

Polygonal Meshes

COS 426, Spring 2014
Princeton University

3D Object Representations

Points

- Range image
- Point cloud

Surfaces

- Polygonal mesh
- Subdivision
- Parametric
- Implicit

Solids

- Voxels
- BSP tree
- CSG
- Sweep

High-level structures

- Scene graph
- Application specific

3D Polygonal Mesh

Set of polygons representing a 2D surface

embedded in 3D

Platonic Solids

3D Polygonal Mesh

Set of polygons representing a 2D surface embedded in 3D

3D Polygonal Mesh

Set of polygons representing a 2D surface embedded in 3D

3D Polygonal Meshes

http://www.fxguide.com/featured/Comic_Horrors_Rocks_Statues_and_VanDyke/

3D Polygonal Meshes

Why are they of interest?

- Simple, common representation
- Rendering with hardware support
- Output of many acquisition tools
- Input to many simulation/analysis tools

3D Polygonal Meshes

Properties

- ? Efficient display
- ? Easy acquisition
- ? Accurate
- ? Concise
- ? Intuitive editing
- ? Efficient editing
- ? Efficient intersections
- ? Guaranteed validity
- ? Guaranteed smoothness
- ? etc.

Outline

Processing

Representation

Interactive modeling

- Polygon editors
- Interchange formats

Scanners

- Laser range scanners
- Geological survey
- CAT, MRI, etc. (isosurfaces)

Simulations

Interactive modeling

- Polygon editors
- Interchange formats

Scanners

- Laser range scanners
- Geological survey

Simulations

Sketchup

Blender

Interactive modeling

- Polygon editors
- ➤ Interchange formats

Scanners

- Laser range scanners
- Geological survey

Simulations

Interactive modeling

- Polygon editors
- Interchange formats

Scanners

- Laser range scanners
- Geological survey

Simulations

Digital Michelangelo Project Stanford

Interactive modeling

- Polygon editors
- Interchange formats

Scanners

- Laser range scanners
- ➤ Geological survey

Simulations

Large Geometric Model Repository Georgia Tech

Interactive modeling

- Polygon editors
- Interchange formats

Scanners

- Laser range scanners
- ➤ Geological survey

Simulations

Interactive modeling

- Polygon editors
- Interchange formats

Scanners

- Laser range scanners
- Geological survey

Simulations

Physical processes

SGI

symscape

Outline

Acquisition

Processing ←

Representation

Analysis

- Normals
- Curvature

Warps

- Rotate
- Deform

- Smooth
- Sharpen
- Truncate
- Bevel

Analysis -

- Normals
- Curvature

Warps

- Rotate
- Deform

- Smooth
- Sharpen
- Truncate
- Bevel

Analysis

- > Normals
- Curvature

Warps

- Rotate
- Deform

- Smooth
- Sharpen
- Truncate
- Bevel

Analysis

- Normals
- Curvature

Warps

- Rotate
- Deform

- Smooth
- Sharpen
- Truncate
- Bevel

Figure 32: curvature of curve at P is 1/k

Analysis

- Normals
- Curvature

Warps -

- Rotate
- Deform

- Smooth
- Sharpen
- Truncate
- Bevel

Analysis

- Normals
- Curvature

Warps

- > Rotate
- Deform

- Smooth
- Sharpen
- Truncate
- Bevel

Analysis

- Normals
- Curvature

Warps

- Rotate
- > Deform

- Smooth
- Sharpen
- Truncate
- Bevel

Analysis

- Normals
- Curvature

Warps

- Rotate
- > Deform

- Smooth
- Sharpen
- Truncate
- Bevel

Analysis

- Normals
- Curvature

Warps

- Rotate
- Deform

Filters -

- Smooth
- Sharpen
- Truncate
- Bevel

Analysis

- Normals
- Curvature

Warps

- Rotate
- Deform

Filters

- > Smooth
- Sharpen
- Truncate
- Bevel

Thouis "Ray" Jones

Olga Sorkine

Analysis

- Normals
- Curvature

Warps

- Rotate
- Deform

Filters

- Smooth
- > Sharpen
- Truncate
- Bevel

Desbrun

Weighted Average of Neighbor Vertices

Olga Sorkine

Analysis

- Normals
- Curvature

Warps

- Rotate
- Deform

- Smooth
- Sharpen
- > Truncate
- Bevel

Analysis

- Normals
- Curvature

Warps

- Rotate
- Deform

- Smooth
- Sharpen
- > Truncate
- Bevel

Analysis

- Normals
- Curvature

Warps

- Rotate
- Deform

- Smooth
- Sharpen
- > Truncate
- Bevel

Analysis

- Normals
- Curvature

Warps

- Rotate
- Deform

Filters

- Smooth
- Sharpen
- > Truncate
- Bevel

Archimedean Polyhedra

http://www.uwgb.edu/dutchs/symmetry/archpol.htm

Bevel

Carlo Sėquin

Wikipedia

Analysis

- Normals
- Curvature

Warps

- Rotate
- Deform

- Smooth
- Sharpen
- Truncate
- > Bevel

Rhombicuboctahedron

(beveled octahedron)

Octahedron

Jarek Rossignac

Conway

Analysis

- Normals
- Curvature

Warps

- Rotate
- Deform

- Smooth
- Sharpen
- Truncate
- > Bevel

Analysis

- Normals
- Curvature

Warps

- Rotate
- Deform

- Smooth
- Sharpen
- Truncate
- > Bevel

Remeshing

- Subdivide
- Resample
- Simplify

Topological fixup

- Fill holes
- Fix self-intersections

- Crop
- Subtract

Remeshing -

- Subdivide
- Resample
- Simplify

- Fill holes
- Fix self-intersections

Boolean operations

- Crop
- Subtract

Subdivide face

Remeshing

- > Subdivide
- Resample
- Simplify

Topological fixup

- Fill holes
- Fix self-intersections

Boolean operations

- Crop
- Subtract

Zorin & Schroeder

Remeshing

- > Subdivide
- Resample
- Simplify

Topological fixup

- Fill holes
- Fix self-intersections

Boolean operations

- Crop
- Subtract

Dirk Balfanz, Igor Guskov, Sanjeev Kumar, & Rudro Samanta,

Remeshing

- Subdivide
- ➤ Resample
- Simplify

Topological fixup

- Fill holes
- Fix self-intersections

Original

Resampled

- more uniform distribution
- triangles with nicer aspect

- Crop
- Subtract

Remeshing

- Subdivide
- Resample
- ➤ Simplify

Topological fixup

- Fill holes
- Fix self-intersections

- Crop
- Subtract

Remeshing

- Subdivide
- Resample
- Simplify

Topological fixup

- Fill holes
- Fix self-intersections

- Crop
- Subtract

Remeshing

- Subdivide
- Resample
- Simplify

Topological fixup

- > Fill holes
- Fix self-intersections

- Crop
- Subtract

Remeshing

- Subdivide
- Resample
- Simplify

Topological fixup

- Fill holes
- Fix self-intersections

- Crop
- Subtract

Remeshing

- Subdivide
- Resample
- Simplify

Topological fixup

- Fill holes
- Fix self-intersections

- Crop
- Subtract

Remeshing

- Subdivide
- Resample
- Simplify

Topological fixup

- Fill holes
- Fix self-intersections

- > Crop
- Subtract

Remeshing

- Subdivide
- Resample
- Simplify

Topological fixup

- Fill holes
- Fix self-intersections

- ➤ Crop
- Subtract

Remeshing

- Subdivide
- Resample
- Simplify

Topological fixup

- Fill holes
- Fix self-intersections

- > Crop
- Subtract

Remeshing

- Subdivide
- Resample
- Simplify

Topological fixup

- Fill holes
- Fix self-intersections

- > Crop
- Subtract

Remeshing

- Subdivide
- Resample
- Simplify

Topological fixup

- Fill holes
- Fix self-intersections

- Crop
- > Subtract

- Surface of revolution
- Sweep

- ➤ Surface of revolution
- Sweep

- Surface of revolution
- > Sweep

- Surface of revolution
- > Sweep

- Surface of revolution
- > Sweep

Outline

Acquisition

Processing

Representation

Polygon Mesh Representation

Important properties of mesh representation?

Large Geometric Model Repository Georgia Tech

Polygon Mesh Representation

Important properties of mesh representation?

- Efficient traversal of topology
- Efficient use of memory
- Efficient updates

Large Geometric Model Repository Georgia Tech

Polygon Mesh Representation

Possible data structures

- List of independent faces
- Vertex and face tables
- Adjacency lists
- Winged edge
- Half edge
- etc.

Independent Faces

Each face lists vertex coordinates

- Redundant vertices
- No adjacency information

FACE TABLE

Vertex and Face Tables

Each face lists vertex references

Shared vertices

Still no adjacency information (x₃, y₃, z₃)

VERTEX TABLE

	X ₁ X ₂		Z ₁ Z ₂
٧3	Х3	Υ3	Z_3
	X ₄ X ₅	Υ ₄ Υ ₅	Z ₄ Z ₅

FACE TABLE

F ₁	V ₁	V-	1/-
		_	٧3
F ₂		V_4	٧3
F_3	٧2	٧5	V_4

Adjacency Lists

Store all vertex, edge, and face adjacencies

- Efficient adjacency traversal
- Extra storage

Partial Adjacency Lists

Can we store only some adjacency relationships and derive others?

Winged Edge

Adjacency encoded in edges

- All adjacencies in O(1) time
- Little extra storage (fixed records)
- Arbitrary polygons

Winged Edge

Example:

VERTEX TABLE				
V_1	X ₁	Υ ₁	Z_1	e ₁
V_2	X ₂	Y ₂ Y ₃	Z_2	e ₆
٧3	Х3	Υ3	Z_3	ез
V_4	X ₄	Υ ₄ Υ ₅	Z_4	e ₅
٧5	X ₅	Υ ₅	Z ₅	e ₆

EDGE TABLE				11	12	21	22	
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	е3
e ₂	٧1	V_2	F ₁		e ₁	e_1	e_3	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e_1	e_4
e ₄	V3	V_4		F_2	e ₁	ез	e ₇	e ₅
e ₅	٧2	V_4	F ₂	F_3		e ₆	e_4	e ₇
e ₆	V ₂	V_5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	V ₅		F ₃	e ₄	e ₅	e ₆	e ₆

FACE TABLE			
F ₁	e ₁		
F ₂	e ₃		
F ₃	e ₅		

Half Edge

Adjacency encoded in edges

- All adjacencies in O(1) time
- Little extra storage (fixed records)
- Arbitrary polygons

Similar to winged-edge, except adjacency encoded in half-edges

Summary

Polygonal meshes

- Most common surface representation
- Fast rendering

Processing operations

- Must consider irregular vertex sampling
- Must handle/avoid topological degeneracies

Representation

 Which adjacency relationships to store depend on which operations must be efficient

3D Polygonal Meshes

Properties

- ? Efficient display
- ? Easy acquisition
- ? Accurate
- ? Concise
- ? Intuitive editing
- ? Efficient editing
- ? Efficient intersections
- ? Guaranteed validity
- ? Guaranteed smoothness
- ? etc.

3D Polygonal Meshes

Properties

- © Efficient display
- © Easy acquisition
- ⊗ Accurate
- ⊗ Concise
- ⊗ Intuitive editing
- Efficient editing
- Efficient intersections
- ⊗ Guaranteed validity
- Guaranteed smoothness

