Implicit Surfaces \& Solid Representations

COS 426, Spring 2014 Princeton University

3D Object Representations

- Raw data
- Range image
- Point cloud
- Solids
- Voxels
- BSP tree
- CSG
- Sweep
- High-level structures
- Scene graph
- Application specific

3D Object Representations

- Desirable properties of an object representation
- Easy to acquire
- Accurate
- Concise
- Intuitive editing
- Efficient editing
- Efficient display
- Efficient intersections
- Guaranteed validity
- Guaranteed smoothness - etc.

3D Object Representations

- Desirable properties of an object representation
- Easy to acquire
- Accurate
- Concise
- Intuitive editing
- Efficient editing
- Efficient display
- Efficient intersections
- Guaranteed validity
- Guaranteed smoothness - etc.

Implicit Surfaces

- Represent surface with function over all space

Implicit Surfaces

- Surface defined implicitly by function

Implicit Surfaces

- Surface defined implicitly by function:
- $f(x, y, z)=0$ (on surface)
- $f(x, y, z)<0$ (inside)
- $f(x, y, z)>0$ (outside)

Implicit Surfaces

- Normals defined by partial derivatives
- normal(x, y, z) = normalize($\partial f / \partial x, \partial f / \partial y, \partial f / \partial z)$

Normals

Curvatures

Implicit Surface Properties

(1) Efficient check for whether point is inside

- Evaluate $f(x, y, z)$ to see if point is inside/outside/on
- Example: ellipsoid

$$
f(x, y, z)=\left(\frac{x}{r_{x}}\right)^{2}+\left(\frac{y}{r_{y}}\right)^{2}+\left(\frac{z}{r_{z}}\right)^{2}-1
$$

Implicit Surface Properties

(2) Efficient surface intersections

- Substitute to find intersections

Ray: $P=P_{0}+t V$
Sphere: $|\mathrm{P}-\mathrm{O}|^{2}-\mathrm{r}^{2}=0$
Substituting for P, we get:

$$
\left|P_{0}+t V-O\right|^{2}-r^{2}=0
$$

Solve quadratic equation:

$$
a t^{2}+b t+c=0
$$

where:

$$
\begin{aligned}
& a=1 \\
& b=2 V \cdot\left(P_{0}-O\right) \\
& c=\left|P_{0}-C\right|^{2}-r^{2}=0
\end{aligned}
$$

Implicit Surface Properties

(3) Efficient boolean operations (CSG)

- How would you implement:

Union? Intersection? Difference?

Union

Difference

Implicit Surface Properties

(4) Efficient topology changes

- Surface is not represented explicitly!

Implicit Surface Properties

(4) Efficient topology changes

- Surface is not represented explicitly!

Comparison to Parametric Surfaces

- Implicit
- Efficient intersections \& topology changes
- Parametric
- Efficient "marching" along surface \& rendering

equiangular parametric
(transcendental trigonometric)

$$
\boldsymbol{p}=(\cos (\alpha), \sin (\alpha)), \alpha \in[0,2 \pi]
$$

non-equiangular parametric (rational)
$\boldsymbol{p}=\left(\pm\left(1-t^{2}\right) /\left(1+t^{2}\right), 2 t /\left(1+t^{2}\right)\right), t \in[-1,1]$
implicit
$\boldsymbol{p}_{x}{ }^{2}+\boldsymbol{p}_{y}{ }^{2}-1=0$

Implicit Surface Representations

- How do we define implicit function?
- $f(x, y, z)=$?

Implicit Surface Representations

- How do we define implicit function?
- Algebraics
- Voxels
- Basis functions
- Others

Implicit Surface Representations

- How do we define implicit function?
> Algebraics
- Voxels
- Basis functions
- Others

Algebraic Surfaces

- Implicit function is polynomial
- $f(x, y, z)=a x^{d}+b y^{d}+c z^{d}+d x^{d-1} y+d x^{d-1} z+d y^{d-1} x+\ldots$

Algebraic Surfaces

- Most common form: quadrics
- $f(x, y, z)=a x^{2}+b y^{2}+c z^{2}+2 d x y+2 e y z+2 f x z+2 g x+2 h y+2 j z+k$
- Examples
- Sphere
- Ellipsoid
- Paraboloid
- Hyperboloid

Algebraic Surfaces

- Higher degree algebraics

Cubic

Quartic

Degree six

Algebraic Surfaces

- Equivalent parametric surface
- Tensor product patch of degree m and n curves yields algebraic function with degree 2 mn

Bicubic patch has degree 18!

Algebraic Surfaces

- Intersection
- Intersection of degree m and n algebraic surfaces yields curve with degree mn

Intersection of bicubic patches has degree 324 !

Algebraic Surfaces

- Function extends to infinity
- Must trim to get desired patch (this is difficult!)

Implicit Surface Representations

- How do we define implicit function?
- Algebraics
> Voxels
- Basis functions

Voxels

- Regular array of 3D samples (like image)
- Samples are called voxels ("volume pixels")

Voxels

- Example isosurfaces

SUNY Stoney Brook

Princeton University

Voxels

- Regular array of 3D samples (like image)
- Applying reconstruction filter (e.g. trilinear) yields $f(x, y, z)$
- Isosurface at $f(x, y, z)=0$ defines surface

Voxels

- Iso-surface extraction algorithm
- e.g., Marching cubes

Voxels

- Iso-surface extraction algorithm - e.g., Marching cubes (15 cases)

Voxel Storage

- $\mathrm{O}\left(\mathrm{n}^{3}\right)$ storage for $n \times n \times n$ grid
- 1 billion voxels for $1000 \times 1000 \times 1000$

Implicit Surface Representations

- How do we define implicit function?
- Algebraics
- Voxels
> Basis functions

Basis functions

- Implicit function is sum of basis functions
- Example:

$$
f(P)=a_{0} e^{-b_{0} d\left(P, P_{0}\right)^{2}}+a_{1} e^{-b_{1} d\left(P, P_{1}\right)^{2}}+\cdots-\tau
$$

Radial Basis Functions

- Blobby molecules

$$
D(r)=a e^{-b r^{2}}
$$

- Meta balls

$$
D(r)=\left\{\begin{array}{cc}
a\left(1-\frac{3 r^{2}}{b^{2}}\right) & 0 \leq r \leq b / 3 \\
\frac{3 a}{2}\left(1-\frac{r}{b}\right)^{2} & b / 3 \leq r \leq b \\
0 & b \leq r
\end{array}\right.
$$

- Soft objects

$$
D(r)=\left\{\begin{array}{cc}
a\left(1-\frac{4 r^{6}}{9 b^{6}}+\frac{17 r^{4}}{9 b^{4}}-\frac{22 r^{2}}{9 b^{2}}\right. & r \leq b \\
0 & r \geq b
\end{array}\right.
$$

Blobby Models

- Implicit function is sum of Gaussians

$$
f(P)=a_{0} e^{-b_{0} d\left(P, P_{0}\right)^{2}}+a_{1} e^{-b_{1} d\left(P, P_{1}\right)^{2}}+\cdots-\tau
$$

Blobby Models

- Sum of two blobs

Blobby Models

- Sum of four blobs

Blobby Model of Face

(a) $N=1$

(b) $N=2$

Blobby Model of Face

(c) $N=10$

(d) $N=35$

Blobby Model of Face

(e) $N=70$

(f) $N=243$

Blobby Model of Head

(a) $N=1$

(b) $N=2$

Blobby Model of Head

(c) $N=20$

(d) $N=60$

Blobby Model of Head

(e) $N=120$

(f) $N=451$

Blobby Models

Objects resulting from CSG of

Variational Implicit Surfaces

Variational Implicit Surfaces

Implicit Surface Summary

- Advantages:
- Easy to test if point is on surface
- Easy to compute intersections/unions/differences
- Easy to handle topological changes
- Disadvantages:
- Indirect specification of surface
- Hard to describe sharp features
- Hard to enumerate points on surface
" Slow rendering

Summary

Feature
Accurate
Concise
Intuitive specification
Local support
Affine invariant
Arbitrary topology
Guaranteed continuity
Natural parameterization
Efficient display
Efficient intersections

No	Yes	Yes	Yes
No	Yes	Yes	Yes
No	No	Yes	No
Yes	No	Yes	Yes
Yes	Yes	Yes	Yes
Yes	No	No	Yes
No	Yes	Yes	Yes
No	No	Yes	No
Yes	No	Yes	Yes
No	Yes	No	No

3D Object Representations

- Raw data
- Range image
- Point cloud
- Surfaces
- Polygonal mesh
- Subdivision
- Parametric
- Implicit
- Solids
- Voxels
- BSP tree
- CSG
- Sweep
- High-level structures
- Scene graph
- Application specific

Solid Modeling

- Represent solid interiors of objects

www.volumegraphics.com

Motivation 1

- Some acquisition methods generate solids

Airflow Inside a Thunderstorm
(Bob Wilhelmson,
University of Illinois at Urbana-Champaign)

Visible Human
(National Library of Medicine)

Motivation 2

- Some applications require solids
- Examples: medicine, CAD/CAM

SUNY Stoney Brook

Intergraph Corporation

Motivation 3

- Some operations are easier with solids
- Example: union, difference, intersection

Union

Difference

3D Object Representations

- Points
- Range image
- Point cloud
- Surfaces
- Polygonal mesh
- Subdivision
- Parametric
- Implicit
- Solids
> Voxels
- BSP tree
- CSG
- Sweep
- High-level structures
- Scene graph
- Application specific

Voxels

- Regular array of 3D samples (like image)
- Samples are called voxels ("volume pixels")

Voxels

- Store properties of solid object with each voxel
- Occupancy
- Color
- Density
- Temperature
- etc.

Engine Block
Stanford University

Visible Human
(National Library of Medicine)

Voxel Processing

- Signal processing (just like images)
- Reconstruction
- Resampling
- Typical operations
- Blur
- Edge detect
- Warp
- etc.
- Often fully analogous to image processing

Voxel Boolean Operations

- Compare objects voxel by voxel - Trivial

Voxel Display

- Isosurface rendering
- Interpolate samples stored on regular grid
- Isosurface at $f(x, y, z)=0$ defines surface

Voxel Display

- Slicing
- Draw 2D image resulting from intersecting voxels with a plane

Visible Human
(National Library of Medicine)

Voxel Display

- Ray casting
- Integrate density along rays: compositing!

Voxel Display

- Extended ray-casting
- Transfer functions: Map voxel values to opacity and material
- Normals (for lighting) from density gradient

Voxels

- Advantages
- Simple, intuitive, unambiguous
- Same complexity for all objects
- Natural acquisition for some applications
- Trivial boolean operations
- Disadvantages
- Approximate
- Not affine invariant
- Expensive display
- Large storage requirements

Voxels

- What resolution should be used?

Quadtrees \& Octrees

- Refine resolution of voxels hierarchically
- More concise and efficient for non-uniform objects

Uniform Voxels

Quadtree (Octree in 3D)

Quadtree Processing

- Hierarchical versions of voxel methods
- Finding neighbor cell requires traversal of hierarchy: expected/amortized O(1)

Quadtree Boolean Operations

A

$A \cup B$

$A \cap B$

3D Object Representations

- Points
- Range image
- Point cloud
- Surfaces
- Polygonal mesh
- Subdivision
- Parametric
- Implicit
- Solids
- Voxels
- BSP tree
- CSG
- Sweep
- High-level structures
- Scene graph
- Application specific

BSP Trees

BSP Trees

- Key properties
- visibility ordering (later)
- hierarchy of convex regions

1st level Approximation

2nd level Approximation

3D Object Representations

- Points
- Range image
- Point cloud
- Surfaces
- Polygonal mesh
- Subdivision
- Parametric
- Implicit
- Solids
- Voxels
- BSP tree
> CSG
- Sweep
- High-level structures
- Scene graph
- Application specific

Constructive Solid Geometry (CSG)

- Represent solid object as hierarchy of boolean operations
- Union
- Intersection
- Difference

CSG Acquisition

- Interactive modeling programs
- Intuitive way to design objects

CSG Acquisition

- Interactive modeling programs
- Intuitive way to design objects

CSG Boolean Operations

- Create a new CSG node joining subtrees
- Union
- Intersection
- Difference

CSG Display \& Analysis

- Ray casting

3D Object Representations

- Points
- Range image
- Point cloud
- Surfaces
- Polygonal mesh
- Subdivision
- Parametric
- Implicit
- Solids
- Voxels
- BSP tree
- CSG
> Sweep
- High-level structures
- Scene graph
- Application specific

Sweeps

- Swept volume
- Sweep one curve along path of another curve

Sweeps

- Surface of revolution
- Take a curve and rotate it about an axis

Demetri Terzopoulos

Sweeps

- Surface of revolution
- Take a curve and rotate it about an axis

Summary

	\sim	0		0
		0	$\tilde{0}$	0
Accurate	No	No	Some	Some
Concise	No	No	No	Yes
Affine invariant	No	No	Yes	Yes
Easy acquisition	Some	Some	No	Some
Guaranteed validity	Yes	Yes	Yes	No
Efficient boolean operations	Yes	Yes	Yes	Yes
Efficient display	No	No	Yes	No

