

Implicit Surfaces & Solid Representations

COS 426, Spring 2014 Princeton University

3D Object Representations

- Raw data
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

3D Object Representations

- Desirable properties of an object representation
 - Easy to acquire
 - Accurate
 - Concise
 - Intuitive editing
 - Efficient editing
 - Efficient display
 - Efficient intersections
 - Guaranteed validity
 - Guaranteed smoothness
 - etc.

Large Geometric Model Repository Georgia Tech

3D Object Representations

- Desirable properties of an object representation
 - Easy to acquire
 - Accurate
 - Concise
 - Intuitive editing
 - Efficient editing
 - Efficient display
 - Efficient intersections
 - Guaranteed validity
 - Guaranteed smoothness
 - etc.

Large Geometric Model Repository Georgia Tech

Represent surface with function
 over all space

Surface defined implicitly by function

- Surface defined implicitly by function:
 - f(x, y, z) = 0 (on surface)
 - f (x, y, z) < 0 (inside)
 - f (x, y, z) > 0 (outside)

Normals defined by partial derivatives
 onormal(x, y, z) = normalize(∂f/∂x, ∂f/∂y, ∂f/∂z)

Bloomenthal

- (1) Efficient check for whether point is inside
 - Evaluate f(x,y,z) to see if point is inside/outside/on
 - Example: ellipsoid

(2) Efficient surface intersections

Substitute to find intersections

Ray: $P = P_0 + tV$ Sphere: $|P - O|^2 - r^2 = 0$

Substituting for P, we get: $|P_0 + tV - O|^2 - r^2 = 0$

Solve quadratic equation: $at^2 + bt + c = 0$ where:

a = 1
b = 2 V • (P₀ - O)
c =
$$|P_0 - C|^2 - r^2 = 0$$

(3) Efficient boolean operations (CSG)

 How would you implement: Union? Intersection? Difference?

Union

Difference

Bloomenthal

(4) Efficient topology changes

Surface is not represented explicitly!

(4) Efficient topology changes

Surface is not represented explicitly!

Bloomenthal

Comparison to Parametric Surfaces

- Implicit
 - Efficient intersections & topology changes
- Parametric
 - Efficient "marching" along surface & rendering

equiangular parametric (transcendental trigonometric) $p = (\cos(\alpha), \sin(\alpha)), \alpha \in [0, 2\pi]$ non-equiangular parametric (rational) $p = (\pm(1-t^2)/(1+t^2), 2t/(1+t^2)), t \in [-1, 1]$ implicit $p_x^2 + p_y^2 - 1 = 0$

Bloomenthal

- How do we define implicit function?
 - $\circ f(x,y,z) = ?$

- How do we define implicit function?
 - Algebraics
 - Voxels
 - Basis functions
 - Others

- How do we define implicit function?
 - > Algebraics
 - Voxels
 - Basis functions
 - Others

Implicit function is polynomial
 f(x,y,z)=ax^d+by^d+cz^d+dx^{d-1}y+dx^{d-1}z +dy^{d-1}x+...

- Most common form: quadrics
 f(x,y,z)=ax²+by²+cz²+2dxy+2eyz+2fxz+2gx+2hy+2jz+k
- Examples
 - Sphere
 - Ellipsoid
 - Paraboloid
 - Hyperboloid

• Higher degree algebraics

Cubic

Quartic

Degree six

- Equivalent parametric surface
 - Tensor product patch of degree m and n curves yields algebraic function with degree 2mn

Bicubic patch has degree 18!

- Intersection
 - Intersection of degree m and n algebraic surfaces yields curve with degree mn

Intersection of bicubic patches has degree 324!

- Function extends to infinity
 - Must trim to get desired patch (this is difficult!)

- How do we define implicit function?
 - Algebraics
 - ≻ Voxels
 - Basis functions

- Regular array of 3D samples (like image)
 - Samples are called voxels ("volume pixels")

www.volumegraphics.com

• Example isosurfaces

SUNY Stoney Brook

Princeton University

- Regular array of 3D samples (like image)
 - Applying reconstruction filter (e.g. trilinear) yields f(x,y,z)
 - Isosurface at f(x,y,z) = 0 defines surface

- Iso-surface extraction algorithm
 - e.g., Marching cubes

Iso-surface extraction algorithm
 e.g., Marching cubes (15 cases)

Voxel Storage

O(n³) storage for *n* x *n* x *n* grid
 1 billion voxels for 1000 x 1000 x 1000

- How do we define implicit function?
 - Algebraics
 - Voxels
 - Basis functions

Basis functions

Implicit function is sum of basis functions
 Example:

$$f(P) = a_0 e^{-b_0 d(P,P_0)^2} + a_1 e^{-b_1 d(P,P_1)^2} + \dots - \tau$$

Radial Basis Functions

Blobby molecules

Meta balls

 $D(r) = ae^{-br^2}$

$$D(r) = \begin{cases} a(1 - \frac{3r^2}{b^2}) & 0 \le r \le b/3 \\ \frac{3a}{2}(1 - \frac{r}{b})^2 & b/3 \le r \le b \\ 0 & b \le r \end{cases}$$

Soft objects

$$D(r) = \begin{cases} a(1 - \frac{4r^6}{9b^6} + \frac{17r^4}{9b^4} - \frac{22r^2}{9b^2} & r \le b\\ 0 & r \ge b \end{cases}$$

Bourke

Blobby Models

• Implicit function is sum of Gaussians

$$f(P) = a_0 e^{-b_0 d(P, P_0)^2} + a_1 e^{-b_1 d(P, P_1)^2} + \dots - \tau$$

Blobby Models

DEL SUE NUMINE

• Sum of four blobs

Blobby Model of Face

(b) N = 2

Blobby Model of Face

(d) N = 35

(c) N = 10

Blobby Model of Face

(f) N = 243

(e) N = 70

Blobby Model of Head

(a) N = 1

(b) N = 2

Blobby Model of Head

(c) N = 20

(d) N = 60

Blobby Model of Head

(e) N = 120

(f) N = 451

Blobby Models

Objects resulting from CSG of implicit soft objects and other primitives

Menon

Variational Implicit Surfaces

Implicit Surface Summary

- Advantages:
 - Easy to test if point is on surface
 - Easy to compute intersections/unions/differences
 - Easy to handle topological changes
- Disadvantages:
 - Indirect specification of surface
 - Hard to describe sharp features
 - Hard to enumerate points on surface
 » Slow rendering

Summary

Feature	Polygonal Mesh	Implicit Surface	Parametric Surface	Subdivision Surface
Accurate	No	Yes	Yes	Yes
Concise	No	Yes	Yes	Yes
Intuitive specification	No	No	Yes	No
Local support	Yes	No	Yes	Yes
Affine invariant	Yes	Yes	Yes	Yes
Arbitrary topology	Yes	No	No	Yes
Guaranteed continuity	No	Yes	Yes	Yes
Natural parameterization	No	No	Yes	No
Efficient display	Yes	No	Yes	Yes
Efficient intersections	No	Yes	No	No

3D Object Representations

- Raw data
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

Solid Modeling

• Represent solid interiors of objects

Motivation 1

Some acquisition methods generate solids

Airflow Inside a Thunderstorm

(Bob Wilhelmson, University of Illinois at Urbana-Champaign)

Visible Human (National Library of Medicine)

Motivation 2

- Some applications require solids
 - Examples: medicine, CAD/CAM

SUNY Stoney Brook

Intergraph Corporation

Motivation 3

- Some operations are easier with solids
 - Example: union, difference, intersection

Union

Difference

Bloomenthal

3D Object Representations

- Points
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - ➤ Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

Voxels

- Regular array of 3D samples (like image)
 - Samples are called voxels ("volume pixels")

www.volumegraphics.com

Voxels

- Store properties of solid object with each voxel
 - Occupancy
 - Color
 - Density
 - Temperature
 - etc.

Engine Block Stanford University

Visible Human (National Library of Medicine)

Voxel Processing

- Signal processing (just like images)
 - Reconstruction
 - Resampling
- Typical operations
 - Blur
 - Edge detect
 - Warp
 - etc.
- Often fully analogous to image processing

Voxel Boolean Operations

- Compare objects voxel by voxel
 - Trivial

- Isosurface rendering
 - Interpolate samples stored on regular grid
 - Isosurface at f(x,y,z) = 0 defines surface

Slicing

 Draw 2D image resulting from intersecting voxels with a plane

Visible Human (National Library of Medicine)

• Integrate density along rays: compositing!

Engine Block Stanford University

- Extended ray-casting
 - Transfer functions:
 Map voxel values to opacity and material
 - Normals (for lighting) from density gradient

Voxels

- Advantages
 - Simple, intuitive, unambiguous
 - Same complexity for all objects
 - Natural acquisition for some applications
 - Trivial boolean operations
- Disadvantages
 - Approximate
 - Not affine invariant
 - Expensive display
 - Large storage requirements

Voxels

• What resolution should be used?

FvDFH Figure 12.21

Quadtrees & Octrees

Refine resolution of voxels hierarchically
 More concise and efficient for non-uniform objects

Uniform Voxels

Quadtree (Octree in 3D)

FvDFH Figure 12.21

Quadtree Processing

- Hierarchical versions of voxel methods
 - Finding neighbor cell requires traversal of hierarchy: expected/amortized O(1)

Quadtree Boolean Operations

3D Object Representations

- Points
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

BSP Trees

- Key properties
 - visibility ordering (later)
 - hierarchy of convex regions

3D Object Representations

- Points
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - > CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

Constructive Solid Geometry (CSG)

- Represent solid object as hierarchy of boolean operations
 - Union
 - Intersection
 - Difference

FvDFH Figure 12.27

CSG Acquisition

- Interactive modeling programs
 - Intuitive way to design objects

SUNY Stoney Brook

CSG Acquisition

- Interactive modeling programs
 - Intuitive way to design objects

H&B Figure 9.9

CSG Boolean Operations

- Create a new CSG node joining subtrees
 - Union
 - Intersection
 - Difference

FvDFH Figure 12.27

3D Object Representations

- Points
 - Range image
 - Point cloud
- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Application specific

Sweeps

- Swept volume
 - Sweep one curve along path of another curve

Demetri Terzopoulos

Sweeps

- Surface of revolution
 - Take a curve and rotate it about an axis

Demetri Terzopoulos

Sweeps

Wolfram

- Surface of revolution
 - Take a curve and rotate it about an axis

Summary

	Voxels	Octree	BSP	CSG
Accurate	No	No	Some	Some
Concise	No	No	No	Yes
Affine invariant	No	No	Yes	Yes
Easy acquisition	Some	Some	No	Some
Guaranteed validity	Yes	Yes	Yes	No
Efficient boolean operations	Yes	Yes	Yes	Yes
Efficient display	No	No	Yes	No