

Lighting and Reflectance

COS 426, Spring 2014 Princeton University

Ray Casting

Without Illumination

R2Image *RayCast(R3Scene *scene, int width, int height)

```
R2Image *image = new R2Image(width, height);
for (int i = 0; i < width; i++) {
    for (int j = 0; j < \text{height}; j++) \{
         R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
         R3Rgb radiance = ComputeRadiance(scene, &ray);
         image->SetPixel(i, j, radiance);
return image;
```

Ray Casting

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)

R3Intersection intersection = ComputeIntersection(scene, ray); return ComputeRadiance(scene, ray, intersection);

Illumination

 How do we compute radiance for a sample ray once we know what it hits?

ComputeRadiance(scene, ray, intersection)

Goal

- Must derive computer models for ...
 - Emission at light sources
 - Scattering at surfaces
 - Reception at the camera

- Desirable features ...
 - Concise
 - Efficient to compute
 - "Accurate"

Overview

- Direct Illumination
 - Emission at light sources
 - Scattering at surfaces
- Global illumination
 - Shadows
 - Refractions
 - Inter-object reflections

Direct Illumination

Emission at Light Sources

- **I**_L(*x,y,z,*θ,φ,λ) ...
 - describes the intensity of energy,

Light

- leaving a light source, ...
- arriving at location(x,y,z), ...
- from direction (θ, ϕ) , ...
- $\circ~$ with wavelength λ

Empirical Models

- Ideally measure irradiant energy for "all" situations
 - Too much storage
 - Difficult in practice

OpenGL Light Source Models

- Simple mathematical models:
 - Point light
 - Spot light
 - Directional light

Point Light Source

- Models omni-directional point source
 - intensity (I_0) ,
 - \circ position (p_x, p_y, p_z),
 - coefficients (c_a , I_a , q_a) for attenuation with distance (d)

Directional Light Source

- Models point light source at infinity
 - intensity (I_0) ,
 - direction (d_x, d_y, d_z)

(d_x, d_y, d_z) No attenuation with distance

Spot Light Source

- Models point light source with direction
 - intensity (I_0) ,

 (p_x, p_y, p_z)

- \circ position (p_x, p_y, p_z),
- direction (d_x , d_y , d_z)
- attenuation with distance
- falloff (sd), and cutoff (sc)

SC

 $\Theta = \cos^{-1}(\mathbf{L} \cdot \mathbf{D})$

if
$$\Theta \leq sc$$
,

Overview

- Direct Illumination
 - Emission at light sources
 - Scattering at surfaces
- Global illumination
 - Shadows
 - Refractions
 - Inter-object reflections

Direct Illumination

Scattering at Surfaces

Bidirectional Reflectance Distribution Function $f_r(\theta_i, \phi_i, \theta_o, \phi_o, \lambda)$...

- describes the aggregate fraction of incident energy,
- arriving from direction $(\theta_i, \phi_i), \dots$
- leaving in direction $(\theta_o, \phi_o), \dots$
- $\circ~$ with wavelength λ

Empirical Models

Ideally measure BRDF for "all" combinations of angles: $\theta_i, \phi_i, \theta_o, \phi_o$

- Difficult in practice
- Too much storage

Parametric Models

Approximate BRDF with simple parametric function that is fast to compute.

- Phong [75]
- Blinn-Phong [77]
- Cook-Torrance [81]
- He et al. [91]
- Ward [92]
- Lafortune et al. [97]
- Ashikhmin et al. [00]
- etc.

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"

Based on model proposed by Phong

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"

Based on model proposed by Phong

- Assume surface reflects equally in all directions
 - Examples: chalk, clay

- What is brightness of surface?
 - Depends on angle of incident light

- What is brightness of surface?
 - Depends on angle of incident light

- Lambertian model
 - cosine law (dot product)

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"

Specular Reflection

- Reflection is strongest near mirror angle
 - Examples: mirrors, metals

Specular Reflection

How much light is seen?

Depends on:

• angle of incident light

θ

θ

- angle to viewer
 - Viewer

Specular Reflection

- Phong Model
 - $(\cos \alpha)^n$ This is a (vaguely physically-motivated) hack!

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"

Emission

Represents light emanating directly from surface

Note: does not automatically act as light source!
 Does not affect other surfaces in scene!

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"

Ambient Term

Represents reflection of all indirect illumination

This is a hack (avoids complexity of global illumination)!

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"

Sum diffuse, specular, emission, and ambient

Leonard McMillan, MIT

Good model for plastic surfaces, ...

Direct Illumination Calculation

Direct Illumination Calculation

Multiple light sources:

Overview

- Direct Illumination
 - Emission at light sources
 - Scattering at surfaces
- Global illumination
 - Shadows
 - Transmissions
 - Inter-object reflections

Global Illumination

Global Illumination

Ray Casting (last lecture)

Trace primary rays from camera

Direct illumination from unblocked lights only

Shadows

Shadow term tells if light sources are blocked

- Cast ray towards each light source
- $S_L = 0$ if ray is blocked, $S_L = 1$ otherwise

Also trace secondary rays from hit surfaces

• Mirror reflection and transparency

Mirror reflections

Trace secondary ray in mirror direction

 Evaluate radiance along secondary ray and include it into illumination model

Transparency

Trace secondary ray in direction of refraction

 Evaluate radiance along secondary ray and include it into illumination model

Transparency

Refractive Transparency

For thin surfaces, can ignore change in direction

• Assume light travels straight through surface

Refractive Tranparency

Ray tree represents illumination computation

Ray tree represents illumination computation

ComputeRadiance is called recursively

```
R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray, R3Intersection& hit)
```

R3Ray specular_ray = SpecularRay(ray, hit); R3Ray refractive_ray = RefractiveRay(ray, hit); R3Rgb radiance = Phong(scene, ray, hit) + Ks * ComputeRadiance(scene, specular_ray) + Kt * ComputeRadiance(scene, refractive_ray); return radiance;

Example

Turner Whitted, 1980

Summary

- Ray casting (direct Illumination)
 - Usually use simple analytic approximations for light source emission and surface reflectance
- Recursive ray tracing (global illumination)
 - Incorporate shadows, mirror reflections, and pure refractions

All of this is an approximation so that it is practical to compute

More on global illumination next time!

Illumination Terminology

- Radiant power [flux] (Φ)
 - Rate at which light energy is transmitted (in Watts).
- Radiant Intensity (I)
 - Power radiated onto a unit solid angle in direction (in Watts/sr)
 - » e.g.: energy distribution of a light source (inverse square law)

• Radiance (L)

- Radiant intensity per unit projected surface area (in Watts/m²sr)
 » e.g.: light carried by a single ray (no inverse square law)
- Irradiance (E)
 - Incident flux density on a locally planar area (in Watts/m²)
 » e.g.: light hitting a surface at a point
- Radiosity (B)
 - Exitant flux density from a locally planar area (in Watts/m²)