Image Processing
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Image Processing

Goal: read an image, process it, write the result
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Image Processing Operations

* Luminance  Linear filtering
= Brightness * Blur & sharpen
= Contrast. = Edge detect
= Gamma = Convolution

= Histogram equalization . g
J : * Non-linear filtering

 Color = Median
= Black & white = Bilateral filter

= Saturation

= \White balance ) Dltherlng

= Quantization
= QOrdered dither
* Floyd-Steinberg
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Image Processing Operations

N

 Luminance
* Brightness
= Contrast.
= Gamma

= Histogram equalizatiory

* Color
= Black & white
= Saturation
= White balance

 Linear filtering
* Blur & sharpen
= Edge detect
= Convolution

* Non-linear filtering
= Median
= Bilateral filter

 Dithering
= Quantization
= QOrdered dither
* Floyd-Steinberg
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What 1s Luminance?

Measures perceived “gray-level” of pixel
L = 0.30*red + 0.59*green + 0.11*blue
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L uminance

Measures perceived “gray-level” of pixel
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Values of luminance for positions
on one horizontal scanline

Figure 19.9 FVDFI—I/
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L uminance

Measures perceived “gray-level” of pixel
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Samples of luminance for pixels
on one horizontal scanline

>
X

Figure 19.9 FVDFI—I/




-
Adjusting Brightness

* What must be done to the RGB values
to make this image brighter?
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Adjusting Brightness
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« Method 1: Convert to HSV, scale V, convert back

 Method 2: Scale R, G, and B directly
o Multiply each of red, green, and blue by a factor
. always

0 Must clamp to [0..1]
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Brighter
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Adjusting Contrast
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Mor Contrast

« Compute one mean luminance L* for whole image
Scale deviation from L* for each pixel component




Adjusting Gamma

Apply non-linear function to account for difference
between brightness and perceived brightness
of display
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Perceived brightness

Amount of light

Y depends on camera and monitor
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Histogram Equalization

Change distribution of luminance values to
cover full range [0-1]
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Image Processing Operations

* Luminance
= Brightness
= Contrast.
= Gamma
= Histogram equalization

4 Color R
= Black & white
= Saturation
= \White balance

N | Y

 Linear filtering
* Blur & sharpen
= Edge detect
= Convolution

* Non-linear filtering
= Median
= Bilateral filter

 Dithering
= Quantization
= QOrdered dither
* Floyd-Steinberg
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Color processing

 Color models

Saturation

= RGB
= CMY
= HSV
= XYZ
= La*b*
= Etc.

HSV Color Model
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Black & White

Convert from color to gray-levels

Original Black & White
(actually gray levels)
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Black & White

Convert from color to gray-levels

Original Black & White
(actually gray levels)

Method 1: Convert to HSV, set S=0, convert back to RGB
Method 2: Set RGB of every pixel to (L,L,L)
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Adjusting Saturation

Increase/decrease color saturation of every pixel
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Adjusting Saturation

Increase/decrease color saturation of every pixel

Method 1: Convert to HSV, scale S, convert back A
Method 2: Set each pixel to factor * (R-L, G-L, B-L)
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White Balance

Adjust colors so that a given RGB value Is
mapped to a neutral color
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White Balance
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Conceptually:
Provide an RGB value W that should be mapped to white
Perform transformation of color space
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White Balance
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Von Kries method: adjust colors in LMS color space

= LMS primaries represent the responses of
the three different types of cones in our eyes

Cone mosaic
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http://upload.wikimedia.org/wikipedia/commons/1/1e/Cones_SMJ2_E.svg
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White Balance

For each pixel RGB:
1) Convert to XYZ color space

X] [0.4124 0.3576 0.18057[R
Y|[=10.2126 0.7152 0.0722]|G
Z1 10.0193 0.1192 0.950211LB

2) Convert to LMS color space

O 40024 0.7076  —0.08081] [X
—0. 2263 1. 16532 0.0457 ||Y
0.91822 117

3) Divide by L, ,M,,Sy
4) Convert back to RGB
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Image Processing Operations

= Histogram equalization

* Color
= Black & white
= Saturation
= White balance

* Luminance ('« Linear filtering A
= Brightness = Blur & sharpen
= Contrast. = Edge detect
= Gamma = Convolution P

* Non-linear filtering
= Median
= Bilateral filter

 Dithering
= Quantization
= QOrdered dither
* Floyd-Steinberg
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Blur

What is the basic operation for each pixel
when blurring an image?
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Basic Operation: Convolution

Output value Is weighted sum of values In
neighborhood of input image
= Pattern of weights is the “filter” or “kernel”

Box Filter
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Basic Operation: Convolution

Output value Is weighted sum of values In
neighborhood of input image
= Pattern of weights is the “filter” or “kernel”

Triangle Filter
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Input Outpu
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Basic Operation: Convolution

Output value Is weighted sum of values In
neighborhood of input image
= Pattern of weights is the “filter” or “kernel”

Gaussian Filter
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Convolution with a Gaussian Filter

‘ G(x,0)= = r exp[ x ]

POSItIO|

unrelated uncertain related uncertain unrelated
pixels pixels pixels pixels pixels Yy,




Convolution with a Gaussian Filter

Output value is weighted sum of values in
neighborhood of input image

1 x’
G(x,0)= exp| —
( ) o2 p[ 20'2J
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Convolution with a Gaussian Filter

Output value is weighted sum of values in
neighborhood of input image

1 x’
G(x,0)= exp| —
( ) o2 p[ 20'2J
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0.2 02 Filter
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Convolution with a Gaussian Filter

Output value is weighted sum of values in
neighborhood of input image

| x°
G(x,0)= exp| —
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Convolution with a Gaussian Filter

Output value is weighted sum of values in
neighborhood of input image

| x°
G(x,0)= exp| —
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Convolution with a Gaussian Filter

Output value is weighted sum of values in
neighborhood of input image

1 x’
G(x,0)= exp| —
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Convolution with a Gaussian Filter

What if filter extends beyond boundary?
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Convolution with a Gaussian Filter

What if filter extends beyond boundary?

0.8

Modified Filter
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Convolution with a Gaussian Filter
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Output contains samples from smoothed input
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Figure 2.4 Wolbergj




-
Linear Filtering
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2D Convolution
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Filter

0 Each output pixel is a linear combination of input pixels
In 2D neighborhood with weights prescribed by a filter

-------------------

----------------

Output Image
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Linear Filtering
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2D Convolution

0 Each output pixel is a linear combination of input pixels
In 2D neighborhood with weights prescribed by a filter

-------------------

----------------
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Linear Filtering
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2D Convolution

------------------
--------------------
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In 2D neighborhood with weights prescribed by a filter

Filter

0 Each output pixel is a linear combination of input pixels

Output Image
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Linear Filtering

(ST WURE

2D Convolution

0 Each output pixel is a linear combination of input pixels
in 2D nelghborhood with weights prescribed by a filter
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Input Image Output Image
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Linear Filtering

(ST WURE

2D Convolution

0 Each output pixel is a linear combination of input pixels
in 2D nelghborhood with weights prescribed by a filter
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Gaussian Blur

per-pixel multiplication




Gaussian Blur

Output value Is weighted sum of values In
neighborhood of input image

Blur(1,,0) =Y G(lp-ql.0) 1,

qes

normalized
Gaussian function
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Linear Filtering

* Many Iinteresting linear filters
= Blur
= Edge detect
= Sharpen
= Emboss
= etc.

Filter = ?
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Blur

Convolve with a 2D Gaussian filter

G(x,y,0)=
(x,5,0) Sy

1 x4y’
exp| ————
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Filter =
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Edge Detection

Convolve with a 2D Laplacian filter that finds
differences between neighbor pixels

Orlglnal

Detect edges

Filter = [_
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Sharpen

Sum detected edges with original image

N
Sharpened

-1 -1 -1
Filter=1-1 +9 -1
-1 -1 -1
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Emboss

Convolve with a filter that highlights
gradients in particular directions

Original Embossed

Filter =

-1 -1 0]

-1

0

0
1

1
1




Side Note: Separable Filters

Some filters are separable (e.g., Gaussian)
= First, apply 1-D convolution across every row
= Then, apply 1-D convolution across every column
= Big impact on performance
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Image Processing Operations

* Luminance
= Brightness
= Contrast.
= Gamma
= Histogram equalization

* Color
= Black & white
= Saturation
= White balance

 Linear filtering
* Blur & sharpen
= Edge detect
= Convolution

-
* Non-linear filtering
= Median
= Bilateral filter
 Dithering

= Quantization
= QOrdered dither
* Floyd-Steinberg
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Non-Linear Filtering

Each output pixel is a non-linear function of
Input pixels in neighborhood (filter depends on input)

Original
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Median Filter

Each output pixel is
median of input pixels
In neighborhood

3px median filter

T~

1px median filter

10px median filter
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Bilateral Filter

Gaussian blur uses same filter for all pixels
Blurs across edges as much as other areas

Original

Gaussian Blur
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Bilateral Filter

(ST WURE

Gaussian blur uses same filter for all pixels
Prefer a filter that preserves edges (adapts to content)

Original Bilateral Filter




Bilateral Filter

Combine Gaussian filtering in both
spatial domain and color domain

Bilateral [1], = — ZG (Ilp=al)G, (11, =14 1)1,
R T
Spatial Color

Proximity Proximity

Weight Weight
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Bilateral Filtering

Combine Gaussian filtering in both
spatial domain and color domain

Bilateral filter weights at the central pixel

Spatial weight

Range weight

Multiplication of range
and spatial weights




O = 0
(Gaussian blur)
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Image Processing Operations

* Luminance
= Brightness
= Contrast.
= Gamma
= Histogram equalization

* Color
= Black & white
= Saturation
= White balance

 Linear filtering
* Blur & sharpen
= Edge detect
= Convolution

* Non-linear filtering
= Median
= Bilateral filter

(. Dithering A
= Quantization
= QOrdered dither
= Floyd-Steinber
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Quantization ....
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Reduce intensity resolution
o Frame buffers have limited number of bits per pixel
o Physical devices have limited dynamic range

255 | 150 | 75 0

255|150 | 75 | 0 | ¢

255 (150 | 75 | 0 |O

255 (150 | 75 | 0 |,

255 | 150 | 75 0 0
0 ‘€—Blue channel

255 (180 [ 75 | 0 |

<€4— Green channel

256 | 150 | 75 | O

<€4— Red channel




-

Uniform Quantization

P(X, y) =round( (X, y) )
where round() chooses nearest

value that can be represented.

L

1(X,y)

P(x,y)

P(X,
(2 bits([ae%/)laixel) )
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Uniform Quantization

Images with decreasing bits per pixel:

|
I:i. i ]
T

"1 bit

2 bits

"8 bits

Notice contouring.




Reducing Effects of Quantization
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* Intensity resolution / spatial resolution tradeoff

 Dithering
o Random dither
0 Ordered dither
o Error diffusion dither

« Halftoning
o Classical halftoning



Dithering

Distribute errors among pixels
0 Exploit spatial integration in our eye
o Display greater range of perceptible intensities

Oriinal nifor Fond-Steinberg
(8 bits) Quantization Dither
(1 bit) (1 bit)



Random Dither

Randomize quantization errors
o Errors appear as noise

P(X,y)
P(X,y)

1(X,y)

1(X,y)

P(x, y) = round(1(x, y) + noise(x,y))



andom Dither

Original
(8 bits)

Uniform
Quantization
(1 bit)
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Ordered Dither

Pseudo-random quantization errors

0 Matrix stores pattern of threshholds

| =X modn i

] =y modn D, = 5

e = 1(x,y) - trunc(l(x,y)) 0 2

threshold = (D(i,j)+1)/(n>+1) ' '

If (e g threShOId) 0 1/5 2/5 3/5 4/5 1
P(x,y) = ceil(l(x, y)) T

else bt
P(x,y) — floor(l(x,y)) thresholds

J
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Ordered Dither

Bayer's ordered dither matrices

4D 4D

. ,, + D, (LU, , + D (12U,
" _4D% +D,(2DU,, 4D, + D2(2,2)U%-
15 7 | 13
5 31 PO I L R
2=[0 2] Tl 4| 14
0 8| 2 10
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Ordered Dith

Original
(8 bits)

andom
Dither
(1 bit)

Ordered
Dither
(1 bit)




-

Error Diffusion Dither

Spread guantization error over neighbor pixels

o Error dispersed to pixels right and below
o Floyd-Steinberg weights:

column j

3/16 +5/16 + 1/16 +7/16 = 1.0

Figure 14.42 from H&B

row i

row i + 1

J




rror Diffusion Dither

Original vz.ﬁéndbfh o Ordered Fioyd—Stéinbérg
(8 bits) Dither Dither Dither
(1 bit) (1 bit) (1 bit)



Summary

« Color transformations
« Different color spaces useful for different operations

* Filtering
« Compute new values for image pixels based on
function of old values in neighborhood

 Dithering
* Reduce visual artifacts due to quantization
 Distribute errors among pixels
Exploit spatial integration in our eye



