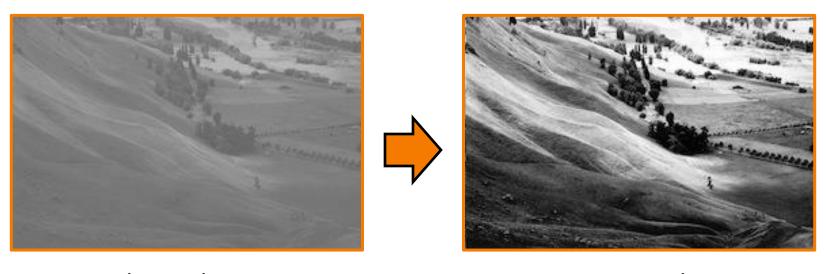


Sampling, Resampling, and Warping

COS 426, Spring 2014
Tom Funkhouser

Image Processing

Goal: read an image, process it, write the result



input.jpg

output.jpg

imgpro input.jpg output.jpg -histogram_equalization

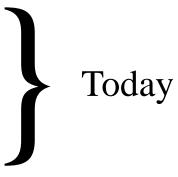
Image Processing Operations I

- Luminance
 - Brightness
 - Contrast.
 - Gamma
 - Histogram equalization
- Color
 - Black & white
 - Saturation
 - White balance

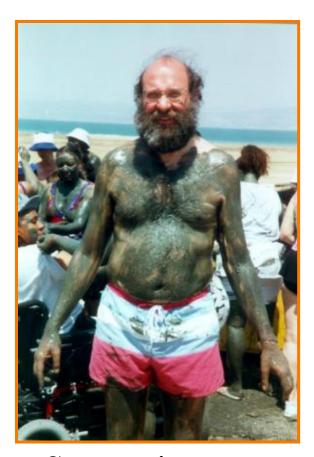
- Linear filtering
 - Blur & sharpen
 - Edge detect
 - Convolution
- Non-linear filtering
 - Median
 - Bilateral filter
- Dithering
 - Quantization
 - Ordered dither
 - Floyd-Steinberg

Image Processing Operations II

- Transformation
 - Scale
 - Rotate
 - Warp
- Combining images
 - Composite
 - Morph
 - Comp photo



Move pixels of an image

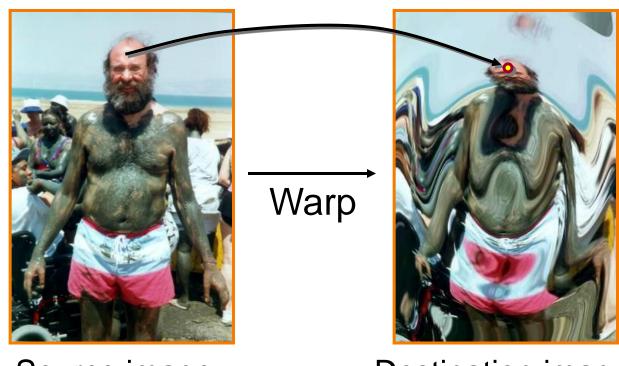


Source image

Warp

Destination image

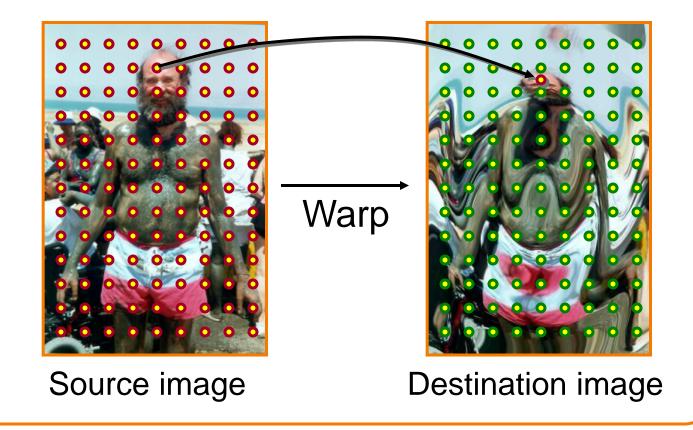
- Issues:
 - 1) Specifying where every pixel goes (mapping)



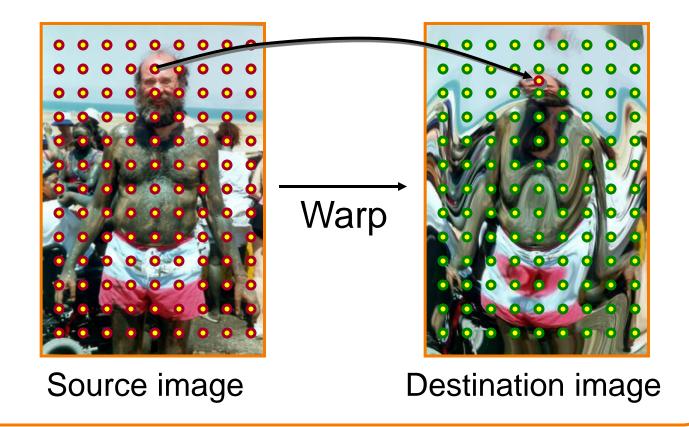
Source image

Destination image

- Issues:
 - 1) Specifying where every pixel goes (mapping)
 - 2) Computing colors at destination pixels (resampling)

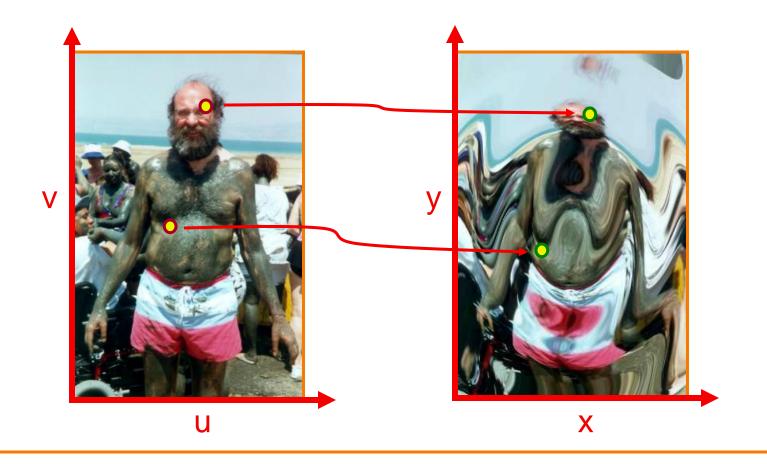


- Issues:
 - 1) Specifying where every pixel goes (mapping)
 - 2) Computing colors at destination pixels (resampling)



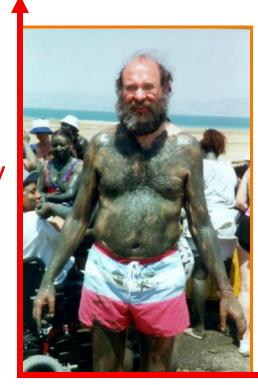
Mapping

- Define transformation
 - Describe the destination (x,y) for every source (u,v)

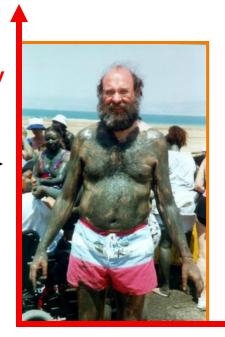


Parametric Mappings

- Scale by factor.
 - ∘ x = factor * u
 - ∘ y = factor * v



Scale 0.8



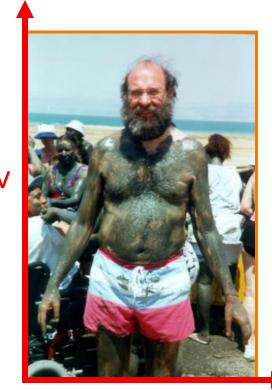
U

Parametric Mappings

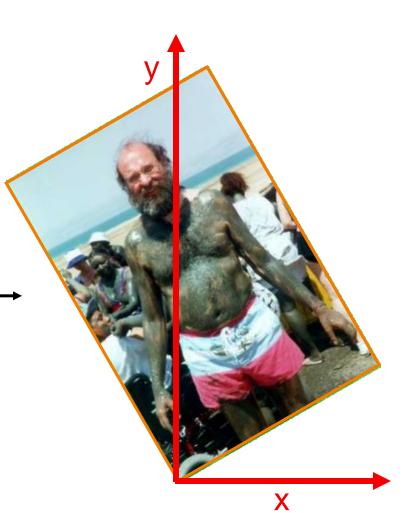
Rotate by ⊕ degrees:

∘ $x = u\cos\Theta - v\sin\Theta$

∘ $y = usin\Theta + vcos\Theta$



Rotate 30

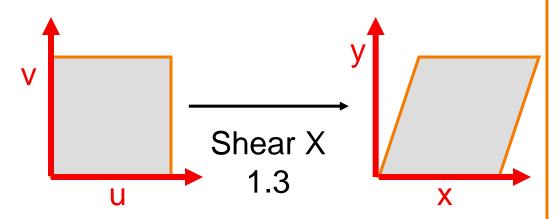


Ū

Parametric Mappings

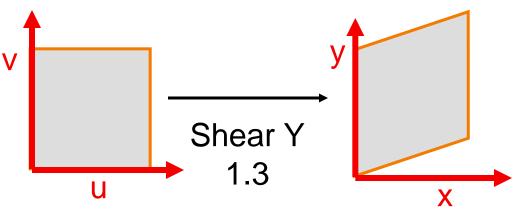
Shear in X by factor:

$$\circ$$
 y = v



Shear in Y by factor:

$$\circ$$
 X = U

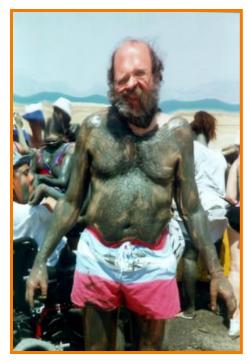


Other Parametric Mappings

- Any function of u and v:
 - $\circ x = f_x(u,v)$
 - $\circ \ \ y = f_y(u,v)$

Fish-eye

"Swirl"



"Rain"

COS426 Examples

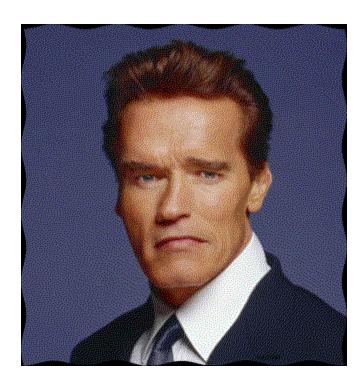
Aditya Bhaskara

Wei Xiang

More COS426 Examples

Sid Kapur

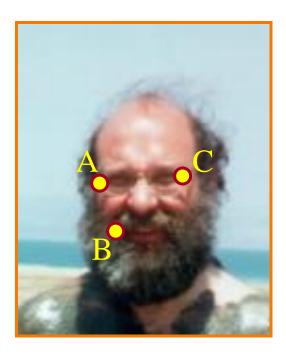
Michael Oranato



Eirik Bakke

Point Correspondence Mappings

- Mappings implied by correspondences:
 - \circ A \leftrightarrow A'
 - ∘ B ↔ B'
 - \circ $C \leftrightarrow C'$

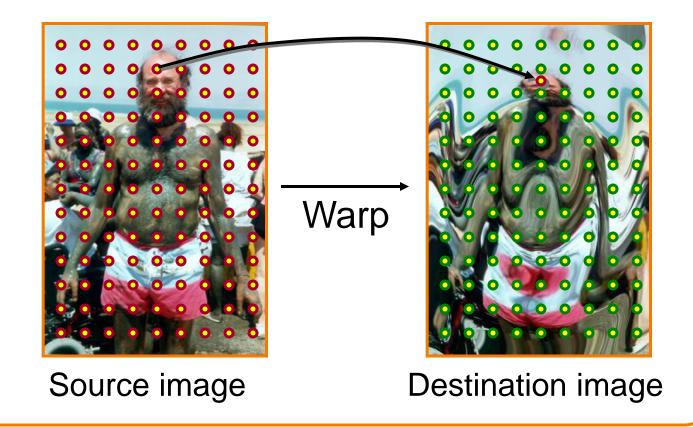


Line Correspondence Mappings

Beier & Neeley use pairs of lines to specify warps

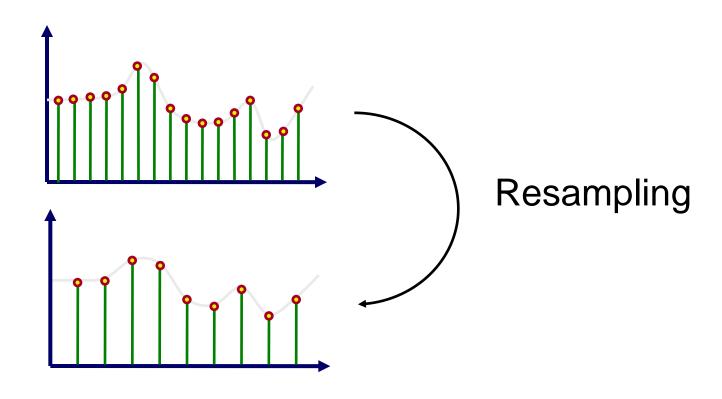
Beier & Neeley SIGGRAPH 92

- Issues:
 - 1) Specifying where every pixel goes (mapping)
 - 2) Computing colors at destination pixels (resampling)



Resampling

Simple example: scaling resolution = resampling



Resampling

Example: scaling resolution = resampling

Scaled

Original

Resampling

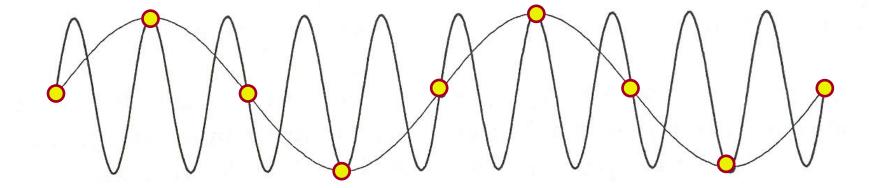
Naïve resampling can cause visual artifa

Scaled

Original

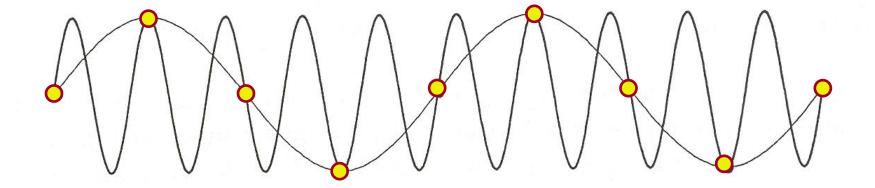
What is the Problem?

Aliasing

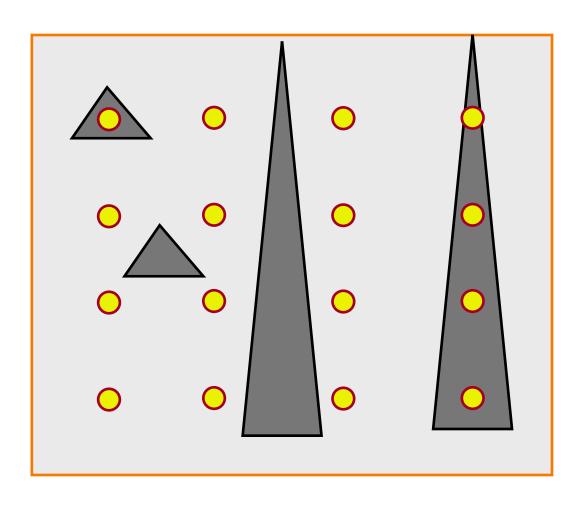


Aliasing

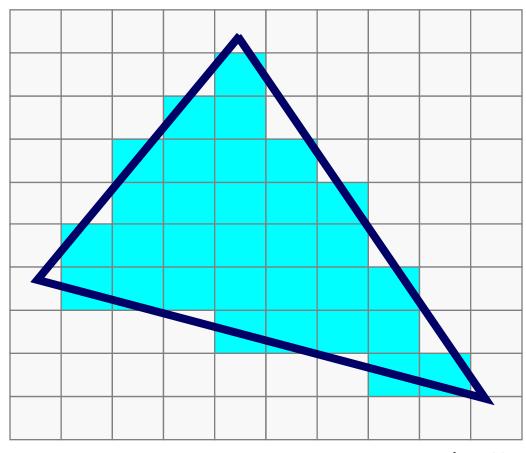
Artifacts due to under-sampling



Spatial Aliasing

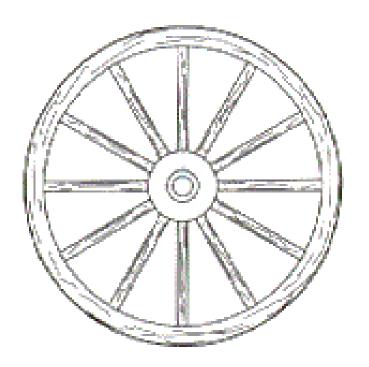


Spatial Aliasing

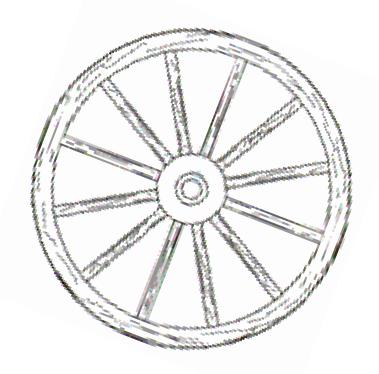


"Jaggies"

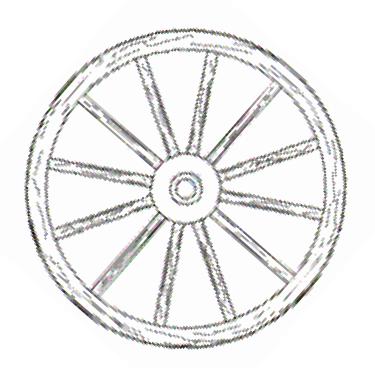
- Strobing
- Flickering



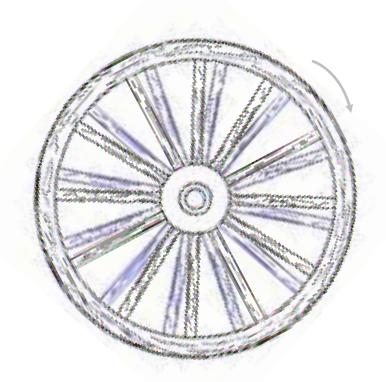
- Strobing
- Flickering



- Strobing
- Flickering

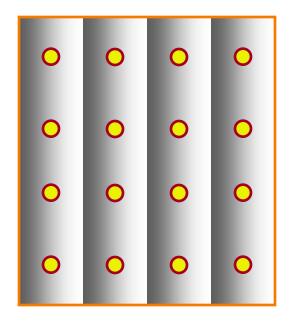


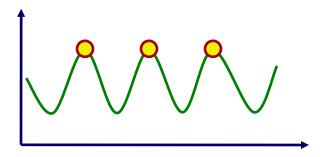
- Strobing
- Flickering



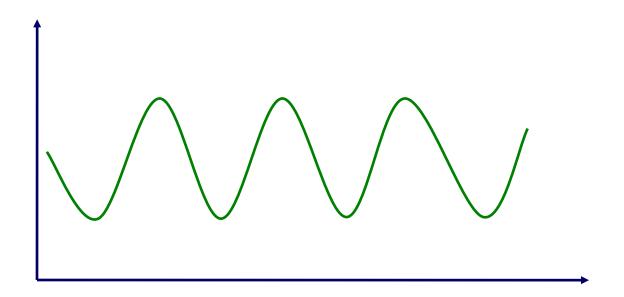
Aliasing

When we under-sample an image, we can create visual artifacts where high frequencies masquerade as low ones

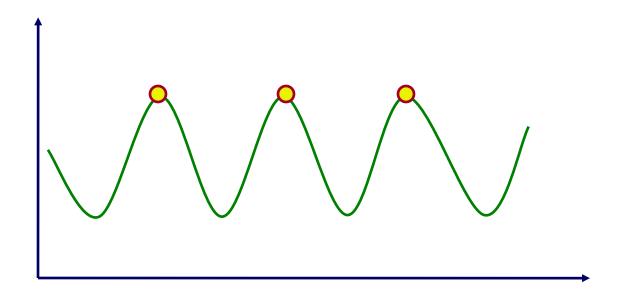




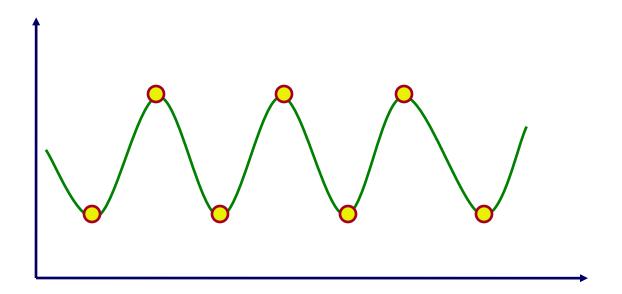
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



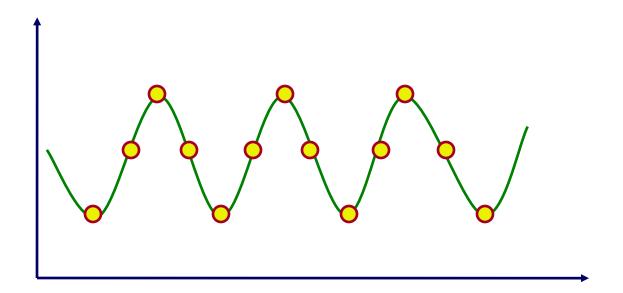
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



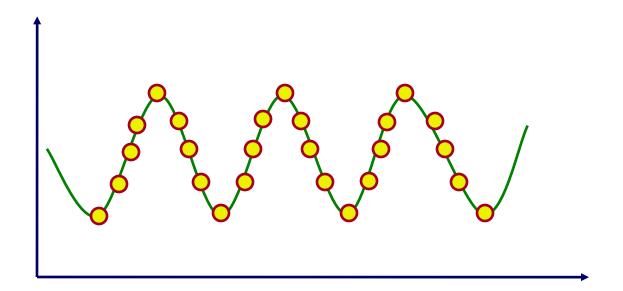
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

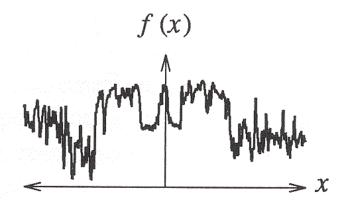


- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

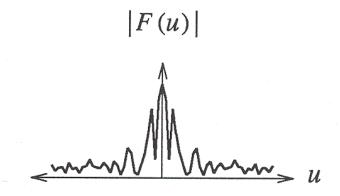


Spectral Analysis

- Spatial domain:
 - Function: f(x)
 - Filtering: convolution

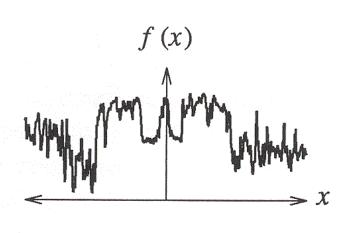


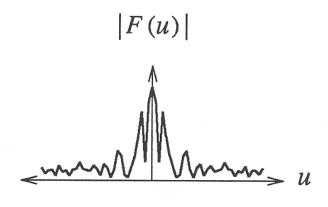
- Frequency domain:
- o Function: F(u)
- o Filtering: multiplication



Any signal can be written as a sum of periodic functions.

Fourier Transform





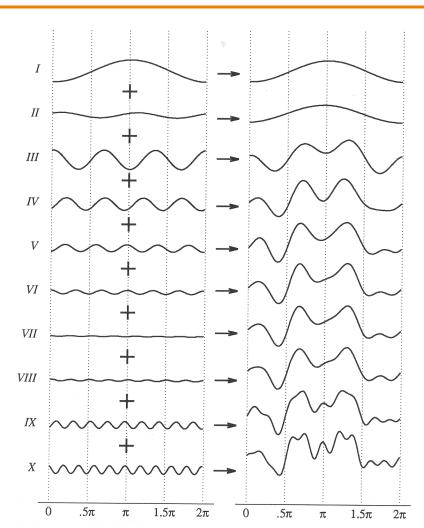


Figure 2.6 Wolberg

Fourier Transform

Fourier transform:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi xu} dx$$

Inverse Fourier transform:

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{+i2\pi ux}du$$

Sampling Theorem

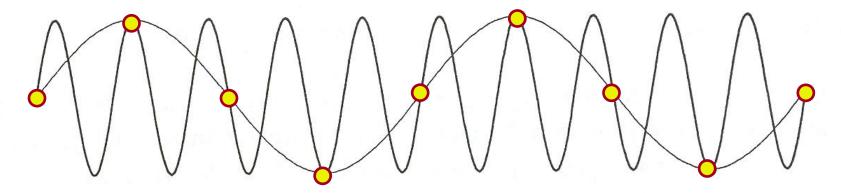
- A signal can be reconstructed from its samples, iff the original signal has no content >=
 1/2 the sampling frequency - Shannon
- The minimum sampling rate for bandlimited function is called the "Nyquist rate"

A signal is bandlimited if its highest frequency is bounded. The frequency is called the bandwidth.

Sampling Theorem

 A signal can be reconstructed from its samples, iff the original signal has no content >= 1/2 the sampling frequency - Shannon

Aliasing will occur if the signal is under-sampled



Under-sampling

Figure 14.17 FvDFH

Sampling and Reconstruction

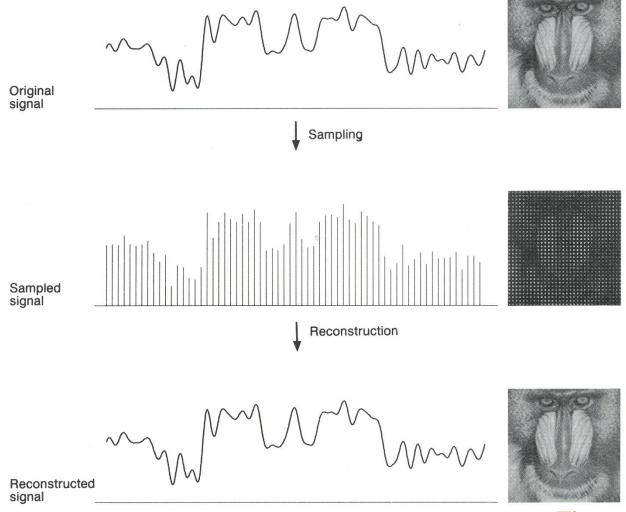
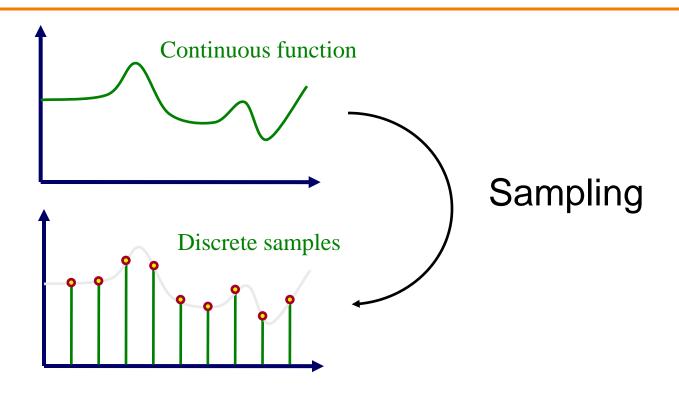


Figure 19.9 FvDFH

Sampling and Reconstruction



Sampling and Reconstruction

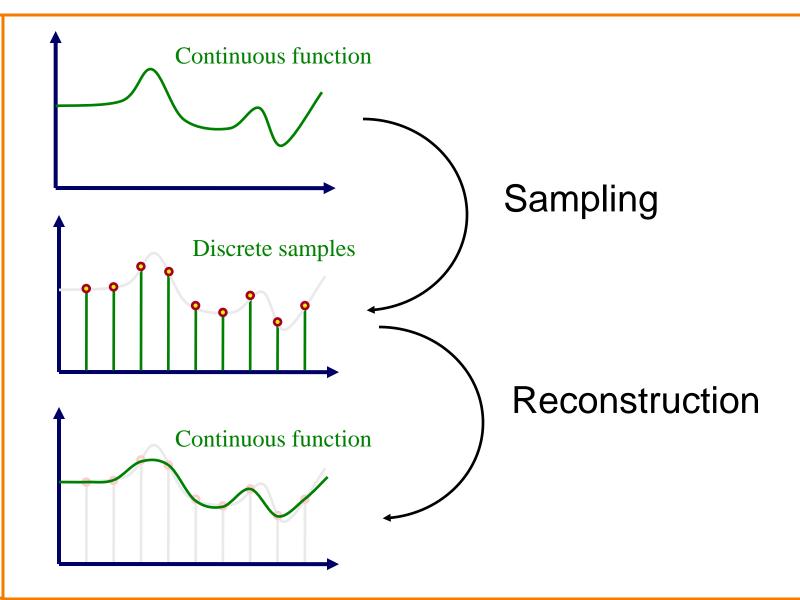
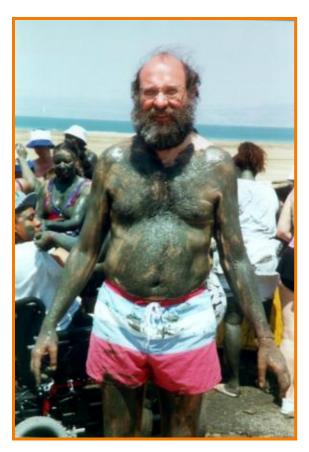
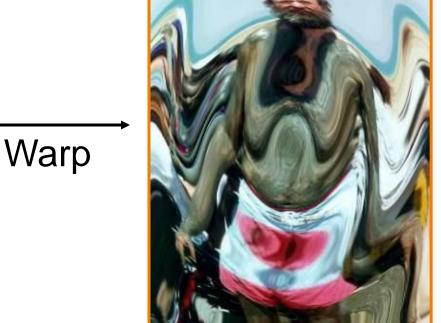


Image Processing

OK ... but how does that affect image processing?



Source image



Destination image

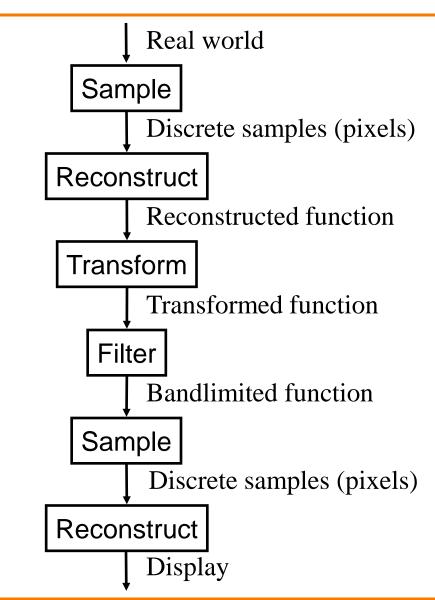
Image Processing

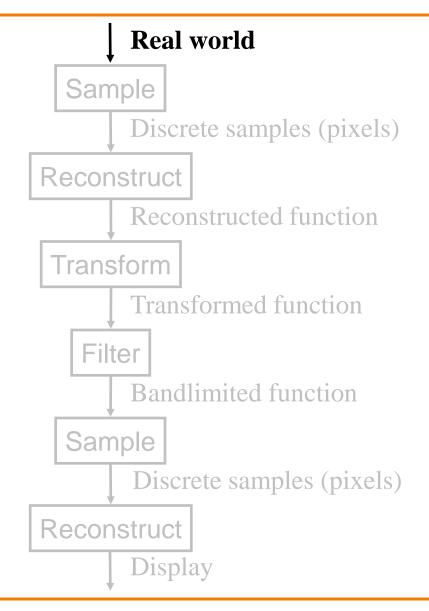
Image processing often requires resampling

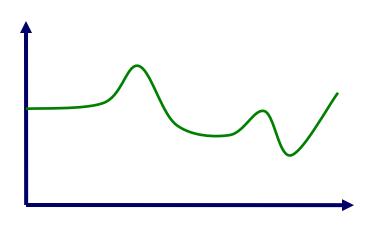
Must band-limit before resampling to avoid aliasing

Original image

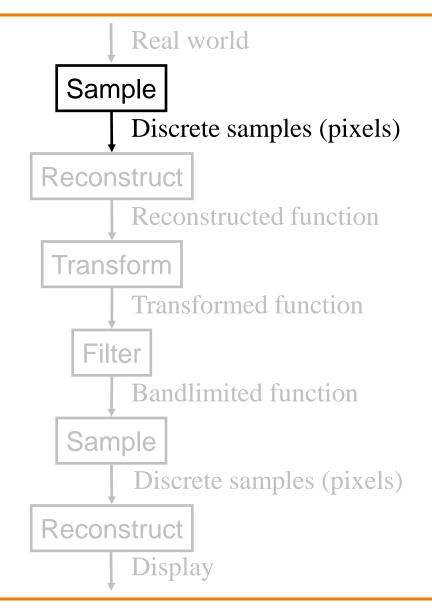
1/4 resolution

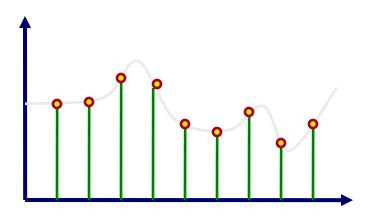




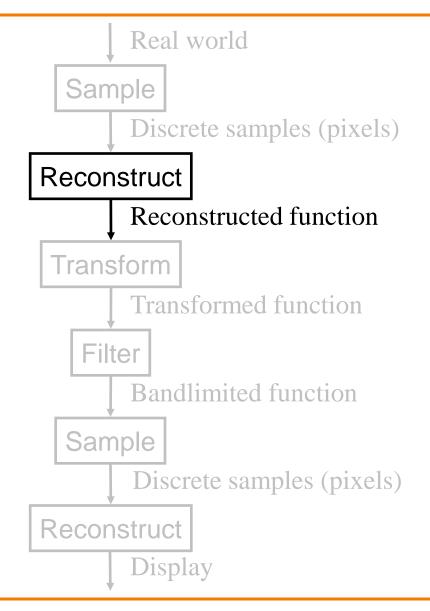


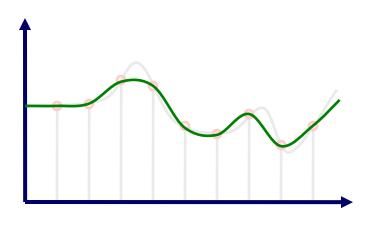
Continuous Function



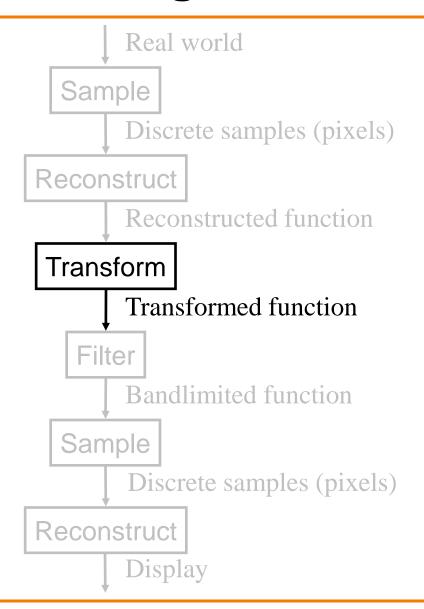


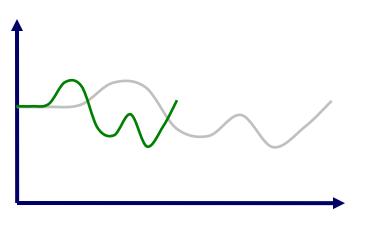
Discrete Samples



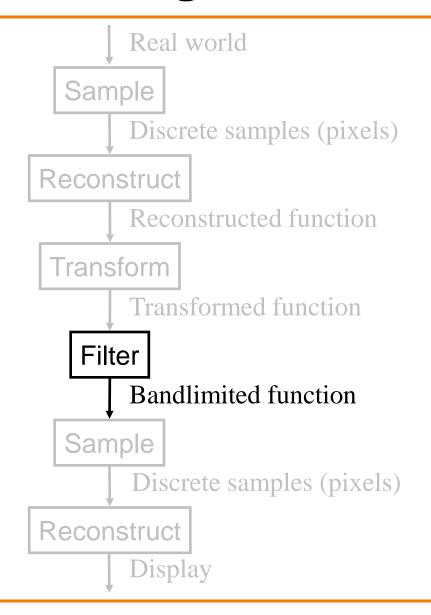


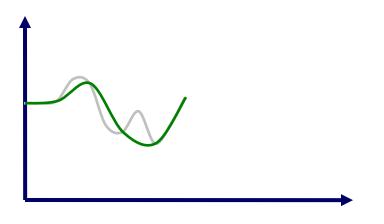
Reconstructed Function



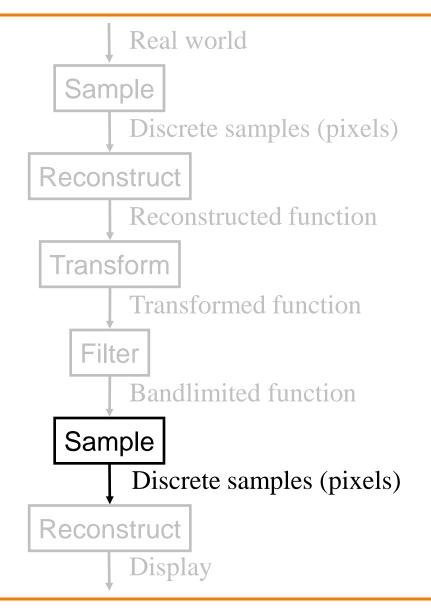


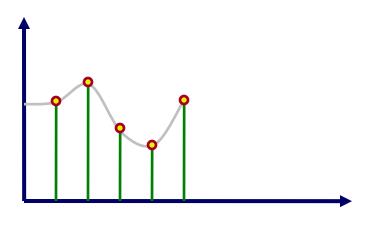
Transformed Function



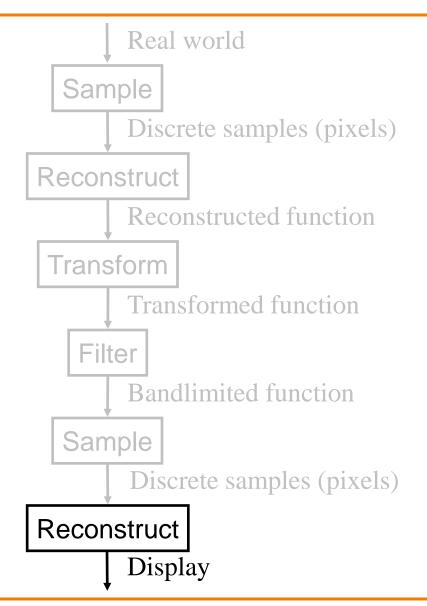


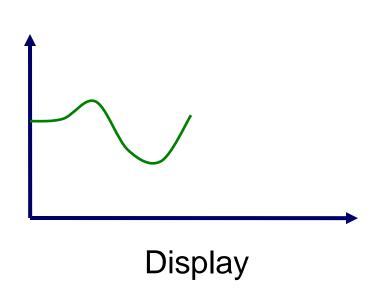
Bandlimited Function





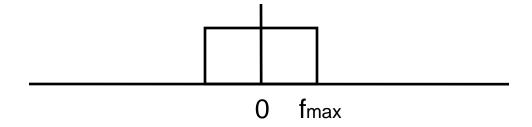
Discrete samples



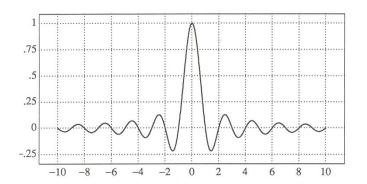


Ideal Bandlimiting Filter

Frequency domain



Spatial domain



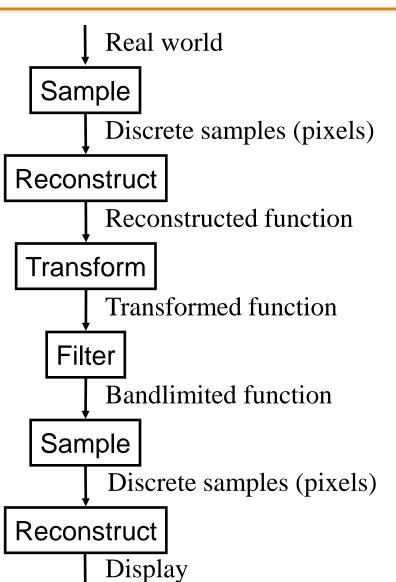
$$Sinc(x) = \frac{\sin \pi x}{\pi x}$$

Figure 4.5 Wolberg

Practical Image Processing

- Finite low-pass filters
 - Point sampling (bad)
 - Box filter
 - Triangle filter
 - Gaussian filter

Low-Pass Filter



Practical Image Processing

Reverse mapping:

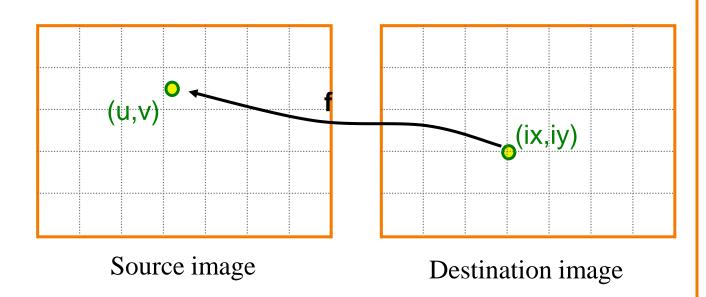
Warp(src, dst) {

```
for (int iy = 0; iy < ymax; iy++) {
  float w \approx 1 / scale(ix, iy);
  float u = f_x^{-1}(ix, iy);
  float v = f_v^{-1}(ix, iy);
  dst(ix,iy) = Resample(src,u,v,k,w);
                                           (ix,iy)
             Source image
                                    Destination image
```

for (int ix = 0; ix < xmax; ix++) {

Resampling

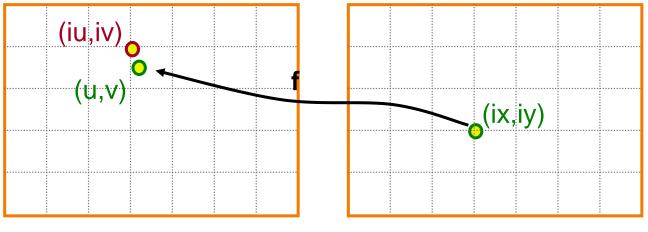
 Compute value of 2D function at arbitrary location from given set of samples



Point Sampling

Possible (poor) resampling implementation:

```
float Resample(src, u, v, k, w) {
  int iu = round(u);
  int iv = round(v);
  return src(iu,iv);
}
```

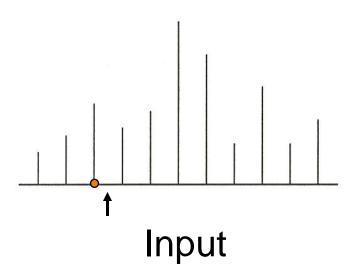


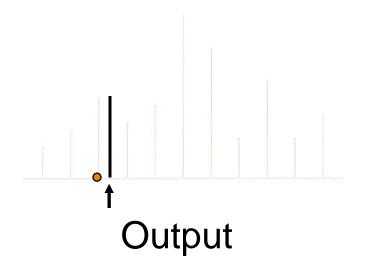
Source image

Destination image

Point Sampling

Use nearest sample





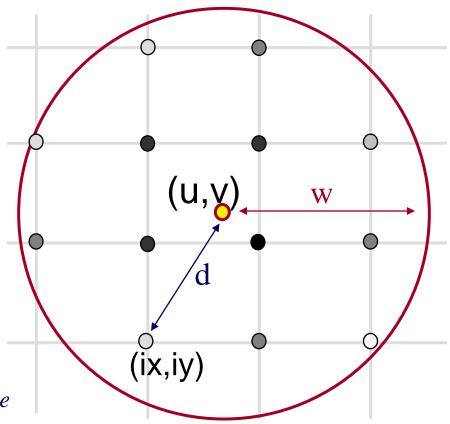
Point Sampling

Point Sampled: Aliasing!

Correctly Bandlimited

Resampling with Low-Pass Filter

 Output is weighted average of input samples, where weights are normalized values of filter (k)



k(ix,iy) represented by gray value

Resampling with Low-Pass Filter

Possible implementation:

```
float Resample(src, u, v, k, w)
  float dst = 0;
  float ksum = 0;
  int ulo = u - w; etc.
  for (int iu = ulo; iu < uhi; iu++) {</pre>
    for (int iv = vlo; iv < vhi; iv++) {
      dst += k(u,v,iu,iv,w) * src(u,v)
      ksum += k(u,v,iu,iv,w);
  return dst / ksum;
```

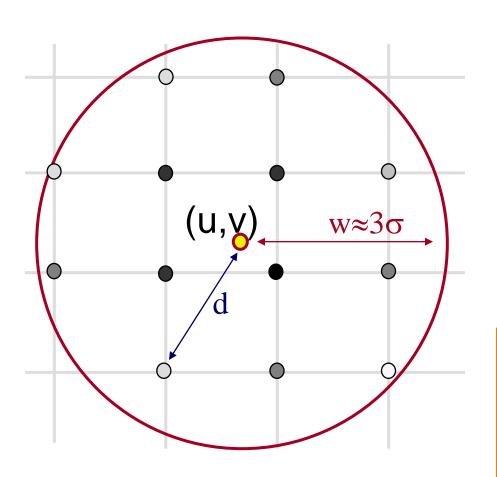
Source image

Destination image

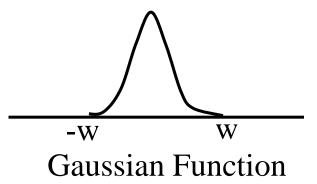
(ix,iy)

Resampling with Gaussian Filter

Kernel is Gaussian function



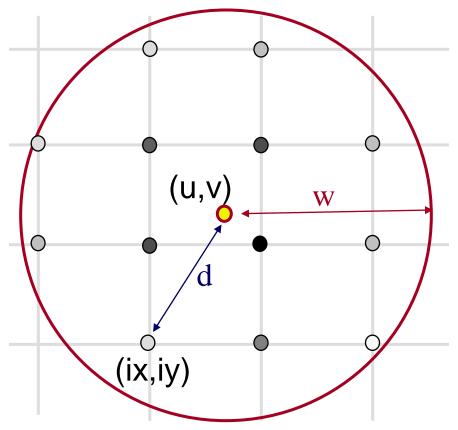
$$G(d,\sigma) = e^{-d^2/(2\sigma^2)}$$

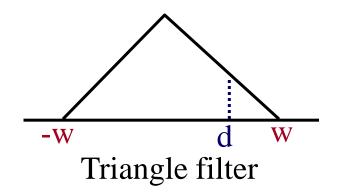


- Drops off quickly, but never gets to exactly 0
- In practice: compute out to $w \sim 2.5\sigma$ or 3σ

Resampling with Triangle Filter

For isotropic Triangle filter,
 k(ix,iy) is function of d and w



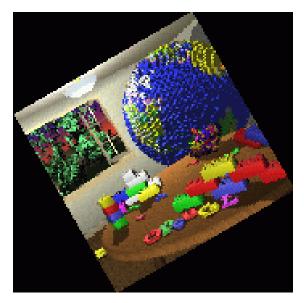


$$k(i,j) = max(1 - d/w, 0)$$

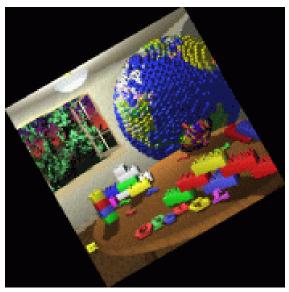
Filter Width = 2

Sampling Method Comparison

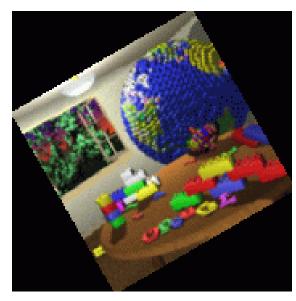
- Trade-offs
 - Aliasing versus blurring
 - Computation speed



Point



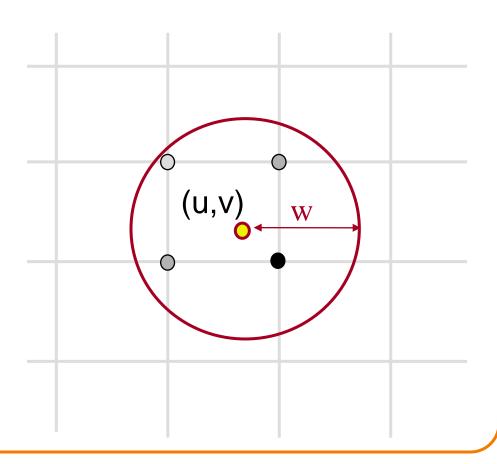
Triangle



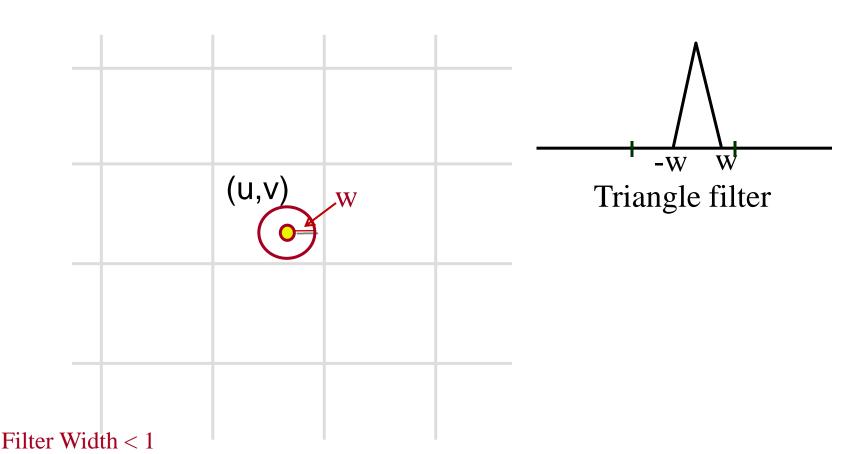
Gaussian

 Filter width chosen based on scale factor of map

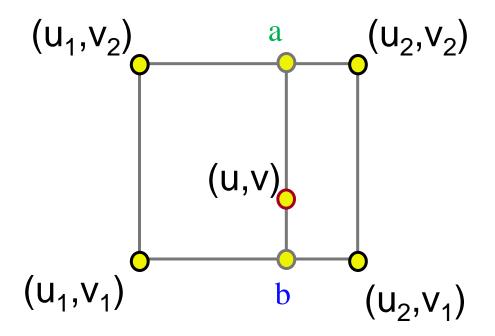
Filter must be wide enough to avoid aliasing



What if width (w) is smaller than sample spacing?

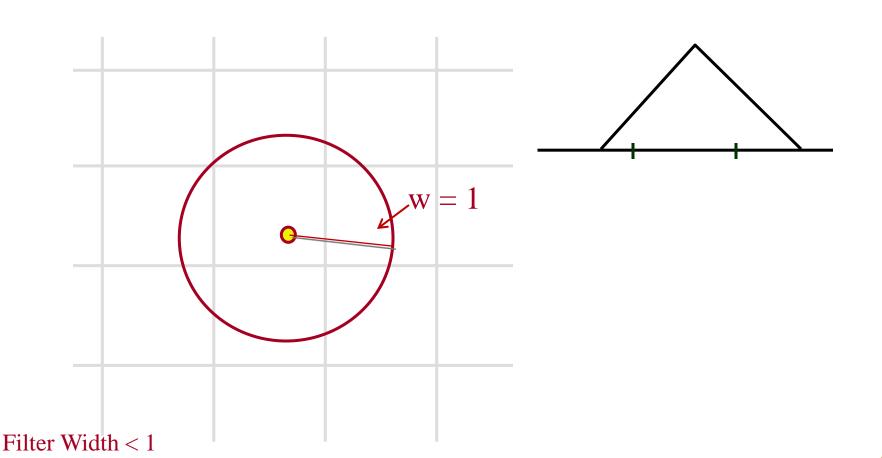


- Alternative 1: Bilinear interpolation of closest pixels
 - a = linear interpolation of src(u₁,v₂) and src(u₂,v₂)
 - b = linear interpolation of $src(u_1, v_1)$ and $src(u_2, v_1)$
 - dst(x,y) = linear interpolation of "a" and "b"



Filter Width < 1

Alternative 2: force width to be at least 1



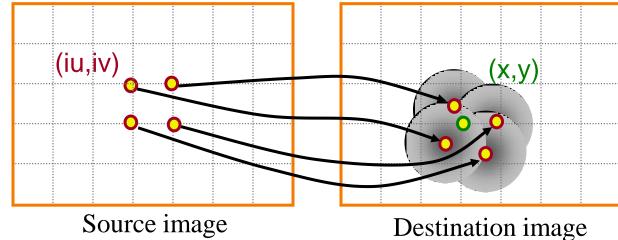
Forward mapping:

Warp(src, dst) {

```
for (int iu = 0; iu < umax; iu++) {
  for (int iv = 0; iv < vmax; iv++) {
    float x = f_x(iu,iv);
    float y = f_v(iu,iv);
    float w \approx 1 / scale(x, y);
    Splat(src(iu,iv),x,y,k,w);
             (iu,iv)
                                           (x,y)
              Source image
                                     Destination image
```


Forward mapping:

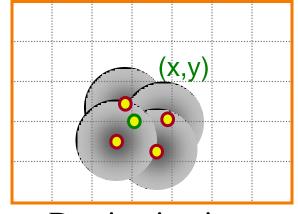
```
Warp(src, dst) {
  for (int iu = 0; iu < umax; iu++) {
    for (int iv = 0; iv < vmax; iv++) {
      float x = f_x(iu,iv);
      float y = f_v(iu,iv);
      float w \approx 1 / scale(x, y);
      Splat(src(iu,iv),x,y,k,w);
              (iu,iv)
```



Forward mapping:

```
for (int iu = 0; iu < umax; iu++) {
  for (int iv = 0; iv < vmax; iv++) {
    float x = f_x(iu,iv);
    float y = f_v(iu,iv);
    float w \approx 1 / scale(x, y);
    for (int ix = xlo; ix \le xhi; ix++) {
      for (int iy = ylo; iy <= yhi; iy++) {</pre>
        dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);
```

Problem?



Destination image

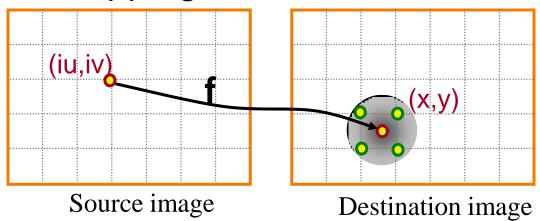
Forward mapping:

```
for (int iu = 0; iu < umax; iu++) {
  for (int iv = 0; iv < vmax; iv++) {
    float x = f_x(iu,iv);
    float y = f_v(iu,iv);
    float w \approx 1 / scale(x, y);
    for (int ix = xlo; ix \le xhi; ix++) {
      for (int iy = ylo; iy <= yhi; iy++) {</pre>
        dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);
        ksum(ix,iy) += k(x,y,ix,iy,w);
                                           (x,y)
for (ix = 0; ix < xmax; ix++)
  for (iy = 0; iy < ymax; iy++)
    dst(ix,iy) /= ksum(ix,iy)
```

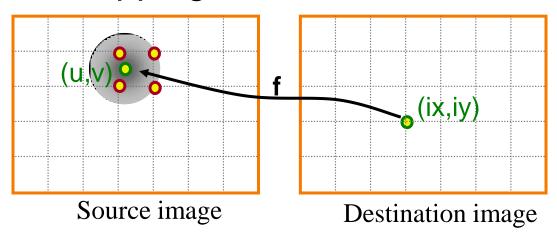
Destination image

Forward vs. Reverse Mapping?

Forward mapping



Reverse mapping



Forward vs. Reverse Mapping

- Tradeoffs:
 - Forward mapping:
 - Requires separate buffer to store weights
 - Reverse mapping:
 - Requires inverse of mapping function, random access to original image

Reverse mapping is usually preferable

Putting it All Together

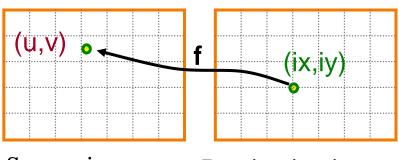
Possible implementation of image blur:

```
Blur(src, dst, sigma) {
    w ≈ 3*sigma;
    for (int ix = 0; ix < xmax; ix++) {
        for (int iy = 0; iy < ymax; iy++) {
            float u = ix;
            float v = iy;
            dst(ix,iy) = Resample(src,u,v,k,w);
        }
}</pre>
```


Putting it All Together

Possible implementation of image scale:

```
Scale(src, dst, sx, sy) {
  w ≈ max(1/sx,1/sy);
  for (int ix = 0; ix < xmax; ix++) {
    for (int iy = 0; iy < ymax; iy++) {
      float u = ix / sx;
      float v = iy / sy;
      dst(ix,iy) = Resample(src,u,v,k,w);
    }
}</pre>
```



Source image

Destination image

Putting it All Together

Possible implementation of image rotation:

```
Rotate(src, dst, \Theta) {
  \mathbf{w} \approx 1
  for (int ix = 0; ix < xmax; ix++) {
     for (int iy = 0; iy < ymax; iy++) {
       float u = ix*cos(-\Theta) - iy*sin(-\Theta);
       float v = ix*sin(-\Theta) + iy*cos(-\Theta);
       dst(ix,iy) = Resample(src,u,v,k,w);
                              Rotate
```

Summary

- Mapping
 - Parametric
 - Correspondences
- Sampling, reconstruction, resampling
 - Frequency analysis of signal content
 - Filter to avoid aliasing
 - Reduce visual artifacts due to aliasing
 - » Blurring is better than aliasing
- Image processing
 - Forward vs. reverse mapping