 3D polygons with direct illumination

3D Polygon Rendering

- Many applications use rendering of 3D polygons with direct illumination

meshview

Ray Casting Revisited

- For each sample ...
- Construct ray from eye position through view plane
- Find first surface intersected by ray through pixel
- Compute color of sample based on illumination

3D Polygon Rendering

- We can render polygons faster if we take advantage of spatial coherence

3D Polygon Rendering

- How?

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

3D Polygon Rendering

- How?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

3D Polygon Rendering

- How?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	
0	0	0	0			0	0	0	0
0	0	0	0				0	0	0
0	0	0					0	0	0
0	0						0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

3D Rendering Pipeline (for direct llumination)

This is a pipelined sequence of operations to draw 3D primitives into a 2D image

3D Rendering Pipeline (for direct ilumination)

3D Rendering Pipeline (for direct illumination)

3D Primitives

Transform into 3D world coordinate system

3D Rendering Pipeline (for direct ilumination)

3D Primitives
 Transformation

Viewing
Transformation

Projection
Transformation

Viewport Transformation

Transform into 3D world coordinate system

Illuminate according to lighting and reflectance

3D Rendering Pipeline (for direct llumination)

3D Primitives

Modeling
Transformation

Lighting

Projection Transformation

Transform into 3D world coordinate system

Illuminate according to lighting and reflectance

Transform into 3D camera coordinate system

3D Rendering Pipeline (for direct llumination)

3D Rendering Pipeline (for direct llumination)

3D Rendering Pipeline (for direct ilumination)

3 R Reßderind pipeline (for direct illumination)

Transformations

$p(x, y, z)$
3D Object Coordinates
Modeling
Transformation
3D World Coordinates
Viewing
Transformation
3D Camera Coordinates

Transformations map points from one coordinate system to another

Viewing Transformations

Review: Viewing Transformation

- Mapping from world to camera coordinates
- Eye position maps to origin
- Right vector maps to X axis
- Up vector maps to Y axis
- Back vector maps to Z axis

Camera

World

Review: Camera Coordinates

- Canonical coordinate system
- Convention is right-handed (looking down -z axis)
- Convenient for projection, clipping, etc.

Camera up vector
$y \uparrow$ maps to Y axis

Camera back vector maps to Z axis

Camera right vector maps to X axis

Finding the viewing transformation

- We have the camera (in world coordinates)
- We want T taking objects from world to camera

$$
p^{c}=T p^{w}
$$

- Trick: find T^{-1} taking objects in camera to world

$$
\begin{gathered}
p^{w}=T^{-1} p^{c} \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]} \\
\widehat{?}
\end{gathered}
$$

Finding the Viewing Transformation

- Trick: map from camera coordinates to world
- Origin maps to eye position
- Z axis maps to Back vector
- Y axis maps to Up vector
- X axis maps to Right vector

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
R_{x} & U_{x} & B_{x} & E_{x} \\
R_{y} & U_{y} & B_{y} & E_{y} \\
R_{z} & U_{z} & B_{z} & E_{z} \\
R_{w} & U_{w} & B_{w} & E_{w}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

- This matrix is T^{-1} so we invert it to get $T \ldots$ easy!

Viewing Transformations

Projection

- General definition:
- Transform points in n-space to m-space ($m<n$)
- In computer graphics:
- Map 3D camera coordinates to 2D screen coordinates

Taxonomy of Projections

Taxonomy of Projections

Planar geometric projections

Isometric

Parallel Projection

- Center of projection is at infinity
- Direction of projection (DOP) same for all points

Orthographic Projections

- DOP perpendicular to view plane

Side

Parallel Projection Matrix

- General parallel projection transformation:

Parallel Projection View Volume

H\&B Figure 12.30

Taxonomy of Projections

Perspective Projection

- Map points onto "view plane" along "projectors" emanating from "center of projection" (COP)

Perspective Projection View Volume

H\&B Figure 12.30

Perspective Projection

- Compute 2D coordinates from 3D coordinates with similar triangles

Perspective Projection

- Compute 2D coordinates from 3D coordinates with similar triangles

Perspective Projection Matrix

- 4×4 matrix representation?

$$
\begin{aligned}
& x_{s}=x_{c} D / z_{c} \\
& y_{s}=y_{c} D / z_{c} \\
& z_{s}=D \\
& w_{s}=1
\end{aligned}
$$

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
w_{s}
\end{array}\right]=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
1
\end{array}\right]
$$

Perspective Projection Matrix

- 4×4 matrix representation?

$$
\begin{array}{lll}
x_{s}=x_{c} D / z_{c} & x_{s}=x^{\prime} / w^{\prime} & x^{\prime}=x_{c} \\
y_{s}=y_{c} D / z_{c} & y_{s}=y^{\prime} / w^{\prime} & y^{\prime}=y_{c} \\
z_{s}=D & z_{s}=z^{\prime} / w^{\prime} & z^{\prime}=z_{c} \\
w_{s}=1 & & w^{\prime}=z_{c} / D
\end{array}
$$

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
w_{s}
\end{array}\right]=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
1
\end{array}\right]
$$

Perspective Projection Matrix

- 4×4 matrix representation?

$$
\begin{array}{lll}
x_{s}=x_{c} D / z_{c} & x_{s}=x^{\prime} / w^{\prime} & x^{\prime}=x_{c} \\
y_{s}=y_{c} D / z_{c} & y_{s}=y^{\prime} / w^{\prime} & y^{\prime}=y_{c} \\
z_{s}=D & z_{s}=z^{\prime} / w^{\prime} & z^{\prime}=z_{c} \\
w_{s}=1 & & w^{\prime}=z_{c} / D
\end{array}
$$

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
w_{s}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / D & 0
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
1
\end{array}\right]
$$

Perspective Projection Matrix

- In practice, want to compute a value related to depth to include in visibility calculations

$$
\begin{array}{lll}
x_{s}=x_{c} D / z_{c} & x_{s}=x^{\prime} / w^{\prime} & x^{\prime}=x_{c} \\
y_{s}=y_{c} D / z_{c} & y_{s}=y^{\prime} / w^{\prime} & y^{\prime}=y_{c} \\
z_{s}=-D / z_{c} & z_{s}=z^{\prime} / w^{\prime} & z^{\prime}=-1 \\
w_{s}=1 & & w^{\prime}=z_{c} / D
\end{array}
$$

$\left[\begin{array}{l}x_{s} \\ y_{s} \\ z_{s} \\ w_{s}\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 / D & 0\end{array}\right]\left[\begin{array}{c}x_{c} \\ y_{c} \\ z_{c} \\ 1\end{array}\right]$

Perspective vs. Parallel

- Perspective projection
+ Size varies inversely with distance - looks realistic
- Distance and angles are not (in general) preserved
- Parallel lines do not (in general) remain parallel
- Parallel projection
+ Good for exact measurements
+ Parallel lines remain parallel
- Angles are not (in general) preserved
- Less realistic looking

Transformations

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \\
& \quad \text { 3D Object Coordinates }
\end{aligned}
$$

Modeling
Transformation
3D World Coordinates

Transformation
3D Camera Coordinates

Transformations map points from one coordinate system to another

Viewport Transformation

- Transform 2D geometric primitives from screen coordinate system (normalized device coordinates) to image coordinate system (pixels)

Screen

Image

Viewport Transformation

- Window-to-viewport mapping

Screen Coordinates

$$
\begin{aligned}
& v x=v x 1+(w x-w x 1) *(v x 2-v x 1) /(w x 2-w x 1) ; \\
& v y=v y 1+(w y-w y 1) *(v y 2-v y 1) /(w y 2-w y 1) ;
\end{aligned}
$$

Summary of Transformations

3D Rendering Pipeline (for direct ilumination)

Clipping

- Avoid drawing parts of primitives outside window
- Window defines part of scene being viewed
- Must draw geometric primitives only inside window

Polygon Clipping

- Find the part of a polygon inside the clip window?

Before Clipping

Polygon Clipping

- Find the part of a polygon inside the clip window?

After Clipping

Sutherland Hodgeman Clipping

- Clip to each window boundary one at a time (for convex polygons)

Sutherland Hodgeman Clipping

- Clip to each window boundary one at a time

Sutherland Hodgeman Clipping

- Clip to each window boundary one at a time

Sutherland Hodgeman Clipping

- Clip to each window boundary one at a time

Sutherland Hodgeman Clipping

- Clip to each window boundary one at a time

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

3D Rendering Pipeline (for direct illumination)

Viewing
Window

3D Rendering Pipeline (for direct illumination)

Standard (aliased)
Scan Conversion

3D Rendering Pipeline (for direct illumination)

Antialiased Scan Conversion

Scan Conversion

- Render an image of a geometric primitive by setting pixel colors

```
void SetPixel(int x, int y, Color rgba)
```

- Example: Filling the inside of a triangle

Triangle Scan Conversion

- Properties of a good algorithm
- Symmetric
- Straight edges
- No cracks between adjacent primitives
- (Antialiased edges)
- FAST!

Simple Algorithm

- Color all pixels inside triangle

```
void ScanTriangle(Triangle T, Color rgba){
    for each pixel P in bbox(T) {
        if (Inside(T, P))
        SetPixel(P.x, P.Y, rgba);
        }
}
```


Triangle Sweep-Line Algorithm

- Take advantage of spatial coherence
- Compute which pixels are inside using horizontal spans
- Process horizontal spans in scan-line order
- Take advantage of edge linearity
- Use edge slopes to update coordinates incrementally

Triangle Sweep-Line Algorithm

void ScanTriangle(Triangle T, Color rgba) \{ for each edge pair \{
initialize $\mathbf{x}_{\mathrm{L}}, \mathbf{x}_{\mathrm{R}}$;
compute $\mathrm{dx}_{\mathrm{L}} / d \mathrm{y}_{\mathrm{L}}$ and $\mathrm{dx} \mathrm{x}_{\mathrm{R}} / d \mathrm{y}_{\mathrm{R}}$;
for each scanline at y
for (int $\mathbf{x}=\mathbf{x}_{\mathrm{L}} ; \mathbf{x}<=\mathrm{x}_{\mathrm{R}} ; \mathbf{x + +}$) SetPixel (x, y, rgba);
$\mathrm{x}_{\mathrm{L}}+=\mathrm{dx}_{\mathrm{L}} / \mathrm{dy}_{\mathrm{L}}$;
$\mathbf{x}_{\mathrm{R}}+=\mathrm{dx} \mathrm{X}_{\mathrm{R}} / \mathrm{dy}_{\mathrm{R}}$;
\}

Triangle Sweep-Line Algorithm

void ScanTriangle(Triangle T, Color rgba) \{ for each edge pair \{ initialize $\mathbf{x}_{\mathrm{L}}, \mathrm{x}_{\mathrm{R}}$; compute $\mathrm{dx}_{\mathrm{L}} / d \mathrm{y}_{\mathrm{L}}$ and $\mathrm{dx} \mathrm{x}_{\mathrm{R}} / d \mathrm{y}_{\mathrm{R}}$; for each scanline at y for (int $\mathrm{x}=\mathrm{x}_{\mathrm{L}} ; \mathbf{x}<=\mathrm{x}_{\mathrm{R}} ; \mathbf{x + +}$) SetPixel(x, y, rgba);
$\mathrm{x}_{\mathrm{L}}+=\mathrm{dx}_{\mathrm{T}} / \mathrm{dy}_{\mathrm{L}} ;$ $\mathbf{x}_{\mathrm{R}}+=\mathrm{d} \mathbf{y}_{\mathrm{R}} / \mathrm{dy} \mathrm{y}_{\mathrm{R}}$;
\}
Minimize computation in inner loops

GPU Architecture

GeForce 6 Series Architecture

GPU Architecture

GeForce 6 Series Architecture

