Image Compositing \& Morphing

COS 426, Spring 2014

Princeton University

Image Processing Operations I

- Luminance
- Brightness
- Contrast.
- Gamma
- Histogram equalization
- Color
- Black \& white
- Saturation
- White balance
- Linear filtering
- Blur \& sharpen
- Edge detect
- Convolution
- Non-linear filtering
- Median
- Bilateral filter
- Dithering
- Quantization
- Ordered dither
- Floyd-Steinberg

Image Processing Operations II

- Transformation
- Scale
- Rotate
- Warp
- Combining images
- Composite
- Morph
- Computational photography

\}
 Last time

Image Processing Operations II

- Transformation
- Scale
- Rotate
- Warp

Combining images

- Composite
- Morph
- Computational photography

\} Last time
 \}

Image Composition

Jurassic Park

Image Composition

- Issues:
- Segmentation of image into layers/regions
- Blend into single image seamlessly

Image Composition

- Issues:
>Segmentation of image into layers/regions
- Blend into single image seamlessly

Image Segmentation

- Chroma keying (blue- or green-screen)
- Photograph object in front of screen with known color

Image Segmentation

- Specify segmentation by hand
- Purely manual: rotoscoping (draw matte, every frame)
- Semi-automatic: graph min-cut (draw a few strokes) Separate image regions along minimal cuts (where edges measure differences between adjacent pixels)

Image Segmentation

- Novel methods, e.g. flash matting

flash

no flash

matte

composite

Image Composition

- Issues:
- Segmentation of image into layers/regions
> Blend into single image seamlessly

Image Blending

- Ingredients
- Background image
- Foreground image
- Method
- Foreground pixels overwrite background

Blending with Alpha

Controls the linear interpolation of foreground and background pixels when elements are composited.

Alpha Channel

- Encodes pixel coverage information
- $\quad \alpha=0$: no coverage (or transparent)
- $\quad \alpha=1$: full coverage (or opaque)
- $0<\alpha<1$: partial coverage (or semi-transparent)
- Example: $\alpha=0.3$

Alpha Blending: "Over" Operator

$C=A$ over B
$C=\alpha_{A} A+\left(1-\alpha_{A}\right) B$

Alpha Blending: "Over" Operator

- Suppose we put A over B over background G

- How much of B is blocked by A ?

$$
\alpha_{\mathrm{A}}
$$

- How much of B shows through A

$$
\left(1-\alpha_{A}\right)
$$

- How much of G shows through both A and B ?

$$
\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right)
$$

Alpha Blending: "Over" Operator

- Suppose we put A over B over background G

- Final result?

$$
\begin{gathered}
\alpha_{A} A+\left(1-\alpha_{A}\right) \alpha_{B} B+\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right) G \\
=\alpha_{A} A+\left(1-\alpha_{A}\right)\left[\alpha_{B} B+\left(1-\alpha_{B}\right) G\right] \\
=A \text { over }[B \text { over } G]
\end{gathered}
$$

Must perform "over" back to front!

Other Compositing Operations

- How can we combine 2 partially covered pixels?
- 3 possible colors (0, A, B)
- 4 regions ($0, A, B, A B$)

Blending with Alpha

Composition algebra - 12 combinations

$$
C^{\prime}=F_{A} \alpha_{A} A+F_{B} \alpha_{B} B
$$

Operation	F_{A}	F_{B}
Clear	0	0
A	1	0
B	0	1
A over B	1	$1-\alpha_{A}$
B over A	$1-\alpha_{B}$	1
A in B	α_{B}	0
B in A	0	α_{A}
A out B	$1-\alpha_{B}$	0
B out A	0	$1-\alpha_{A}$
A atop B	α_{B}	$1-\alpha_{A}$
B atop A	$1-\alpha_{B}$	α_{A}
A xor B	$1-\alpha_{B}$	$1-\alpha_{A}$

clear

B in A

B out A

A

A out B

A atop B

B

B over A

B atop A

A over B

A in B

A xor b

Blending with Alpha

- Example: C = A Over B

$$
\begin{aligned}
& \circ C^{\prime}=\alpha_{A} A+\left(1-\alpha_{A}\right) \alpha_{B} B \\
& \circ \alpha=\alpha_{A}+\left(1-\alpha_{A}\right) \alpha_{B}
\end{aligned}
$$

Assumption:
coverages of A and B are uncorrelated for each pixel

Image Composition Example

Stars

Planet

Image Composition Example

BFire

FFire
[Porter\&Duff Computer Graphics 18:3 1984]

Image Composition Example

BFire out Planet

Composite
[Porter\&Duff Computer Graphics 18:3 1984]

COS426 Examples

Darin Sleiter

Poisson Image Blending

Beyond simple compositing

- Solve for image samples that follow gradients of source subject to boundary conditions imposed by dest

$$
\left\{\begin{aligned}
\nabla^{2} f & =\nabla \cdot \mathbf{v} \\
\left.f\right|_{\partial \Omega} & =\left.f^{*}\right|_{\partial \Omega}
\end{aligned}\right.
$$

Poisson Image Blending

sources

destinations

cloning

seamless cloning

Poisson Image Blending

source/destination

cloning

seamless cloning

Poisson Image Blending

http://www.csie.ntu.edu.tw/~r00944002/CPHW2/result.htm

Digital Image Processing

- Changing intensity/color • Moving image locations
- Linear: scale, offset, etc.
- Nonlinear: gamma, saturation, etc.
- Add random noise
- Filtering over neighborhoods
- Blur
- Detect edges
- Sharpen
- Emboss
- Median
- Combining images
- Composite
- Morph
- Quantization
- Spatial / intensity tradeoff
- Dithering

Image Morphing

- Animate transition between two images

(a)

(b)

(C)

Figure 16-9
Transformation of an STP oil ca into an engine block. (Courtesy of Silicon Graphics, Inc.)

Cross-Dissolving

- Blend images with "over" operator
- alpha of bottom image is 1.0
- alpha of top image varies from 0.0 to 1.0
blend $(\mathrm{i}, \mathrm{j})=(1-\mathrm{t}) \operatorname{src}(\mathrm{i}, \mathrm{j})+\mathrm{tdst}(\mathrm{i}, \mathrm{j}) \quad(0 \leq t \leq 1)$

t $=0.0$
$t=0.5$
dst

$t=1.0$

Image Morphing

- Combines warping and cross-dissolving

Beier \& Neeley Example

Beier \& Neeley Example

Line Correspondence Mappings

- Beier \& Neeley use pairs of lines to specify warp

Warping Pseudocode

WarpImage(Image, L’[...], L[...]) begin
foreach destination pixel p do

psum $=(0,0)$
wsum = 0
foreach line $L[i]$ in destination do
$\mathrm{p}^{\prime}[\mathrm{i}]=\mathrm{p}$ transformed by (L[i],L'[i])
psum = psum + $\mathrm{p}^{\prime}[i]$ * weight[i]
wsum += weight[i]
end
p' = psum / wsum
Result(p) = Resample(p')
end
end

Morphing Pseudocode

GenerateAnimation(Image ${ }_{0}, \mathrm{~L}_{0}[\ldots]$, Image $_{1}, \mathrm{~L}_{1}[\ldots]$) begin
foreach intermediate frame time t do for $i=1$ to number of line pairs do
$L[i]=$ line t-th of the way from L_{0} [i] to $L_{1}[i]$
end
Warp $_{0}=$ Warplmage $\left(\right.$ Image $\left._{0}, \mathrm{~L}_{0}, \mathrm{~L}\right)$
Warp $_{1}=$ WarpImage $\left(\right.$ Image $\left._{1}, \mathrm{~L}_{1}, \mathrm{~L}\right)$ foreach pixel p in Finallmage do

Result(p) $=(1-\mathrm{t}) \mathrm{Warp}_{0}+\mathrm{t} \mathrm{Warp}_{1}$
end
end

COS426 Example

Amy Ousterhout

COS426 Examples

Jon Beyer

Image Composition Applications

- Computational photography: enable new photographic effects that inherently use multiple images + computation + composition

Image Composition Applications

- Extended depth-of-field

[Michael Cohen]

Image Composition Applications

- High dynamic range images

Image Composition Applications

- High dynamic range images

Image Composition Applications

- Flash / No flash

Image Composition Applications

- Stoboscopic images

[Michael Cohen]

Image Composition Applications

- Photo montage

[Michael Cohen]

Image Composition Applications

- Photo montage

[Michael Cohen]

Image Composition Applications

- Removing people

Scene Completion Using Millions of Photographs

James Hays and Alexei A. Efros SIGGRAPH 2007

Slides by J. Hays and A. Efros

Hays et al. SIGGRAPH 07

Hays et al. SIGGRAPH 07

Texture synthesis result

Hays et al. SIGGRAPH 07

Image Completion

Hays et al. SIGGRAPH 07

Image Completion

2.3 Million unique images from Flickr

Scene Completion Result

Image Completion Algorithm

Input image

Scene Descriptor

Mosaicing

.

200 matches

Image Completion

Hays et al. SIGGRAPH OT

... 200 best matches
Hays et al. SIGGRAPH O7

Image Completion

Image Completion Result

Hays et al. SIGGRAPH 07

Image Completion Results

Summary

- Image compositing
- Alpha channel
- Porter-Duff compositing algebra
- Image morphing
- Warping
- Compositing
- Computational photography

Next Time: 3D Modeling

Hoppe

