

3D Rendering

COS 426, Spring 2014 Princeton University

Syllabus

I. Image processing

- II. Modeling
- **III.** Rendering
- IV. Animation

Image Processing (Rusty Coleman, CS426, Fall99)

Rendering (Michael Bostock, CS426, Fall99)

What is 3D Rendering?

- Topics in computer graphics
 - Imaging = representing 2D images
 - Modeling = representing 3D objects
 - Rendering = constructing 2D images from 3D models
 - Animation = *simulating changes over time*

3D Rendering Scenario I

- Interactive
 - Images generated in fraction of a second (e.g., 1/30) as user controls rendering parameters (e.g., camera)
 - Achieve highest quality possible in given time
 - Useful for visualization, games, etc.

meshview

3D Rendering Scenario II

- Offline
 - One image generated with as much quality as possible for a particular set of rendering parameters
 - Take as much time as is needed (minutes)
 - Photorealisism: movies, cut scenes, etc.

Avata

• What issues must be addressed by a 3D rendering system?

3D Rendering Example

• What issues must be addressed by a 3D rendering system?

- What issues must be addressed by a 3D rendering system?
 - Camera
 - Visible surface determinaton
 - Lights
 - Reflectance
 - Shadows
 - Indirect illumination
 - Sampling
 - etc.

- What issues must be addressed by a 3D rendering system?
 - Camera
 - Visible surface determinaton
 - Lights
 - Reflectance
 - Shadows
 - Indirect illumination
 - Sampling
 - etc.

Camera Models

- The most common model is pin-hole camera
 - Light rays arrive along paths toward focal point
 - No lens effects (e.g., everything in focus)

Camera Parameters

• What are the parameters of a pin-hole camera?

Pinhole Camera Parameters

- Position
 - Eye position (p_x , p_y , p_z)
- Orientation
 - View direction (d_x, d_y, d_z) or "look at" point
 - Up direction (u_x, u_y, u_z)
- Coverage

 Field of view (fov_x, fov_y)
- Resolution
 x and y

- What issues must be addressed by a 3D rendering system?
 - Camera
 - Visible surface determination
 - Lights
 - Reflectance
 - Shadows
 - Indirect illumination
 - Sampling
 - etc.

Visible Surface Determination

 The color of each pixel on the view plane depends on the radiance ("amount of light") emanating from visible surfaces

How find visible surfaces?

•

OPAQUE-OBJECT ALGORITHMS										
		COMPARIS	SON ALGORITHMS	OBJECT SPACE	(partly each)	IMAGE SPACE	DEPTH PRIORIT	Y ALGORITHMS		
		and strength to the second second second	\frown					_		
		edges edges		edges volumes	LIST PRIORITY		area samplin	8	point sampling	
		$\langle \rangle$		\backslash	a priori	dynamicall, computed			\wedge	
	-	Ļ		>		priority	7	-		`
	APPEL 1967	GALIMBERTI, <u>et al</u> 1969	LOUTREL 1967	ROBERTS 1963	SCHUMACKER, et al 1969	NEWELL, et al	WARNOCK	WATKINS	ROMNEY, et al	BOUKNIGHT
RESTRICTIONS	TP,NP	TP,NP	TP,NP	TP, CC, CF, NP	CF, NP, LS (TP)	None	(TR) None	None	TR, CF, NP	1909
COHERENCE	Promote visibility of a vertex to all edges at vertex	Promote visibility of a vertex to all edges at vertex	Promote visibility of a vertex to all edges at vertex		Frame coherence in depth No X coherence used	None used	Area coherence	Scanline X coherence	Scanline Depth Coherence	Scanline X Coherence
SORTING (1) Mhaf, what prop- erty (2) Method (3) Type (4) Result structure (5) Number of new entrics (merge) Number of new entrics length of list	Back Edge Cull 1) Edges separating back-facing planes 2) Dot product with normals & topology 3) Cull 4) List of edges, Es 5) 1, Et	Back Edge Cull 1) Edges separating back facing planes 2) Dot product with normals & topology 3) Cull 4) List of edges, E _S 5) 1, E _t	Back Edge Cull 1) Edges separating back-facing planes 2) Dot product with normals & topology 3) Cull 4) List of edges.Eg 5) 1, Et	Back Edge Cull 1) Edges separating back-facing planes 2) Dot product with hormals & topology 3) Cull 4) List of edges, E 5) 1, E t	Intra-Cluster Priority 1) Faces - vissibility 2) Dot product with normals 3) Exhaustive search 4) Ordered table 5) 0, (otf-line)	Z Sort 1) Faces, max 2 2) Comparison of max points 3) n logm 4) Ordered table 5) 1, F _T	<u>Z Sort (Opt)</u> 1) Faces, max Z 2) Comparison of max points 3) n log m 4) Ordered table 5) 1, F _T	Y Sort 1) Edges, min Y 2) Comparison 3) Bucket 4) Table of Lists 5) 1, E _r	Y Sort 1) Polygons, Y endpoints 2) Comparison 3) 2 bucket 4) Table of lists 5) 1, Fr	Y Sort 1) Edges, Min Y 2) Comparison 5) Bucket 4) Table of lists 5) 1, E _r
	Contour Edge Cull 1) Edges separating front 4 back faces 2) Dot product with normals 6 topology 3) Cull 4) List, E 5) 1, E c	(Omatted)	(Omitted)	Clipping Cull Thtersect edge with visible volume () () () () () () () () () ()	Inter-Cluster Priority 1) Clusters 2) Dot product with separating planes 3) Prefix scan binary tree 4) ordered table 5) 1, C _t	Neweil Special 1) Faces, pairwise Visibility 2) Depth, bounding boxes, separation 3) Bubble, splitting 4) Ordered table 5) 1.F _T +split faces	Narnock Special 1) Faces with window 2) Depth, mini-max in X and Y, sum of angles 3) Radix 4 subdivi- sion with overlap 4) Stacks of unordered tables 5) L. F. /factor 1	<u>X Morge</u> (1) Edges, X value (2) Comparison 3) Merge (ordred' 4) 2-way linked list 5) E _r , S t	X Sort 1) Edges, X value 2) Comparison 3) 2 bucket 4) Table of lists 5) n. Sg	X Merge 1) Edges, X value 2) Comparison 3) Merge (ordered) 4) Linked list 5) E _r , 2S ₄ (edges)
	Initial Visibility 1) Ray to vertex against all faces 2) Depth, Surroundedness 3) Exhaustive search 4) Quantitative visibility of vertex 5) # Objects, F _r	Initial Visibility 1) Ray to vertex against all faces 2) Depth, surroundedness 3) Exhaustive search 4) Quantitative visibility of vertex 5) fobjects, Fr	Initial Visibility 1) Kay to vertex against all faces 2) Betweenness, surroundedness 3) Exhaustive search 4) Quantitative visibility of vertes 5) fobjects, F _T	Edge/Volume Test 1) Edges, visibilit relative to volumes 2) Linear Programming 3) Mini-max sort 4) Answer 5) E _s * split edges, fobjects	Back-Face Cull 1) Faces 2) Dot product with face normal 3) Cull 4) Smaller ordered table 5) 1, F _t	Y Sort 1) Face segment by Y range 2) Y intercept 3) Bucket 4) None 5) Fr + split faces, Hf	Depth Search 1) Surrounder faces 2) 4-corner compare 3) Exhaustive 4) Answer/failure 5) L _y , F _r /factor 2	X Sort 1) Segments, λ left 2) Comparison 3) Rubble 4) 2-way linked list 5) n, Sg	X Priority Search 1) Edges, X value 2) Comparison 3) Priority search 4) Active segment list 5) n. m	X Sort 1) Edges, X value 2) Comparison 3) Bubble 4) 1-way linked list 5) N, 2Sg (edges)
	Edge Intersection 1) Intersect one E_g with all E_c 2) Penetration with sweep triangle 3) Cull (unordered) 4) Intersection list 5) E_g , E_c	Edge Intersection 1) Intersect one F_s with all E_s 2) Intersect in picture plane, depth 3) Cull (unordered) 4) Intersection list 5) F_s , $E_s - 1$	Edge Intersection 1) Intersect one Es with all E 2) Intersect in picture plane, depth 3) Cull (unordered) 4) Intersection list 5) E ₅ , E ₅ = 1		Y Cull 1) Faces by Y extent 2) Mini-max on X intercepts 3) Cull (unordered) 4) X intercepts of relevant segments 5) n, E ₅	X Merge 1) Segments, X intercept 2) Comparison 3) Ordered merge 4) Ordered list 5) S _r , S _v /2	TV Sort (Opt) Sort windows into scan-line order if needed	Span Cull 1) Segments, overlap with sample span 2) Double comparison 3) Cull ordered list 4) Active list 5) n*S _y * f (>1), S _y	2 Search 1) Segments, depth 2) Linear equations and comparison 3) Search (unordered 4) Visible segment 5) n*25 ₄ , ^D _C	2 Search 1) Segments, depth 2) Linear equations and comparison 3) Search of un- ordered active list 4) Visible segment 5) n*25, D.
	Sort Along Edge 1) Intersections on edge, ordering 2) Comparison 3) Bubble 4) Answer 5) E _s , X _y /E _s Omat if well hidden)	Sort Along Edge 1) Intersections on edge, ordering 2) 3) 4) Answer 5) E_s , X_v/E_s (must be done)	Sort Along Edge 1) Intersections on edge, ordering 2) 3) 4) Answer 5) E_5 , X_y/E_5 (Omit if well hidden)		X Sort T) Segments 2) Counters 3) Hardware 4) Segments at this X 5) nm, Sg			2 Search) Segments, 2 2) Depth by logarithmic search 3) Search (unordered 4) Visible segment 5) n*S _V *f(>1), D _C	(Omitted if X priorities same as last time))	C. C. C.
					Priority Search 1) Segments, priorit 2) Logic network 3) Logic network 4) Visible segment 5) nm, Sg		ACM Con	nput. Surv	v. 6, 1 (Mai	ch 1974)

Ray Casting

- For each sample ...
 - Construct ray from eye position through view plane
 - Find first surface intersected by ray through pixel
 - Compute color of sample based on surface radiance

Ray Casting

- For each sample ...
 - Construct ray from eye position through view plane
 - Find first surface intersected by ray through pixel
 - Compute color of sample based on surface radiance

Ray Casting Example

Rays from camera in simple scene

- What issues must be addressed by a 3D rendering system?
 - Camera
 - Visible surface determinaton
 - Lights
 - Reflectance
 - Shadows
 - Indirect illumination
 - Sampling
 - etc.

Lighting Simulation

- Lighting parameters
 - Light source emission
 - Surface reflectance
 - Atmospheric attenuation
 - Camera response

- What issues must be addressed by a 3D rendering system?
 - Camera
 - Visible surface determinaton
 - Lights
 - Reflectance
 - Shadows
 - Indirect illumination
 - Sampling
 - etc.

Shadows

• Occlusions from light sources

Shadows

Occlusions from light sources
 Soft shadows with area light source

Shadows

Herf

- What issues must be addressed by a 3D rendering system?
 - Camera
 - Visible surface determinaton
 - Lights
 - Reflectance
 - Shadows
 - Indirect illumination
 - Sampling
 - etc.

Indirect Illumination

Indirect Illumination

+ indirect diffuse illumination

Henrik Wann Jensen

- What issues must be addressed by a 3D rendering system?
 - Camera
 - Visible surface determinaton
 - Shadows
 - Reflectance
 - Indirect illumination
 - Sampling
 - etc.

Sampling

- Scene can be sampled with any ray
 - Rendering is a problem in sampling and reconstruction

Summary

- Topics for after spring break
 - Camera
 - Visible surface determinaton
 - Shadows
 - Reflectance
 - Indirect illumination
 - Sampling
 - etc.

Tricycle (James Percy, CS 426, Fall99)

