

Image Compositing & Morphing

COS 426, Spring 2014 Princeton University

Image Processing Operations I

C LINE NUTINE

- Luminance
 - Brightness
 - Contrast.
 - Gamma
 - Histogram equalization
- Color
 - Black & white
 - Saturation
 - White balance

- Linear filtering
 - Blur & sharpen
 - Edge detect
 - Convolution
- Non-linear filtering
 - Median
 - Bilateral filter
- Dithering
 - Quantization
 - Ordered dither
 - Floyd-Steinberg

Image Processing Operations II

- Transformation
 - Scale
 - Rotate
 - Warp
- Combining images
 - Composite
 - Morph
 - Computational photography

• Last time

Image Processing Operations II Transformation Scale Last time Rotate Warp **Combining images** Composite Today Morph Computational photography

Jurassic Park

- Issues:
 - Segmentation of image into layers/regions
 - Blend into single image seamlessly

Smith & Blinn`84

- Issues:
 - Segmentation of image into layers/regions
 - Blend into single image seamlessly

Image Segmentation

- Chroma keying (blue- or green-screen)
 - Photograph object in front of screen with known color

Image Segmentation

- Specify segmentation by hand
 - Purely manual: rotoscoping (draw matte, every frame)
 - Semi-automatic: graph min-cut (draw a few strokes)
 Separate image regions along minimal cuts (where edges measure differences between adjacent pixels)

Image Segmentation

• Novel methods, e.g. flash matting

flash

no flash

matte

composite

Sun et al., 2006

• Issues:

- Segmentation of image into layers/regions
- >Blend into single image seamlessly

Image Blending

- Ingredients
 - Background image
 - Foreground image
- Method
 - Foreground pixels overwrite background

Blending with Alpha

Controls the linear interpolation of foreground and background pixels when elements are composited.

Alpha Channel

0

- Encodes pixel coverage information
 - $\alpha = 0$: no coverage (or transparent)
 - $\alpha = 1$: full coverage (or opaque)
 - $0 < \alpha < 1$: partial coverage (or semi-transparent)
- Example: $\alpha = 0.3$

Alpha Blending: "Over" Operator

C = A over B C = $\alpha_A A + (1-\alpha_A) B$

Alpha Blending: "Over" Operator

В

G

$\boldsymbol{\alpha}_{A}$

• How much of B shows through A

$$(1-\alpha_A)$$

 $\circ\,$ How much of G shows through both A and B? (1- $\!\alpha_A)(1\!-\!\alpha_B)$

Alpha Blending: "Over" Operator

Suppose we put A over B over background G

$$\alpha_{\mathsf{A}}\mathsf{A} + (1\text{-}\alpha_{\mathsf{A}})\alpha_{\mathsf{B}}\mathsf{B} + (1\text{-}\alpha_{\mathsf{A}})(1\text{-}\alpha_{\mathsf{B}})\mathsf{G}$$

G

 $= \alpha_{\mathsf{A}}\mathsf{A} + (1 - \alpha_{\mathsf{A}}) \left[\alpha_{\mathsf{B}}\mathsf{B} + (1 - \alpha_{\mathsf{B}})\mathsf{G} \right]$

= A over [B over G]

Must perform "over" back to front!

Other Compositing Operations

- How can we combine 2 partially covered pixels?
 - $\circ~$ 3 possible colors (0, A, B)
 - 4 regions (0, A, B, AB)

Blending with Alpha

Composition algebra – 12 combinations

C' =
$$F_A \alpha_A A + F_B \alpha_B B$$

Operation	F	F _B
Clear	0	0
Α	1	0
В	0	1
A over B	1	1- α _A
B over A	1- α _в	1
A in B	$\alpha_{\scriptscriptstyle B}$	0
B in A	0	$\alpha_{\scriptscriptstyle A}$
A out B	1- α _в	0
B out A	0	1- α _A
A atop B	$\alpha_{\scriptscriptstyle B}$	1- α _Α
B atop A	1- α _в	$\alpha_{\scriptscriptstyle A}$
A xor B	1- α _в	1- α _A

Porter & Duff `84

Blending with Alpha

• C' =
$$\alpha_A A + (1 - \alpha_A) \alpha_B B$$

$$\circ \alpha = \alpha_A + (1 - \alpha_A) \alpha_B$$

Image Composition Example

[Porter&Duff Computer Graphics 18:3 1984]

Image Composition Example

BFire

[Porter&Duff Computer Graphics 18:3 1984]

Image Composition Example

BFire out Planet

Composite

[Porter&Duff Computer Graphics 18:3 1984]

COS426 Examples

Darin Sleiter

Kenrick Kin

Beyond simple compositing

 Solve for image samples that follow gradients of source subject to boundary conditions imposed by dest

sources

destinations

source/destination

cloning

seamless cloning

http://www.csie.ntu.edu.tw/~r00944002/CPHW2/result.htm

Digital Image Processing

- Changing intensity/color Moving image locations
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise
- Filtering over
 neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Scale
 - Rotate
 - Warp
- Combining images
 - Composite
 - Morph
- Quantization
- Spatial / intensity tradeoff
 - Dithering

Image Morphing

• Animate transition between two images

H&B Figure 16.9

Cross-Dissolving

- Blend images with "over" operator
 - alpha of bottom image is 1.0
 - alpha of top image varies from 0.0 to 1.0

 $blend(i,j) = (1-t) src(i,j) + t dst(i,j) \quad (0 \le t \le 1)$

Image Morphing

Combines warping and cross-dissolving

Beier & Neeley Example

Image₀

Result

Figure 7 shows the lines drawn over the a face, figure 9 shows the lines drawn over a second face. Figure 8 shows the morphed image, with the interpolated lines drawn over it.

Figure 10

Figure 10 shows the first face with the lines and a grid, showing how it is distorted to the position of the lines in the intermediate frame. Figure 11 shows the second face distorted to the same intermediate position. The lines in the top and bettern picture are in the same position. We have distorted the two images to the same "shape".

Note that outside the outline of the faces, the grids are warped very differently in the two images, but because this is the background, it is not important. If there were background features that needed to be matched, lines could have been drawn over them as well.

Warp₀

Beier & Neeley Example

Line Correspondence Mappings

• Beier & Neeley use pairs of lines to specify warp

Warping Pseudocode

WarpImage(Image, L'[...], L[...]) begin foreach destination pixel p do psum = (0,0)wsum = 0 L_2 foreach line L[i] in destination do p'[i] = p transformed by (L[i], L'[i])psum = psum + p'[i] * weight[i] wsum += weight[i] end p' = psum / wsum Result(p) = Resample(p') end end

Morphing Pseudocode

GenerateAnimation(Image₀, $L_0[...]$, Image₁, $L_1[...]$) begin foreach intermediate frame time t do for i = 1 to number of line pairs do $L[i] = line t-th of the way from L_0[i] to L_1[i]$ end $Warp_0 = WarpImage(Image_0, L_0, L)$ $Warp_1 = WarpImage(Image_1, L_1, L)$ foreach pixel p in FinalImage do Result(p) = (1-t) Warp₀ + t Warp₁

end end

Amy Ousterhout

COS426 Examples

ckctwo

Jon Beyer

 Computational photography: enable new photographic effects that inherently use multiple images + computation + composition

Extended depth-of-field

• High dynamic range images

• High dynamic range images

• Flash / No flash

• Stoboscopic images

Photo montage

• Photo montage

Removing people

Scene Completion Using Millions of Photographs

James Hays and Alexei A. Efros SIGGRAPH 2007

Slides by J. Hays and A. Efros

Texture synthesis result

Image Completion

Image Completion

2.3 Million unique images from Flickr

Scene Completion Result

20 completions

200 matches

Image Completion

Image Completion

Image Completion Result

Image Completion Results

Summary

- Image compositing
 - Alpha channel
 - Porter-Duff compositing algebra
- Image morphing
 - Warping
 - Compositing
- Computational photography

Next Time: 3D Modeling

Hoppe