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Introduction

This text explains how to use mathematical models and methods to analyze prob-
lems that arise in computer science. The notion of a proof plays a central role in
this work.

Simply put, a proof is a method of establishing truth. Like beauty, “truth” some-
times depends on the eye of the beholder, and it should not be surprising that what
constitutes a proof differs among fields. For example, in the judicial system, legal
truth is decided by a jury based on the allowable evidence presented at trial. In the
business world, authoritative truth is specified by a trusted person or organization,
or maybe just your boss. In fields such as physics and biology, scientific truth! is
confirmed by experiment. In statistics, probable truth is established by statistical
analysis of sample data.

Philosophical proof involves careful exposition and persuasion typically based
on a series of small, plausible arguments. The best example begins with “Cogito
ergo sum,” a Latin sentence that translates as “I think, therefore I am.” It comes
from the beginning of a 17th century essay by the mathematician/philosopher, René
Descartes, and it is one of the most famous quotes in the world: do a web search
on the phrase and you will be flooded with hits.

Deducing your existence from the fact that you’re thinking about your existence
is a pretty cool and persuasive-sounding idea. However, with just a few more lines
of argument in this vein, Descartes goes on to conclude that there is an infinitely
beneficent God. Whether or not you believe in a beneficent God, you’ll probably
agree that any very short proof of God’s existence is bound to be far-fetched. So

! Actually, only scientific falsehood can be demonstrated by an experiment—when the experiment
fails to behave as predicted. But no amount of experiment can confirm that the next experiment won’t
fail. For this reason, scientists rarely speak of truth, but rather of theories that accurately predict past,
and anticipated future, experiments.



http://www.btinternet.com/~glynhughes/squashed/descartes.htm
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Part 1  Proofs

even in masterful hands, this approach is not reliable.
Mathematics has its own specific notion of “proof.”

Definition. A mathematical proof of a proposition is a chain of logical deductions
leading to the proposition from a base set of axioms.

The three key ideas in this definition are highlighted: proposition, logical de-
duction, and axiom. These three ideas are explained in the following chapters,
beginning with propositions in Chapter 1. We will then provide lots of examples of
proofs and even some examples of “false proofs” (that is, arguments that look like
a proof but that contain missteps, or deductions that aren’t so logical when exam-
ined closely). False proofs are often even more important as examples than correct
proofs, because they are uniquely helpful with honing your skills at making sure
each step of a proof follows logically from prior steps.

Creating a good proof is a lot like creating a beautiful work of art. In fact,
mathematicians often refer to really good proofs as being “elegant” or “beautiful.”
As with any endeavor, it will probably take a little practice before your fellow
students use such praise when referring to your proofs, but to get you started in
the right direction, we will provide templates for the most useful proof techniques
in Chapters 2 and 3. We then apply these techniques in Chapter 4 to establish
some important facts about numbers; facts that form the underpinning of one of the
world’s most widely-used cryptosystems.
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______________________________________________________________________________________________________|]
1 Propositions

Definition. A proposition is a statement that is either true or false.

For example, both of the following statements are propositions. The first is true
and the second is false.

Proposition 1.0.1. 2 + 3 = 5.
Proposition 1.0.2. 7 + 1 = 3.

Being true or false doesn’t sound like much of a limitation, but it does exclude
statements such as, “Wherefore art thou Romeo?” and “Give me an A!”.

Unfortunately, it is not always easy to decide if a proposition is true or false, or
even what the proposition means. In part, this is because the English language is
riddled with ambiguities. For example, consider the following statements:

1. “You may have cake, or you may have ice cream.”
2. “If pigs can fly, then you can understand the Chebyshev bound.”

3. “If you can solve any problem we come up with, then you get an A for the
course.”

4. “Every American has a dream.”

What precisely do these sentences mean? Can you have both cake and ice cream
or must you choose just one dessert? If the second sentence is true, then is the
Chebyshev bound incomprehensible? If you can solve some problems we come up
with but not all, then do you get an A for the course? And can you still get an A
even if you can’t solve any of the problems? Does the last sentence imply that all
Americans have the same dream or might some of them have different dreams?

Some uncertainty is tolerable in normal conversation. But when we need to
formulate ideas precisely—as in mathematics and programming—the ambiguities
inherent in everyday language can be a real problem. We can’t hope to make an
exact argument if we’re not sure exactly what the statements mean. So before we
start into mathematics, we need to investigate the problem of how to talk about
mathematics.

To get around the ambiguity of English, mathematicians have devised a special
mini-language for talking about logical relationships. This language mostly uses

LR IS

ordinary English words and phrases such as “or”, “implies”, and “for all”. But
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mathematicians endow these words with definitions more precise than those found
in an ordinary dictionary. Without knowing these definitions, you might sometimes
get the gist of statements in this language, but you would regularly get misled about
what they really meant.

Surprisingly, in the midst of learning the language of mathematics, we’ll come
across the most important open problem in computer science—a problem whose
solution could change the world.

1.1 Compound Propositions

In English, we can modify, combine, and relate propositions with words such as
3 2 13 S 13

not”, “and”, “or”, “implies”, and “if-then”. For example, we can combine three
propositions into one like this:

If all humans are mortal and all Greeks are human, then all Greeks are mortal.

For the next while, we won’t be much concerned with the internals of propositions—

whether they involve mathematics or Greek mortality—but rather with how propo-
sitions are combined and related. So we’ll frequently use variables such as P and
0 in place of specific propositions such as “All humans are mortal” and “2 4 3 =
5”. The understanding is that these variables, like propositions, can take on only
the values T (true) and F (false). Such true/false variables are sometimes called
Boolean variables after their inventor, George—you guessed it—Boole.

1.1.1 NOT, AND, and OR

We can precisely define these special words using truth tables. For example, if
P denotes an arbitrary proposition, then the truth of the proposition “NOT(P)” is
defined by the following truth table:

P | NOT(P)
T F
F T

The first row of the table indicates that when proposition P is true, the proposition
“NOT(P)” is false. The second line indicates that when P is false, “NOT(P)” is
true. This is probably what you would expect.

In general, a truth table indicates the true/false value of a proposition for each
possible setting of the variables. For example, the truth table for the proposition
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“P AND Q has four lines, since the two variables can be set in four different ways:

P Q| PANDQ

T T T
T F F
F T F
F F F

According to this table, the proposition “P AND Q is true only when P and Q are
both true. This is probably the way you think about the word “and.”
There is a subtlety in the truth table for “P OR Q™

P Q|PORQ
T T T
T F T
F T T
F F F

The third row of this table says that “P OR Q” is true even if both P and Q are
true. This isn’t always the intended meaning of “or” in everyday speech, but this is
the standard definition in mathematical writing. So if a mathematician says, “You
may have cake, or you may have ice cream,” he means that you could have both.

If you want to exclude the possibility of both having and eating, you should use
“exclusive-or” (XOR):

P Q| PXxo0RrRQ
T T F
T F T
F T T
F F F

1.1.2 IMPLIES

The least intuitive connecting word is “implies.” Here is its truth table, with the
lines labeled so we can refer to them later.

P Q| P IMPLIES O

T T T (tt)
T F F (tf)
F T T (ft)
F F T (ff)

Let’s experiment with this definition. For example, is the following proposition
true or false?
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“If the Riemann Hypothesis is true, then x2 > 0 for every real number x.”

The Riemann Hypothesis is a famous unresolved conjecture in mathematics —no
one knows if it is true or false. But that doesn’t prevent you from answering the
question! This proposition has the form P IMPLIES Q where the hypothesis, P, is
“the Riemann Hypothesis is true” and the conclusion, Q, is “x~ > 0 for every real
number x”’. Since the conclusion is definitely true, we’re on either line (tt) or line
(ft) of the truth table. Either way, the proposition as a while is frue!

One of our original examples demonstrates an even stranger side of implications.

“If pigs can fly, then you can understand the Chebyshev bound.”

Don’t take this as an insult; we just need to figure out whether this proposition is
true or false. Curiously, the answer has nothing to do with whether or not you can
understand the Chebyshev bound. Pigs cannot fly, so we’re on either line (ft) or
line (ff) of the truth table. In both cases, the proposition is frue!

In contrast, here’s an example of a false implication:

“If the moon shines white, then the moon is made of white cheddar.”

Yes, the moon shines white. But, no, the moon is not made of white cheddar cheese.
So we’re on line (tf) of the truth table, and the proposition is false.
The truth table for implications can be summarized in words as follows:

An implication is true exactly when the if-part is false or the then-part is true.

This sentence is worth remembering; a large fraction of all mathematical statements
are of the if-then form!

1.1.3 IFF

Mathematicians commonly join propositions in one additional way that doesn’t
arise in ordinary speech. The proposition “P if and only if O asserts that P and
Q are logically equivalent; that is, either both are true or both are false.

P Q|PIFFQ
T T T
T F F
F T F
F F T

For example, the following if-and-only-if statement is true for every real number
X:
x2—4>0 iff |x|>2
For some values of x, both inequalities are true. For other values of x, neither
inequality is true . In every case, however, the proposition as a whole is true.
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1.1.4 Notation

Mathematicians have devised symbols to represent words like “AND” and “NOT”.
The most commonly-used symbols are summarized in the table below.

English Symbolic Notation
NOT(P) —P (alternatively, P)
P AND O PAQ

PorRQ PvQ

PIMPLIESQ P — O
if P then QO P— 0
P 1FF Q P<«—Q

For example, using this notation, “If P AND NOT(Q), then R” would be written:
(PAQ)— R

This symbolic language is helpful for writing complicated logical expressions com-
pactly. But words such as “OR” and “IMPLIES” generally serve just as well as the
symbols v and —, and their meaning is easy to remember. We will use the prior
notation for the most part in this text, but you can feel free to use whichever con-
vention is easiest for you.

1.1.5 Logically Equivalent Implications

Do these two sentences say the same thing?

If I am hungry, then I am grumpy.
If I am not grumpy, then I am not hungry.

We can settle the issue by recasting both sentences in terms of propositional logic.
Let P be the proposition “I am hungry”, and let Q be “I am grumpy”. The first
sentence says “P IMPLIES Q” and the second says “NOT(Q) IMPLIES NOT(P)”.
We can compare these two statements in a truth table:

P | Q| P IMPLIES Q | NOT(Q) IMPLIES NOT(P)

T|T T T
T|F F F
F|T T T
F|F T T

Sure enough, the columns of truth values under these two statements are the same,
which precisely means they are equivalent. In general, “NOT(Q) IMPLIES NOT(P)”
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is called the contrapositive of the implication “P IMPLIES (. And, as we’ve just
shown, the two are just different ways of saying the same thing.

In contrast, the converse of “P IMPLIES Q7 is the statement “Q IMPLIES P”.
In terms of our example, the converse is:

If I am grumpy, then I am hungry.

This sounds like a rather different contention, and a truth table confirms this suspi-

cion:
P | Q| P IMPLIES Q | Q IMPLIES P
T|T T T
T|F F T
F|T T F
F | F T T

Thus, an implication is logically equivalent to its contrapositive but is not equiva-
lent to its converse.

One final relationship: an implication and its converse together are equivalent to
an iff statement. For example,

If I am grumpy, then I am hungry, AND
if I am hungry, then I am grumpy.

are equivalent to the single statement:
I am grumpy IFF I am hungry.
Once again, we can verify this with a truth table:

P | Q| (P MPLIES Q) (Q IMPLIES P) | (P IMPLIES Q) AND (Q IMPLIES P) | P IFF Q

R
R
===
=S
= s
=

1.2 Propositional Logic in Computer Programs

Propositions and logical connectives arise all the time in computer programs. For
example, consider the following snippet, which could be either C, C++, or Java:

if (x>0 |] (x <=0 && y > 100) )

(further instructions)
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The symbol | | denotes “OR”, and the symbol && denotes “AND”. The further
instructions are carried out only if the proposition following the word if is true.
On closer inspection, this big expression is built from two simpler propositions.
Let A be the proposition that x > 0, and let B be the proposition that y > 100.
Then we can rewrite the condition “A4 OR (NOT(A) AND B)”. A truth table reveals
that this complicated expression is logically equivalent to “4 OR B”.

A B | AOR (NOT(A) AND B) | AOR B
T T T T
T F T T
F T T T
F F F F

This means that we can simplify the code snippet without changing the program’s
behavior:

if (x>0 || y > 100 )

(further instructions)

Rewriting a logical expression involving many variables in the simplest form
is both difficult and important. Simplifying expressions in software can increase
the speed of your program. Chip designers face a similar challenge—instead of
minimizing && and | | symbols in a program, their job is to minimize the number
of analogous physical devices on a chip. The payoff is potentially enormous: a chip
with fewer devices is smaller, consumes less power, has a lower defect rate, and is
cheaper to manufacture.

1.3 Predicates and Quantifiers

1.3.1 Propositions with Infinitely Many Cases

Most of the examples of propositions that we have considered thus far have been
straightforward in the sense that it has been relatively easy to determine if they
are true or false. At worse, there were only a few cases to check in a truth table.
Unfortunately, not all propositions are so easy to check. That is because some
propositions may involve a large or infinite number of possible cases. For example,
consider the following proposition involving prime numbers. (A prime is an integer
greater than 1 that is divisible only by itself and 1. For example, 2, 3, 5, 7, and 11
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are primes, but 4, 6, and 9 are not. A number greater than 1 that is not prime is said
to be composite.)

Proposition 1.3.1. For every nonnegative integer, n, the value of n> + n + 41 is
prime.

It is not immediately clear whether this proposition is true or false. In such
circumstances, it is tempting to try to determine its veracity by computing the value
of!

p(n) i=n?+n +41. (1.1)

for several values of n and then checking to see if they are prime. If any of the
computed values is not prime, then we will know that the proposition is false. If all
the computed values are indeed prime, then we might be tempted to conclude that
the proposition is true.

We begin the checking by evaluating p(0) = 41, which is prime. p(1) = 43 is
also prime. Sois p(2) = 47, p(3) = 53, ..., and p(20) = 461, all of which are
prime. Hmmm. .. It is starting to look like p(n) is a prime for every nonnegative
integer n. In fact, continued checking reveals that p(n) is prime for all n < 39.
The proposition certainly does seem to be true.

But p(40) = 40% 4+ 40 + 41 = 41 - 41, which is not prime. So it’s not true
that the expression is prime for all nonnegative integers, and thus the proposition is
false!

Although surprising, this example is not as contrived or rare as you might sus-
pect. As we will soon see, there are many examples of propositions that seem to be
true when you check a few cases (or even many), but which turn out to be false. The
key to remember is that you can’t check a claim about an infinite set by checking a
finite set of its elements, no matter how large the finite set.

Propositions that involve all numbers are so common that there is a special no-
tation for them. For example, Proposition 1.3.1 can also be written as

Vn € N. p(n) is prime. (1.2)

Here the symbol V is read “for all”. The symbol N stands for the set of nonnegative
integers, namely, 0, 1, 2, 3, ...(ask your instructor for the complete list). The
symbol “€” is read as “is a member of,” or “belongs to,” or simply as “is in”. The
period after the N is just a separator between phrases.

Here is another example of a proposition that, at first, seems to be true but which
turns out to be false.

“w_o

I'The symbol ::= means “equal by definition.” It’s always ok to simply write “=" instead of ::=,
but reminding the reader that an equality holds by definition can be helpful.
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Proposition 1.3.2. a* + b* + ¢* = d* has no solution when a, b, c, d are positive
integers.

Euler (pronounced “oiler”) conjectured this proposition to be true in 1769. It
was checked by humans and then by computers for many values of a, b, ¢, and d
over the next two centuries. Ultimately the proposition was proven false in 1987
by Noam Elkies. The solution he found was a = 95800,b = 217519,¢ =
414560,d = 422481. No wonder it took 218 years to show the proposition is
false!

In logical notation, Proposition 1.3.2 could be written,

YaeZTVbeZ Ve e ZYVd € Zt. a* + b* + ¢* #£ d*.

Here, Z* is a symbol for the positive integers. Strings of V’s are usually abbrevi-
ated for easier reading, as follows:

Va,b,c,d € Z'. a* + b* + ¢* # d*.
The following proposition is even nastier.
Proposition 1.3.3. 313(x3 + y3) = z3 has no solution when x, y,z € ZT.

This proposition is also false, but the smallest counterexample values for x, y,
and z have more than 1000 digits! Even the world’s largest computers would not be
able to get that far with brute force. Of course, you may be wondering why anyone
would care whether or not there is a solution to 313(x> 4+ y3) = z3 where x, y,
and z are positive integers. It turns out that finding solutions to such equations is
important in the field of elliptic curves, which turns out to be important to the study
of factoring large integers, which turns out (as we will see in Chapter 4) to be im-
portant in cracking commonly-used cryptosystems, which is why mathematicians
went to the effort to find the solution with thousands of digits.

Of course, not all propositions that have infinitely many cases to check turn out
to be false. The following proposition (known as the “Four-Color Theorem”) turns
out to be true.

Proposition 1.3.4. Every map can be colored with 4 colors so that adjacent® re-
gions have different colors.

The proof of this proposition is difficult and took over a century to perfect. Along
the way, many incorrect proofs were proposed, including one that stood for 10 years

2Two regions are adjacent only when they share a boundary segment of positive length. They are
not considered to be adjacent if their boundaries meet only at a few points.
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in the late 19th century before the mistake was found. An extremely laborious
proof was finally found in 1976 by mathematicians Appel and Haken, who used a
complex computer program to categorize the four-colorable maps; the program left
a few thousand maps uncategorized, and these were checked by hand by Haken and
his assistants—including his 15-year-old daughter. There was a lot of debate about
whether this was a legitimate proof: the proof was too big to be checked without a
computer, and no one could guarantee that the computer calculated correctly, nor
did anyone have the energy to recheck the four-colorings of the thousands of maps
that were done by hand. Within the past decade, a mostly intelligible proof of the
Four-Color Theorem was found, though a computer is still needed to check the
colorability of several hundred special maps.?

In some cases, we do not know whether or not a proposition is true. For exam-
ple, the following simple proposition (known as Goldbach’s Conjecture) has been
heavily studied since 1742 but we still do not know if it is true. Of course, it has
been checked by computer for many values of n, but as we have seen, that is not
sufficient to conclude that it is true.

Proposition 1.3.5 (Goldbach). Every even integer n greater than 2 is the sum of
two primes.

While the preceding propositions are important in mathematics, computer scien-
tists are often interested in propositions concerning the “correctness” of programs
and systems, to determine whether a program or system does what it’s supposed
to do. Programs are notoriously buggy, and there’s a growing community of re-
searchers and practitioners trying to find ways to prove program correctness. These
efforts have been successful enough in the case of CPU chips that they are now
routinely used by leading chip manufacturers to prove chip correctness and avoid
mistakes like the notorious Intel division bug in the 1990’s.

Developing mathematical methods to verify programs and systems remains an
active research area. We’ll consider some of these methods later in the text.

1.3.2 Predicates

A predicate is a proposition whose truth depends on the value of one or more vari-
ables. Most of the propositions above were defined in terms of predicates. For
example,

“n is a perfect square”

3See http://www.math.gatech.edu/ thomas/FC/fourcolor.html
The story of the Four-Color Proof is told in a well-reviewed popular (non-technical) book: “Four
Colors Suffice. How the Map Problem was Solved.” Robin Wilson. Princeton Univ. Press, 2003,
276pp. ISBN 0-691-11533-8.
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is a predicate whose truth depends on the value of n. The predicate is true forn = 4
since four is a perfect square, but false for n = 5 since five is not a perfect square.

Like other propositions, predicates are often named with a letter. Furthermore, a
function-like notation is used to denote a predicate supplied with specific variable
values. For example, we might name our earlier predicate P:

P(n) ::=“n is a perfect square”

Now P (4) is true, and P(5) is false.

This notation for predicates is confusingly similar to ordinary function notation.
If P is a predicate, then P(n) is either true or false, depending on the value of 7.
On the other hand, if p is an ordinary function, like n% +n, then p(n) is a numerical
quantity. Don’t confuse these two!

1.3.3 Quantifiers

There are a couple of assertions commonly made about a predicate: that it is some-
times true and that it is always true. For example, the predicate

‘Lx Z 0’7
is always true when x is a real number. On the other hand, the predicate
4‘5x2 _ 7 — 0’7

is only sometimes true; specifically, when x = +/7/5.

There are several ways to express the notions of “always true” and “sometimes
true” in English. The table below gives some general formats on the left and specific
examples using those formats on the right. You can expect to see such phrases
hundreds of times in mathematical writing!

Always True
For all n, P(n) is true. Forall x € R, x2 > 0.
P(n) is true for every n. x2 > 0 for every x € R.
Sometimes True

There exists an n such that P(n) is true. There exists an x € R such that 5x% — 7 = 0.
P (n) is true for some n. 5x2 —7 = 0 for some x € R.
P (n) is true for at least one n. 5x2 —7 = 0 for at least one x € R.

All these sentences quantify how often the predicate is true. Specifically, an
assertion that a predicate is always true, is called a universally quantified statement.
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An assertion that a predicate is sometimes true, is called an existentially quantified
statement.
Sometimes English sentences are unclear about quantification:

“If you can solve any problem we come up with, then you get an A for the course.”

The phrase “you can solve any problem we can come up with” could reasonably be
interpreted as either a universal or existential statement. It might mean:

“You can solve every problem we come up with,”
or maybe
“You can solve at least one problem we come up with.”

In the preceding example, the quantified phrase appears inside a larger if-then
statement. This is quite normal; quantified statements are themselves propositions
and can be combined with AND, OR, IMPLIES, etc., just like any other proposition.

1.3.4 More Notation

There are symbols to represent universal and existential quantification, just as there
are symbols for “AND” (A), “IMPLIES” (—), and so forth. In particular, to say
that a predicate, P(x), is true for all values of x in some set, D, we write:

Vx € D. P(x) (1.3)

The universal quantifier symbol V is read “for all,” so this whole expression (1.3)
is read “For all x in D, P(x) is true.” Remember that upside-down “A” stands for
“All”

To say that a predicate P (x) is true for at least one value of x in D, we write:

dx € D. P(x) (1.4)

The existential quantifier symbol 3, is read “there exists.” So expression (1.4) is
read, “There exists an x in D such that P(x) is true.” Remember that backward
“E” stands for “Exists.”

The symbols V and 3 are always followed by a variable—typically with an in-
dication of the set the variable ranges over—and then a predicate, as in the two
examples above.

As an example, let Probs be the set of problems we come up with, Solves(x) be
the predicate “You can solve problem x”, and G be the proposition, “You get an A
for the course.” Then the two different interpretations of
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“If you can solve any problem we come up with, then you get an A for
the course.”

can be written as follows:
(Vx € Probs. Solves(x)) IMPLIES G,

or maybe
(3x € Probs. Solves(x)) IMPLIES G.

1.3.5 Mixing Quantifiers

Many mathematical statements involve several quantifiers. For example, Gold-
bach’s Conjecture states:

“Every even integer greater than 2 is the sum of two primes.”
Let’s write this more verbosely to make the use of quantification clearer:

For every even integer n greater than 2, there exist primes p and g such
thatn = p +gq.

Let Evens be the set of even integers greater than 2, and let Primes be the set of
primes. Then we can write Goldbach’s Conjecture in logic notation as follows:

Vn € Evens, dp € Primes d¢ € Primes. n = p + q.

fOf every even there exist primes
integern > 2 p and ¢ such that

The proposition can also be written more simply as

Vn € Evens.dp,q € Primes. p + g = n.

1.3.6 Order of Quantifiers

Swapping the order of different kinds of quantifiers (existential or universal) usually
changes the meaning of a proposition. For example, let’s return to one of our initial,
confusing statements:

“Every American has a dream.”

This sentence is ambiguous because the order of quantifiers is unclear. Let A be
the set of Americans, let D be the set of dreams, and define the predicate H(a, d)
to be “American a has dream d.” Now the sentence could mean that there is a
single dream that every American shares:

dd e D.VNa € A. H(a,d)
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For example, it might be that every American shares the dream of owning their own
home.
Or it could mean that every American has a personal dream:

Yae€e A.3d € D. H(a,d)

For example, some Americans may dream of a peaceful retirement, while others
dream of continuing practicing their profession as long as they live, and still others
may dream of being so rich they needn’t think at all about work.

Swapping quantifiers in Goldbach’s Conjecture creates a patently false state-
ment; namely that every even number > 2 is the sum of the same two primes:

dp,q € Primes. Vn € Evens. n = p + gq.
————
there exist primes for every even
p and g such that integern > 2

1.3.7 Variables Over One Domain

When all the variables in a formula are understood to take values from the same
nonempty set, D, it’s conventional to omit mention of D. For example, instead of
Vx € D dy € D. Q(x,y) we’d write Vx3y. Q(x, y). The unnamed nonempty
set that x and y range over is called the domain of discourse, or just plain domain,
of the formula.

It’s easy to arrange for all the variables to range over one domain. For exam-
ple, Goldbach’s Conjecture could be expressed with all variables ranging over the
domain N as

Vn.(n € Evens) IMPLIES (dp3Jq. p € Primes AND g € Primes ANDn = p +q).

1.3.8 Negating Quantifiers

There is a simple relationship between the two kinds of quantifiers. The following
two sentences mean the same thing:

It is not the case that everyone likes to snowboard.

There exists someone who does not like to snowboard.

In terms of logic notation, this follows from a general property of predicate formu-
las:
NOT (Vx. P(x)) isequivalentto 3Ix. NOT(P(x)).

Similarly, these sentences mean the same thing:




“mcs-ftlI” — 2010/9/8 — 0:40 — page 19 — #25

1.4. Validity 19

There does not exist anyone who likes skiing over magma.

Everyone dislikes skiing over magma.
We can express the equivalence in logic notation this way:
NOT (3x. P(x)) IFF Vx. NOT(P(x)). (1.5)

The general principle is that moving a “not” across a quantifier changes the kind
of quantifier.

1.4 Validity

A propositional formula is called valid when it evaluates to T no matter what truth
values are assigned to the individual propositional variables. For example, the
propositional version of the Distributive Law is that P AND (Q OR R) is equiv-
alent to (P AND Q) OR (P AND R). This is the same as saying that

[P AND (Q OR R)| IFF [(P AND Q) OR (P AND R)] (1.6)

is valid. This can be verified by checking the truth table for P AND (Q OR R) and
(P AND Q) OR (P AND R):

P AND (Q OR R) | (P AND Q) OR (P AND R)

o e = = | S
e e =IO
e e = | D
e e = = =
o = = -

The same idea extends to predicate formulas, but to be valid, a formula now must
evaluate to true no matter what values its variables may take over any unspecified
domain, and no matter what interpretation a predicate variable may be given. For
example, we already observed that the rule for negating a quantifier is captured by
the valid assertion (1.5).

Another useful example of a valid assertion is

AxVy. P(x,y) IMPLIES Vy3x. P(x,y). 1.7

Here’s an explanation why this is valid:
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Let D be the domain for the variables and Py be some binary predi-
cate* on D. We need to show that if

dx € D Vy € D. Py(x,y) (1.8)
holds under this interpretation, then so does
Yy € D 3x € D. Py(x, y). (1.9)

So suppose (1.8) is true. Then by definition of 3, this means that some
element dy € D has the property that

Vy € D. Py(do. y).
By definition of V, this means that
Po(do. d)

is true for all d € D. So given any d € D, there is an element in D,
namely, dop, such that Py(dy, d) is true. But that’s exactly what (1.9)
means, so we’ve proved that (1.9) holds under this interpretation, as
required.

We hope this is helpful as an explanation, although purists would not really want
to call it a “proof.” The problem is that with something as basic as (1.7), it’s hard to
see what more elementary axioms are ok to use in proving it. What the explanation
above did was translate the logical formula (1.7) into English and then appeal to
the meaning, in English, of “for all” and “there exists” as justification.

In contrast to (1.7), the formula

Vy3dx. P(x,y) IMPLIES dxVy. P(x, y). (1.10)

is not valid. We can prove this by describing an interpretation where the hypoth-
esis, Yydx. P(x,y), is true but the conclusion, IxVy. P(x, y), is not true. For
example, let the domain be the integers and P(x, y) mean x > y. Then the hypoth-
esis would be true because, given a value, n, for y we could, for example, choose
the value of x to be n 4+ 1. But under this interpretation the conclusion asserts
that there is an integer that is bigger than all integers, which is certainly false. An
interpretation like this which falsifies an assertion is called a counter model to the
assertion.

4That is, a predicate that depends on two variables.
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1.5 Satisfiability

A proposition is satisfiable if some setting of the variables makes the proposition
true. For example, P AND Q is satisfiable because the expression is true if P is true
or Q is false. On the other hand, P AND P is not satisfiable because the expression
as a whole is false for both settings of P. But determining whether or not a more
complicated proposition is satisfiable is not so easy. How about this one?

(P OR Q OR R) AND (P OR Q) AND (P OR R) AND (R OR Q)

The general problem of deciding whether a proposition is satisfiable is called
SAT. One approach to SAT is to construct a truth table and check whether or not
a T ever appears. But this approach is not very efficient; a proposition with n
variables has a truth table with 2" lines, so the effort required to decide about a
proposition grows exponentially with the number of variables. For a proposition
with just 30 variables, that’s already over a billion lines to check!

Is there a more efficient solution to SAT? In particular, is there some, presum-
ably very ingenious, procedure that determines in a number of steps that grows
polynomially—Ilike n? or n'*—instead of exponentially, whether any given propo-
sition is satisfiable or not? No one knows. And an awful lot hangs on the answer.
An efficient solution to SAT would immediately imply efficient solutions to many,
many other important problems involving packing, scheduling, routing, and cir-
cuit verification, among other things. This would be wonderful, but there would
also be worldwide chaos. Decrypting coded messages would also become an easy
task (for most codes). Online financial transactions would be insecure and secret
communications could be read by everyone.

Recently there has been exciting progress on sat-solvers for practical applica-
tions like digital circuit verification. These programs find satisfying assignments
with amazing efficiency even for formulas with millions of variables. Unfortu-
nately, it’s hard to predict which kind of formulas are amenable to sat-solver meth-
ods, and for formulas that are NOT satisfiable, sat-solvers generally take exponen-
tial time to verify that.

So no one has a good idea how to solve SAT in polynomial time, or how to
prove that it can’t be done—researchers are completely stuck. The problem of
determining whether or not SAT has a polynomial time solution is known as the “P
vs. NP” problem. It is the outstanding unanswered question in theoretical computer
science. It is also one of the seven Millenium Problems: the Clay Institute will
award you $1,000,000 if you solve the P vs. NP problem.



http://www.claymath.org/millennium/

“mcs-ftI” — 2010/9/8 — 0:40 — page 22 — #28




“mcs-ftI” — 2010/9/8 — 0:40 — page 23 — #29

2 Patterns of Proof

2.1 The Axiomatic Method

The standard procedure for establishing truth in mathematics was invented by Eu-
clid, a mathematician working in Alexandria, Egypt around 300 BC. His idea was
to begin with five assumptions about geometry, which seemed undeniable based on
direct experience. For example, one of the assumptions was “There is a straight
line segment between every pair of points.” Propositions like these that are simply
accepted as true are called axioms.

Starting from these axioms, Euclid established the truth of many additional propo-
sitions by providing “proofs”. A proof is a sequence of logical deductions from
axioms and previously-proved statements that concludes with the proposition in
question. You probably wrote many proofs in high school geometry class, and
you’ll see a lot more in this course.

There are several common terms for a proposition that has been proved. The
different terms hint at the role of the proposition within a larger body of work.

e Important propositions are called theorems.
e A lemma is a preliminary proposition useful for proving later propositions.

e A corollary is a proposition that follows in just a few logical steps from a
lemma or a theorem.

The definitions are not precise. In fact, sometimes a good lemma turns out to be far
more important than the theorem it was originally used to prove.

Euclid’s axiom-and-proof approach, now called the axiomatic method, is the
foundation for mathematics today. In fact, just a handful of axioms, collectively
called Zermelo-Frankel Set Theory with Choice (ZFC), together with a few logical
deduction rules, appear to be sufficient to derive essentially all of mathematics.

2.1.1 Our Axioms

The ZFC axioms are important in studying and justifying the foundations of math-
ematics, but for practical purposes, they are much too primitive. Proving theorems
in ZFC is a little like writing programs in byte code instead of a full-fledged pro-
gramming language—Dby one reckoning, a formal proof in ZFC that 2 + 2 = 4
requires more than 20,000 steps! So instead of starting with ZFC, we’re going to
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take a huge set of axioms as our foundation: we’ll accept all familiar facts from
high school math!

This will give us a quick launch, but you may find this imprecise specification of
the axioms troubling at times. For example, in the midst of a proof, you may find
yourself wondering, “Must I prove this little fact or can I take it as an axiom?” Feel
free to ask for guidance, but really there is no absolute answer. Just be up front
about what you’re assuming, and don’t try to evade homework and exam problems
by declaring everything an axiom!

2.1.2 Logical Deductions

Logical deductions or inference rules are used to prove new propositions using
previously proved ones.

A fundamental inference rule is modus ponens. This rule says that a proof of P
together with a proof that P IMPLIES Q is a proof of Q.

Inference rules are sometimes written in a funny notation. For example, modus
ponens is written:

Rule 2.1.1.
P, P IMPLIES Q

0

When the statements above the line, called the antecedents, are proved, then we
can consider the statement below the line, called the conclusion or consequent, to
also be proved.

A key requirement of an inference rule is that it must be sound: any assignment
of truth values that makes all the antecedents true must also make the consequent
true. So if we start off with true axioms and apply sound inference rules, everything
we prove will also be true.

You can see why modus ponens is a sound inference rule by checking the truth
table of P IMPLIES Q. There is only one case where P and P IMPLIES Q are
both true, and in that case Q is also true.

P Q|P—Q
F F T
F T T
T F F
T T T

There are many other natural, sound inference rules, for example:
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Rule 2.1.2.
P IMPLIES Q, Q IMPLIES R
P IMPLIES R
Rule 2.1.3.
P IMPLIES Q, NOT(Q)
NOT(P)
Rule 2.1.4.
NOT(P) IMPLIES NOT(Q)
Q IMPLIES P
On the other hand,
Non-Rule.

NOT(P) IMPLIES NOT(Q)
P IMPLIES Q

is not sound: if P is assigned T and Q is assigned F, then the antecedent is true
and the consequent is not.

Note that a propositional inference rule is sound precisely when the conjunction
(AND) of all its antecedents implies its consequent.

As with axioms, we will not be too formal about the set of legal inference rules.
Each step in a proof should be clear and “logical”; in particular, you should state
what previously proved facts are used to derive each new conclusion.

2.1.3 Proof Templates

In principle, a proof can be any sequence of logical deductions from axioms and
previously proved statements that concludes with the proposition in question. This
freedom in constructing a proof can seem overwhelming at first. How do you even
start a proof?

Here’s the good news: many proofs follow one of a handful of standard tem-
plates. Each proof has it own details, of course, but these templates at least provide
you with an outline to fill in. In the remainder of this chapter, we’ll go through
several of these standard patterns, pointing out the basic idea and common pitfalls
and giving some examples. Many of these templates fit together; one may give you
a top-level outline while others help you at the next level of detail. And we’ll show
you other, more sophisticated proof techniques in Chapter 3.

The recipes that follow are very specific at times, telling you exactly which words
to write down on your piece of paper. You're certainly free to say things your own
way instead; we’re just giving you something you could say so that you’re never at
a complete loss.
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2.2 Proof by Cases

Breaking a complicated proof into cases and proving each case separately is a use-
ful and common proof strategy. In fact, we have already implicitly used this strategy
when we used truth tables to show that certain propositions were true or valid. For
example, in section 1.1.5, we showed that an implication P IMPLIES Q is equiv-
alent to its contrapositive NOT(Q) IMPLIES NOT(P) by considering all 4 possible
assignments of T or F to P and Q. In each of the four cases, we showed that
P 1MPLIES Q is true if and only if NOT(Q) IMPLIES NOT(P) is true. For exam-
ple,if P = T and Q = F, then both P IMPLIES Q and NOT(Q) IMPLIES NOT(P)
are false, thereby establishing that (P IMPLIES Q)IFF(NOT(Q) IMPLIES NOT(P))
is true for this case. If a proposition is true in every possible case, then it is true.

Proof by cases works in much more general environments than propositions in-
volving Boolean variables. In what follows, we will use this approach to prove a
simple fact about acquaintances. As background, we will assume that for any pair
of people, either they have met or not. If every pair of people in a group has met,
we’ll call the group a club. If every pair of people in a group has not met, we’ll call
it a group of strangers.

Theorem. Every collection of 6 people includes a club of 3 people or a group of 3
strangers.

Proof. The proof is by case analysis'. Let x denote one of the six people. There
are two cases:

1. Among the other 5 people besides x, at least 3 have met x.

2. Among the other 5 people, at least 3 have not met x.

Now we have to be sure that at least one of these two cases must hold,? but that’s
easy: we’ve split the 5 people into two groups, those who have shaken hands with
x and those who have not, so one of the groups must have at least half the people.

Case 1: Suppose that at least 3 people have met x.

This case splits into two subcases:

Describing your approach at the outset helps orient the reader. Try to remember to always do
this.

Zpart of a case analysis argument is showing that you’ve covered all the cases. Often this is
obvious, because the two cases are of the form “P” and “not P”. However, the situation above is not
stated quite so simply.
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Case 1.1: Among the people who have met x, none have met each
other. Then the people who have met x are a group of at least 3
strangers. So the Theorem holds in this subcase.

Case 1.2: Among the people who have met x, some pair have met
each other. Then that pair, together with x, form a club of 3 people.
So the Theorem holds in this subcase.

This implies that the Theorem holds in Case 1.
Case 2: Suppose that at least 3 people have not met x.
This case also splits into two subcases:

Case 2.1: Among the people who have not met x, every pair has met
each other. Then the people who have not met x are a club of at least
3 people. So the Theorem holds in this subcase.

Case 2.2: Among the people who have not met x, some pair have not
met each other. Then that pair, together with x, form a group of at least
3 strangers. So the Theorem holds in this subcase.

This implies that the Theorem also holds in Case 2, and therefore holds in all cases.
|

2.3 Proving an Implication

Propositions of the form “If P, then Q are called implications. This implication
is often rephrased as “P IMPLIES Q” or “P — Q.
Here are some examples of implications:

e (Quadratic Formula) If ax? + bx 4+ ¢ = 0 and a # 0, then

B —b + V/b% — 4ac

2a

x
e (Goldbach’s Conjecture) If n is an even integer greater than 2, then n is a
sum of two primes.
o If0 < x <2, then —x3 +4x + 1> 0.

There are a couple of standard methods for proving an implication.
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2.3.1 Method #1: Assume P is true

When proving P IMPLIES Q, there are two cases to consider: P is true and P is
false. The case when P is false is easy since, by definition, F IMPLIES Q is true
no matter what Q is. This case is so easy that we usually just forget about it and
start right off by assuming that P is true when proving an implication, since this is
the only case that is interesting. Hence, in order to prove that P IMPLIES Q:

1. Write, “Assume P.”

2. Show that Q logically follows.

For example, we will use this method to prove
Theorem 2.3.1. If0 < x <2, then —x> + 4x + 1 > 0.

Before we write a proof of this theorem, we have to do some scratchwork to
figure out why it is true.

The inequality certainly holds for x = 0; then the left side is equal to 1 and
1 > 0. As x grows, the 4x term (which is positive) initially seems to have greater
magnitude than —x3 (which is negative). For example, when x = 1, we have
4x = 4, but —x3 = —1. In fact, it looks like —x3 doesn’t begin to dominate 4x
until x > 2. So it seems the —x> + 4x part should be nonnegative for all x between
0 and 2, which would imply that —x3 + 4x + 1 is positive.

So far, so good. But we still have to replace all those “seems like” phrases with
solid, logical arguments. We can get a better handle on the critical —x3 + 4x part
by factoring it, which is not too hard:

—x}+4x =x2-x)2+x)

Aha! For x between 0 and 2, all of the terms on the right side are nonnegative. And
a product of nonnegative terms is also nonnegative. Let’s organize this blizzard of
observations into a clean proof.

Proof. Assume 0 < x < 2. Then x, 2—x, and 2+ x are all nonnegative. Therefore,
the product of these terms is also nonnegative. Adding 1 to this product gives a
positive number, so:

x2—-x)24+x)+1>0

Multiplying out on the left side proves that
—x34+4x+1>0

as claimed. [ |
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There are a couple points here that apply to all proofs:

e You'll often need to do some scratchwork while you’re trying to figure out
the logical steps of a proof. Your scratchwork can be as disorganized as you
like—full of dead-ends, strange diagrams, obscene words, whatever. But
keep your scratchwork separate from your final proof, which should be clear
and concise.

e Proofs typically begin with the word “Proof” and end with some sort of
doohickey like (0 or B or “q.e.d”. The only purpose for these conventions is
to clarify where proofs begin and end.

Potential Pitfall

For the purpose of proving an implication P IMPLIES Q, it’s OK, and typical, to
begin by assuming P. But when the proof is over, it’s no longer OK to assume that
P holds! For example, Theorem 2.3.1 has the form “if P, then Q” with P being
“0 < x <2”and Q being “—x3 + 4x + 1 > 0,” and its proof began by assuming
that 0 < x < 2. But of course this assumption does not always hold. Indeed, if
you were going to prove another result using the variable x, it could be disastrous
to have a step where you assume that 0 < x < 2 just because you assumed it as
part of the proof of Theorem 2.3.1.

2.3.2 Method #2: Prove the Contrapositive

We have already seen that an implication “P IMPLIES Q7 is logically equivalent
to its contrapositive
NOT(Q) IMPLIES NOT(P).

Proving one is as good as proving the other, and proving the contrapositive is some-
times easier than proving the original statement. Hence, you can proceed as fol-
lows:

1. Write, “We prove the contrapositive:” and then state the contrapositive.
2. Proceed as in Method #1.
For example, we can use this approach to prove
Theorem 2.3.2. If r is irrational, then \/r is also irrational.

Recall that rational numbers are equal to a ratio of integers and irrational num-
bers are not. So we must show that if r is not a ratio of integers, then /7 is also
not a ratio of integers. That’s pretty convoluted! We can eliminate both not’s and
make the proof straightforward by considering the contrapositive instead.
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Proof. We prove the contrapositive: if /7 is rational, then r is rational.
Assume that /7 is rational. Then there exist integers a and b such that:

Jr=2
b
Squaring both sides gives:
2
a
T,
Since a? and h? are integers, r is also rational. |

2.4 Proving an “If and Only If”’

Many mathematical theorems assert that two statements are logically equivalent;
that is, one holds if and only if the other does. Here is an example that has been
known for several thousand years:

Two triangles have the same side lengths if and only if two side lengths
and the angle between those sides are the same in each triangle.

The phrase “if and only if”” comes up so often that it is often abbreviated “iff”.

2.4.1 Method #1: Prove Each Statement Implies the Other

The statement “P IFF Q" is equivalent to the two statements “P IMPLIES Q” and
“Q IMPLIES P”. So you can prove an “iff”” by proving two implications:

1. Write, “We prove P implies Q and vice-versa.”

2. Write, “First, we show P implies Q.” Do this by one of the methods in
Section 2.3.

3. Write, “Now, we show Q implies P.” Again, do this by one of the methods
in Section 2.3.

2.4.2 Method #2: Construct a Chain of IFFs

In order to prove that P is true iff Q is true:
1. Write, “We construct a chain of if-and-only-if implications.”

2. Prove P is equivalent to a second statement which is equivalent to a third
statement and so forth until you reach Q.
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This method sometimes requires more ingenuity than the first, but the result can be
a short, elegant proof, as we see in the following example.

Theorem 2.4.1. The standard deviation of a sequence of values X1, . .., X, is zero
iff all the values are equal to the mean.

Definition. The standard deviation of a sequence of values x1, X2, ..., X, is de-
fined to be:

\/(xl — 1%+ (2 = )2+ + (i — )2 o

n

where p is the mean of the values:

L X1t X2+t Xp
W=
n
As an example, Theorem 2.4.1 says that the standard deviation of test scores is

zero if and only if everyone scored exactly the class average. (We will talk a lot
more about means and standard deviations in Part IV of the book.)

Proof. We construct a chain of “iff” implications, starting with the statement that
the standard deviation (2.1) is zero:

0. 2.2)
n

\/(xl — 12+ (2 = 2+ (o — )
Since zero is the only number whose square root is zero, equation (2.2) holds iff
(1 = 1> + (2 = p)® + -+ (= w)* = 0. 2.3)

Squares of real numbers are always nonnegative, and so every term on the left hand
side of equation (2.3) is nonnegative. This means that (2.3) holds iff

Every term on the left hand side of (2.3) is zero. 2.4)
But a term (x; — )2 is zero iff x; = 1, so (2.4) is true iff

Every x; equals the mean.
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2.5 Proof by Contradiction

In a proof by contradiction or indirect proof, you show that if a proposition were
false, then some false fact would be true. Since a false fact can’t be true, the propo-
sition had better not be false. That is, the proposition really must be true.

Proof by contradiction is always a viable approach. However, as the name sug-
gests, indirect proofs can be a little convoluted. So direct proofs are generally
preferable as a matter of clarity.

Method: In order to prove a proposition P by contradiction:

1. Write, “We use proof by contradiction.”
2. Write, “Suppose P is false.”
3. Deduce something known to be false (a logical contradiction).

4. Write, “This is a contradiction. Therefore, P must be true.”

As an example, we will use proof by contradiction to prove that +/2 is irrational.
Recall that a number is rational if it is equal to a ratio of integers. For example,
35=7/2and 0.1111-.- = 1/9 are rational numbers.

Theorem 2.5.1. /2 is irrational.

Proof. We use proof by contradiction. Suppose the claim is false; that is, v/2 is
rational. Then we can write +/2 as a fraction n/d where n and d are positive
integers. Furthermore, let’s take n and d so that n/d is in lowest terms (that is, so
that there is no number greater than 1 that divides both n# and d).

Squaring both sides gives 2 = n?/d? and so 2d? = n?. This implies that n is a
multiple of 2. Therefore n? must be a multiple of 4. But since 2d? = n?, we know
2d? is a multiple of 4 and so d? is a multiple of 2. This implies that d is a multiple

of 2.

So the numerator and denominator have 2 as a common factor, which contradicts
the fact that n/d is in lowest terms. So +/2 must be irrational. [ |
Potential Pitfall

A proof of a proposition P by contradiction is really the same as proving the impli-
cation T IMPLIES P by contrapositive. Indeed, the contrapositive of 7 IMPLIES P
is NOT(P) IMPLIES F. As we saw in Section 2.3.2, such a proof would be begin
by assuming NOT(P) in an effort to derive a falsehood, just as you do in a proof by
contradiction.
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No matter how you think about it, it is important to remember that when you
start by assuming NOT(P), you will derive conclusions along the way that are not
necessarily true. (Indeed, the whole point of the method is to derive a falsehood.)
This means that you cannot rely on intermediate results after a proof by contradic-
tion is completed (for example, that n is even after the proof of Theorem 2.5.1).
There was not much risk of that happening in the proof of Theorem 2.5.1, but when
you are doing more complicated proofs that build up from several lemmas, some of
which utilize a proof by contradiction, it will be important to keep track of which
propositions only follow from a (false) assumption in a proof by contradiction.

2.6 Proofs about Sets

Sets are simple, flexible, and everywhere. You will find some set mentioned in
nearly every section of this text. In fact, we have already talked about a lot of sets:
the set of integers, the set of real numbers, and the set of positive even numbers, to
name a few.

In this section, we’ll see how to prove basic facts about sets. We’ll start with
some definitions just to make sure that you know the terminology and that you are
comfortable working with sets.

2.6.1 Definitions

Informally, a set is a bunch of objects, which are called the elements of the set.
The elements of a set can be just about anything: numbers, points in space, or even
other sets. The conventional way to write down a set is to list the elements inside
curly-braces. For example, here are some sets:

A = {Alex, Tippy, Shells, Shadow} dead pets
B = {red,blue, yellow} primary colors
C = {a,b},{a,c},{b,c}} a set of sets

This works fine for small finite sets. Other sets might be defined by indicating how
to generate a list of them:

D ={1,2,4,8,16,...} the powers of 2

The order of elements is not significant, so {x, y} and {y, x} are the same set
written two different ways. Also, any object is, or is not, an element of a given
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set—there is no notion of an element appearing more than once in a set.> So writ-
ing {x, x} is just indicating the same thing twice, namely, that x is in the set. In
particular, {x, x} = {x}.

The expression e € S asserts that e is an element of set S. For example, 32 € D
and blue € B, but Tailspin & A—yet.

Some Popular Sets

Mathematicians have devised special symbols to represent some common sets.

symbol set elements

@ the empty set none

N nonnegative integers {0,1,2,3,...}

Z integers {..,—-3,-2,-1,0,1,2,3,...}
Q rational numbers % —%, 16, etc.

R real numbers T, e, —9, «/Z etc.

C complex numbers i 179, V2 = 2i, etc.

A superscript “*” restricts a set to its positive elements; for example, Rt denotes
the set of positive real numbers. Similarly, R™ denotes the set of negative reals.

Comparing and Combining Sets

The expression S C T indicates that set S is a subser of set T, which means that
every element of § is also an element of 7" (it could be that S = T'). For example,
N C Z and Q C R (every rational number is a real number), but C € Z (not every
complex number is an integer).

As a memory trick, notice that the C points to the smaller set, just like a < sign
points to the smaller number. Actually, this connection goes a little further: there
is a symbol C analogous to <. Thus, S C 7 means that S is a subset of T, but the
two are not equal. So A C A, but A ¢ A, for every set A.

There are several ways to combine sets. Let’s define a couple of sets for use in
examples:

X ==1{1,2,3}
Y :=1{2,3,4}

o The union of sets X and Y (denoted X U Y') contains all elements appearing
in X or Y or both. Thus, X UY = {I1,2,3,4}.

3It’s not hard to develop a notion of multisets in which elements can occur more than once, but
multisets are not ordinary sets.
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e The intersection of X and Y (denoted X N Y) consists of all elements that
appearinboth X and Y. So X N Y = {2,3}.

e The set difference of X and Y (denoted X — Y') consists of all elements that
are in X, but notin Y. Therefore, X —Y = {l1}and Y — X = {4}.

The Complement of a Set

Sometimes we are focused on a particular domain, D. Then for any subset, A, of
D, we define A to be the set of all elements of D nor in A. Thatis, A ::= D — A.
The set A is called the complement of A.

For example, when the domain we’re working with is the real numbers, the com-
plement of the positive real numbers is the set of negative real numbers together
with zero. That is, L

R+t =R~ U {0}.

It can be helpful to rephrase properties of sets using complements. For example,
two sets, A and B, are said to be disjoint iff they have no elements in common, that
is, AN B = 0. This is the same as saying that A is a subset of the complement of
B, thatis, A C B.

Cardinality

The cardinality of a set A is the number of elements in A and is denoted by |A4]|.
For example,

0] = 0,
|{1,2,4}| = 3, and
|N] is infinite.

The Power Set

The set of all the subsets of a set, A4, is called the power set, P(A), of A. So
B € P(A) iff B € A. For example, the elements of P({1,2}) are @, {1}, {2} and
{1,2}.

More generally, if A has n elements, then there are 2" sets in P(A4). In other
words, if A is finite, then |P(A4)| = 2!4|. For this reason, some authors use the
notation 24 instead of P(A) to denote the power set of A.

Sequences

Sets provide one way to group a collection of objects. Another way is in a se-
quence, which is a list of objects called terms or components. Short sequences
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are commonly described by listing the elements between parentheses; for example,
(a, b, c) is a sequence with three terms.

While both sets and sequences perform a gathering role, there are several differ-
ences.

e The elements of a set are required to be distinct, but terms in a sequence can
be the same. Thus, (a, b, a) is a valid sequence of length three, but {a, b, a}
is a set with two elements—not three.

e The terms in a sequence have a specified order, but the elements of a set do
not. For example, (a, b, ¢) and (a, c, b) are different sequences, but {a, b, ¢}
and {a, c, b} are the same set.

e Texts differ on notation for the empty sequence; we use A for the empty
sequence and @ for the empty set.

Cross Products

The product operation is one link between sets and sequences. A product of sets,
S1 %82 x-+-x 8y, is anew set consisting of all sequences where the first component
is drawn from Sy, the second from S5, and so forth. For example, N x {a, b} is
the set of all pairs whose first element is a nonnegative integer and whose second
element is an a or a b:

N x {a,b} = {(0,a),(0,b), (1,a), (1,b), 2,a), 2,b),...}

A product of n copies of a set S is denoted S”. For example, {0, 1}3 is the set of
all 3-bit sequences:

{0,1}* = {(0,0,0), (0,0, 1), (0,1,0),(0,1,1),(1,0,0), (1,0, 1), (1,1,0), (1,1, 1)}

2.6.2 Set Builder Notation

An important use of predicates is in set builder notation. We’ll often want to talk
about sets that cannot be described very well by listing the elements explicitly or
by taking unions, intersections, etc., of easily-described sets. Set builder notation
often comes to the rescue. The idea is to define a set using a predicate; in particular,
the set consists of all values that make the predicate true. Here are some examples
of set builder notation:

Au={n e N|nisaprime and n = 4k + 1 for some integer k }
Bi={xeR|x3 -3x+1>0}
Cu={a+bieCla®>+2b><1}

The set A consists of all nonnegative integers n for which the predicate
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“n is a prime and n = 4k + 1 for some integer k”
is true. Thus, the smallest elements of A4 are:
5,13,17,29,37,41,53,57,61,73,....

Trying to indicate the set A by listing these first few elements wouldn’t work very
well; even after ten terms, the pattern is not obvious! Similarly, the set B consists
of all real numbers x for which the predicate

X3=3x+1>0

is true. In this case, an explicit description of the set B in terms of intervals would
require solving a cubic equation. Finally, set C consists of all complex numbers
a + bi such that:

a* +2b* <1

This is an oval-shaped region around the origin in the complex plane.

2.6.3 Proving Set Equalities

Two sets are defined to be equal if they contain the same elements. Thatis, X =Y
means that z € X if and only if z € Y, for all elements, z. (This is actually the first
of the ZFC axioms.) So set equalities can often be formulated and proved as “iff”
theorems. For example:

Theorem 2.6.1 (Distributive Law for Sets). Let A, B, and C be sets. Then:
ANBUC)=(ANB)UANC) (2.5)
Proof. The equality (2.5) is equivalent to the assertion that
zeAN(BUC) iff ze(ANB)UANC) (2.6)

for all z. This assertion looks very similar to the Distributive Law for AND and
OR that we proved in Section 1.4 (equation 1.6). Namely, if P, Q, and R are
propositions, then

[P AND (Q OR R)] IFF [(P AND Q) OR (P AND R)] 2.7
Using this fact, we can now prove (2.6) by a chain of iff’s:

ze AN(BUC)

iff (zeA)aND(ze BUC) (def of N)
iff (zeA)AND(z€ BOrRz € () (def of U)
iff (zeAANDz€ B)OR(z€ AANDz € () (equation 2.7)
iff zeANB)OR(ze ANC) (def of N)

iff ze(ANB)U(ANC) (defofU) W
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Many other set equalities can be derived from other valid propositions and proved
in an analogous manner. In particular, propositions such as P, Q and R are re-
placed with sets such as A, B, and C, AND (A) is replaced with intersection (),
OR (V) is replaced with union (U), NOT is replaced with complement (for example,
P would become A), and IFF becomes set equality (=). Of course, you should
always check that any alleged set equality derived in this manner is indeed true.

2.6.4 Russell’s Paradox and the Logic of Sets

Reasoning naively about sets can sometimes be tricky. In fact, one of the earliest at-
tempts to come up with precise axioms for sets by a late nineteenth century logician
named Gotlob Frege was shot down by a three line argument known as Russell’s
Paradox:* This was an astonishing blow to efforts to provide an axiomatic founda-
tion for mathematics.

Russell’s Paradox

Let S be a variable ranging over all sets, and define
W.={S|S &S}
So by definition, for any set S,
SeWift S ¢ 8.
In particular, we can let S be W, and obtain the contradictory result that

WeWiffW ¢ W.

A way out of the paradox was clear to Russell and others at the time: it’s unjus-
tified to assume that W is a set. So the step in the proof where we let S be W has
no justification, because S ranges over sets, and W may not be a set. In fact, the
paradox implies that W had better not be a set!

But denying that W is a set means we must reject the very natural axiom that
every mathematically well-defined collection of elements is actually a set. So the
problem faced by Frege, Russell and their colleagues was how to specify which

4Bertrand Russell was a mathematician/logician at Cambridge University at the turn of the Twen-
tieth Century. He reported that when he felt too old to do mathematics, he began to study and write
about philosophy, and when he was no longer smart enough to do philosophy, he began writing about
politics. He was jailed as a conscientious objector during World War I. For his extensive philosophical
and political writing, he won a Nobel Prize for Literature.
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well-defined collections are sets. Russell and his fellow Cambridge University col-
league Whitehead immediately went to work on this problem. They spent a dozen
years developing a huge new axiom system in an even huger monograph called
Principia Mathematica.

Over time, more efficient axiom systems were developed and today, it is gen-
erally agreed that, using some simple logical deduction rules, essentially all of
mathematics can be derived from the Axioms of Zermelo-Frankel Set Theory with
Choice (ZFC). We are not going to be working with these axioms in this course,
but just in case you are interested, we have included them as a sidebar below.

The ZFC axioms avoid Russell’s Paradox because they imply that no set is ever
a member of itself. Unfortunately, this does not necessarily mean that there are not
other paradoxes lurking around out there, just waiting to be uncovered by future
mathematicians.

ZFC Axioms

Extensionality. Two sets are equal if they have the same members. In formal log-
ical notation, this would be stated as:

(Vz.(z € X IFFz € y)) IMPLIES x = Y.

Pairing. For any two sets x and y, there is a set, {x, y}, with x and y as its only
elements:
Vx,y.3u.Vz. [z € uIFF (z = X OR z = y)]

Union. The union, u, of a collection, z, of sets is also a set:

Vz.3uVx. (Ay.x € yAND y € ) IFF x € u.

Infinity. There is an infinite set. Specifically, there is a nonempty set, x, such that
for any set y € x, the set {y} is also a member of x.

Subset. Given any set, x, and any proposition P(y), there is a set containing pre-
cisely those elements y € x for which P(y) holds.

Power Set. All the subsets of a set form another set:

Vx.3dp.Yu.u C xIFFu € p.

Replacement. Suppose a formula, ¢, of set theory defines the graph of a function,
that is,
Vx,y,z.[¢(x,y) AND ¢(x, z)] IMPLIES y = z.
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Then the image of any set, s, under that function is also a set, 7. Namely,

Vst Vy. [3x.¢p(x, y) IFF y €1].

Foundation. There cannot be an infinite sequence
< E€EXp €00 €X] € Xp

of sets each of which is a member of the previous one. This is equivalent
to saying every nonempty set has a “member-minimal” element. Namely,
define

member-minimal(m, x) ::=[m € x ANDVYy € x.y ¢ m].
Then the Foundation axiom is

Vx.x # @ IMPLIES Jm.member-minimal(m, x).
Choice. Given a set, s, whose members are nonempty sets no two of which have

any element in common, then there is a set, ¢, consisting of exactly one
element from each set in s.

dyVzVw ((z € w AND w € x) IMPLIES

Jv3u (3t ((u € WAND weEt) AND(U €t AND! € y))

IFFu = v))

2.7 Good Proofs in Practice

One purpose of a proof is to establish the truth of an assertion with absolute cer-
tainty. Mechanically checkable proofs of enormous length or complexity can ac-
complish this. But humanly intelligible proofs are the only ones that help someone
understand the subject. Mathematicians generally agree that important mathemati-
cal results can’t be fully understood until their proofs are understood. That is why
proofs are an important part of the curriculum.

To be understandable and helpful, more is required of a proof than just logical
correctness: a good proof must also be clear. Correctness and clarity usually go
together; a well-written proof is more likely to be a correct proof, since mistakes
are harder to hide.
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In practice, the notion of proof is a moving target. Proofs in a professional
research journal are generally unintelligible to all but a few experts who know all
the terminology and prior results used in the proof. Conversely, proofs in the first
weeks of an introductory course like Mathematics for Computer Science would be
regarded as tediously long-winded by a professional mathematician. In fact, what
we accept as a good proof later in the term will be different than what we consider
to be a good proof in the first couple of weeks of this course. But even so, we can
offer some general tips on writing good proofs:

State your game plan. A good proof begins by explaining the general line of rea-
soning. For example, “We use case analysis” or “We argue by contradiction.”

Keep a linear flow. Sometimes proofs are written like mathematical mosaics, with
juicy tidbits of independent reasoning sprinkled throughout. This is not good.
The steps of an argument should follow one another in an intelligible order.

A proof is an essay, not a calculation. Many students initially write proofs the way
they compute integrals. The result is a long sequence of expressions without
explanation, making it very hard to follow. This is bad. A good proof usually
looks like an essay with some equations thrown in. Use complete sentences.

Avoid excessive symbolism. Your reader is probably good at understanding words,
but much less skilled at reading arcane mathematical symbols. So use words
where you reasonably can.

Revise and simplify. Your readers will be grateful.

Introduce notation thoughtfully. Sometimes an argument can be greatly simpli-
fied by introducing a variable, devising a special notation, or defining a new
term. But do this sparingly since you’re requiring the reader to remember
all that new stuff. And remember to actually define the meanings of new
variables, terms, or notations; don’t just start using them!

Structure long proofs. Long programs are usually broken into a hierarchy of smaller
procedures. Long proofs are much the same. Facts needed in your proof that
are easily stated, but not readily proved are best pulled out and proved in pre-
liminary lemmas. Also, if you are repeating essentially the same argument
over and over, try to capture that argument in a general lemma, which you
can cite repeatedly instead.

Be wary of the ‘““obvious”. When familiar or truly obvious facts are needed in a
proof, it’s OK to label them as such and to not prove them. But remember
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that what’s obvious to you, may not be—and typically is not—obvious to
your reader.

Most especially, don’t use phrases like “clearly” or “obviously” in an attempt
to bully the reader into accepting something you’re having trouble proving.
Also, go on the alert whenever you see one of these phrases in someone else’s
proof.

Finish. At some point in a proof, you’ll have established all the essential facts
you need. Resist the temptation to quit and leave the reader to draw the
“obvious” conclusion. Instead, tie everything together yourself and explain
why the original claim follows.

The analogy between good proofs and good programs extends beyond structure.
The same rigorous thinking needed for proofs is essential in the design of criti-
cal computer systems. When algorithms and protocols only “mostly work™” due
to reliance on hand-waving arguments, the results can range from problematic to
catastrophic. An early example was the Therac 25, a machine that provided radia-
tion therapy to cancer victims, but occasionally killed them with massive overdoses
due to a software race condition. A more recent (August 2004) example involved a
single faulty command to a computer system used by United and American Airlines
that grounded the entire fleet of both companies—and all their passengers!

It is a certainty that we’ll all one day be at the mercy of critical computer systems
designed by you and your classmates. So we really hope that you’ll develop the
ability to formulate rock-solid logical arguments that a system actually does what
you think it does!
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Now that you understand the basics of how to prove that a proposition is true,
it is time to equip you with the most powerful methods we have for establishing
truth: the Well Ordering Principle, the Induction Rule, and Strong Induction. These
methods are especially useful when you need to prove that a predicate is true for all
natural numbers.

Although the three methods look and feel different, it turns out that they are
equivalent in the sense that a proof using any one of the methods can be automat-
ically reformatted so that it becomes a proof using any of the other methods. The
choice of which method to use is up to you and typically depends on whichever
seems to be the easiest or most natural for the problem at hand.

3.1 The Well Ordering Principle

Every nonempty set of nonnegative integers has a smallest element.

This statement is known as The Well Ordering Principle. Do you believe it?
Seems sort of obvious, right? But notice how tight it is: it requires a nonempty
set—it’s false for the empty set which has no smallest element because it has no
elements at all! And it requires a set of nonnegative integers—it’s false for the
set of negative integers and also false for some sets of nonnegative rationals—for
example, the set of positive rationals. So, the Well Ordering Principle captures
something special about the nonnegative integers.

3.1.1 Well Ordering Proofs

While the Well Ordering Principle may seem obvious, it’s hard to see ofthand why
it is useful. But in fact, it provides one of the most important proof rules in discrete
mathematics.

In fact, looking back, we took the Well Ordering Principle for granted in proving
that +/2 is irrational. That proof assumed that for any positive integers m and n,
the fraction m/n can be written in lowest terms, that is, in the form m’/n’ where
m’ and n’ are positive integers with no common factors. How do we know this is
always possible?
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Suppose to the contrary' that there were m,n € Z* such that the fraction m/n
cannot be written in lowest terms. Now let C be the set of positive integers that are
numerators of such fractions. Then m € C, so C is nonempty. Therefore, by Well
Ordering, there must be a smallest integer, mg € C. So by definition of C, there is
an integer ng > 0 such that

the fraction —> cannot be written in lowest terms.
no
This means that mg and 7o must have a common factor, p > 1. But
mo/p _ mo
no/p no
so any way of expressing the left hand fraction in lowest terms would also work for
mo/ng, which implies

’

mo/ p
no/p
So by definition of C, the numerator, mgo/p, is in C. But mo/p < mg, which
contradicts the fact that mg is the smallest element of C.

Since the assumption that C is nonempty leads to a contradiction, it follows that
C must be empty. That is, that there are no numerators of fractions that can’t be
written in lowest terms, and hence there are no such fractions at all.

We’ve been using the Well Ordering Principle on the sly from early on!

the fraction cannot be in written in lowest terms either.

3.1.2 Template for Well Ordering Proofs

More generally, to prove that “P(n) is true for all n € N” using the Well Ordering
Principle, you can take the following steps:

e Define the set, C, of counterexamples to P being true. Namely, define”
C :={n e N| P(n) is false}.

e Use a proof by contradiction and assume that C is nonempty.

e By the Well Ordering Principle, there will be a smallest element, 7, in C.

e Reach a contradiction (somehow)—often by showing how to use n to find
another member of C that is smaller than . (This is the open-ended part of
the proof task.)

e Conclude that C must be empty, that is, no counterexamples exist. QED

I'This means that you are about to see an informal proof by contradiction.
2As we learned in Section 2.6.2, the notation {n | P(n) is false } means “the set of all elements
n, for which P (n) is false.
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3.1.3 Examples

Let’s use this this template to prove

Theorem 3.1.1.
1+2434+--+n=nn+1)/2 (3.1)

for all nonnegative integers, n.

First, we better address of a couple of ambiguous special cases before they trip
us up:

e If n = 1, then there is only one term in the summation, and so 1 + 2 + 3 +
-+- + n is just the term 1. Don’t be misled by the appearance of 2 and 3 and
the suggestion that 1 and n are distinct terms!

e If n <0, then there are no terms at all in the summation. By convention, the
sum in this case is 0.

So while the dots notation is convenient, you have to watch out for these special
cases where the notation is misleading! (In fact, whenever you see the dots, you
should be on the lookout to be sure you understand the pattern, watching out for
the beginning and the end.)

We could have eliminated the need for guessing by rewriting the left side of (3.1)
with summation notation:

Xn:i or Z i

i=1 1<i<n

Both of these expressions denote the sum of all values taken by the expression to
the right of the sigma as the variable, i, ranges from 1 to n. Both expressions make
it clear what (3.1) means when n = 1. The second expression makes it clear that
when n = 0, there are no terms in the sum, though you still have to know the
convention that a sum of no numbers equals O (the product of no numbers is 1, by
the way).

OK, back to the proof:

Proof. By contradiction and use of the Well Ordering Principle. Assume that the
theorem is false. Then, some nonnegative integers serve as counterexamples to it.
Let’s collect them in a set:

nn+1)

Ci={neN|1+2434+ -4+n# 5

L.
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By our assumption that the theorem admits counterexamples, C is a nonempty set
of nonnegative integers. So, by the Well Ordering Principle, C has a minimum
element, call it ¢. That is, c is the smallest counterexample to the theorem.

Since c is the smallest counterexample, we know that (3.1) is false for n = ¢ but
true for all nonnegative integers n < c¢. But (3.1) is true for n = 0, so ¢ > 0. This
means ¢ — 1 is a nonnegative integer, and since it is less than ¢, equation (3.1) is
true for ¢ — 1. That is,

c—1)c
1+2+3+---+(C—1)=%.
But then, adding ¢ to both sides we get

(c—l)c+ c2—c+2c clc+1)
_— CcC = = y
2 2 2

14243+ +(c—D+c=

which means that (3.1) does hold for c, after all! This is a contradiction, and we
are done. |

Here is another result that can be proved using Well Ordering. It will be useful
in Chapter 4 when we study number theory and cryptography.

Theorem 3.1.2. Every natural number can be factored as a product of primes.

Proof. By contradiction and Well Ordering. Assume that the theorem is false and
let C be the set of all integers greater than one that cannot be factored as a product
of primes. We assume that C is not empty and derive a contradiction.

If C is not empty, there is a least element, n € C, by Well Ordering. The n can’t
be prime, because a prime by itself is considered a (length one) product of primes
and no such products are in C.

So n must be a product of two integers ¢ and b where 1 < a,b < n. Since a
and b are smaller than the smallest element in C, we know that a, b ¢ C. In other
words, @ can be written as a product of primes pj p>--- pr and b as a product of
primes g1 ---q;. Therefore, n = p;--- prq1---q; can be written as a product of
primes, contradicting the claim that n € C. Our assumption that C is not empty
must therefore be false. |

3.2 Ordinary Induction

Induction is by far the most powerful and commonly-used proof technique in dis-
crete mathematics and computer science. In fact, the use of induction is a defining
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characteristic of discrete—as opposed to continuous—mathematics. To understand
how it works, suppose there is a professor who brings to class a bottomless bag of
assorted miniature candy bars. She offers to share the candy in the following way.
First, she lines the students up in order. Next she states two rules:

1. The student at the beginning of the line gets a candy bar.

2. If a student gets a candy bar, then the following student in line also gets a
candy bar.

Let’s number the students by their order in line, starting the count with 0, as usual
in computer science. Now we can understand the second rule as a short description
of a whole sequence of statements:

e If student O gets a candy bar, then student 1 also gets one.
e If student 1 gets a candy bar, then student 2 also gets one.

o If student 2 gets a candy bar, then student 3 also gets one.

Of course this sequence has a more concise mathematical description:

If student n gets a candy bar, then student n + 1 gets a candy bar, for
all nonnegative integers 7.

So suppose you are student 17. By these rules, are you entitled to a miniature candy
bar? Well, student O gets a candy bar by the first rule. Therefore, by the second
rule, student 1 also gets one, which means student 2 gets one, which means student
3 gets one as well, and so on. By 17 applications of the professor’s second rule,
you get your candy bar! Of course the rules actually guarantee a candy bar to every
student, no matter how far back in line they may be.

3.2.1 A Rule for Ordinary Induction

The reasoning that led us to conclude that every student gets a candy bar is essen-
tially all there is to induction.
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The Principle of Induction.

Let P(n) be a predicate. If

e P(0) is true, and

e P(n) IMPLIES P(n + 1) for all nonnegative integers, 7,
then

e P(m) is true for all nonnegative integers, m.

Since we’re going to consider several useful variants of induction in later sec-
tions, we’ll refer to the induction method described above as ordinary induction
when we need to distinguish it. Formulated as a proof rule, this would be

Rule. Induction Rule

P(©), VneN.P(n)IMPLIES P(n + 1)
Vm € N. P(m)

This general induction rule works for the same intuitive reason that all the stu-
dents get candy bars, and we hope the explanation using candy bars makes it clear
why the soundness of the ordinary induction can be taken for granted. In fact, the
rule is so obvious that it’s hard to see what more basic principle could be used to
justify it.> What’s not so obvious is how much mileage we get by using it.

3.2.2 A Familiar Example

Ordinary induction often works directly in proving that some statement about non-
negative integers holds for all of them. For example, here is the formula for the
sum of the nonnegative integers that we already proved (equation (3.1)) using the
Well Ordering Principle:

Theorem 3.2.1. Foralln € N,

1
1+2+3+-~-+n:”(”T+) (3.2)

This time, let’s use the Induction Principle to prove Theorem 3.2.1.

Suppose that we define predicate P (n) to be the equation (3.2). Recast in terms
of this predicate, the theorem claims that P(n) is true for all n € N. This is great,
because the induction principle lets us reach precisely that conclusion, provided we
establish two simpler facts:

3But see section 3.2.7.
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e P(0) is true.
e Foralln € N, P(n) IMPLIES P(n + 1).

So now our job is reduced to proving these two statements. The first is true
because P(0) asserts that a sum of zero terms is equal to 0(0 + 1)/2 = 0, which
is true by definition. The second statement is more complicated. But remember
the basic plan for proving the validity of any implication from Section 2.3: assume
the statement on the left and then prove the statement on the right. In this case, we
assume P (n) in order to prove P(n + 1), which is the equation

(n + 1)(n + 2)

14243+ 4+n+@n+1) = >

(3.3)
These two equations are quite similar; in fact, adding (n + 1) to both sides of
equation (3.2) and simplifying the right side gives the equation (3.3):

1+2+3+---+n+(n+1)=@+(n+l)
:(n+2)(n—|—1)

2

Thus, if P(n) is true, then so is P(n + 1). This argument is valid for every non-
negative integer n, so this establishes the second fact required by the induction
principle. Therefore, the induction principle says that the predicate P(m) is true
for all nonnegative integers, m, so the theorem is proved.

3.2.3 A Template for Induction Proofs

The proof of Theorem 3.2.1 was relatively simple, but even the most complicated
induction proof follows exactly the same template. There are five components:

1. State that the proof uses induction. This immediately conveys the overall
structure of the proof, which helps the reader understand your argument.

2. Define an appropriate predicate P (n). The eventual conclusion of the in-
duction argument will be that P (n) is true for all nonnegative n. Thus, you
should define the predicate P(n) so that your theorem is equivalent to (or
follows from) this conclusion. Often the predicate can be lifted straight from
the proposition that you are trying to prove, as in the example above. The
predicate P(n) is called the induction hypothesis. Sometimes the induction
hypothesis will involve several variables, in which case you should indicate
which variable serves as n.
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3. Prove that P (0) is true. This is usually easy, as in the example above. This
part of the proof is called the base case or basis step.

4. Prove that P(n) implies P(n + 1) for every nonnegative integer n. This
is called the inductive step. The basic plan is always the same: assume that
P (n) is true and then use this assumption to prove that P(n+1) is true. These
two statements should be fairly similar, but bridging the gap may require
some ingenuity. Whatever argument you give must be valid for every non-
negative integer n, since the goal is to prove the implications P(0) — P(1),
P(1) - P(2), P(2) — P(3), etc. all at once.

5. Invoke induction. Given these facts, the induction principle allows you to
conclude that P(n) is true for all nonnegative n. This is the logical capstone
to the whole argument, but it is so standard that it’s usual not to mention it
explicitly.

Always be sure to explicitly label the base case and the inductive step. It will make
your proofs clearer, and it will decrease the chance that you forget a key step (such
as checking the base case).

3.24 A Clean Writeup

The proof of Theorem 3.2.1 given above is perfectly valid; however, it contains a
lot of extraneous explanation that you won’t usually see in induction proofs. The
writeup below is closer to what you might see in print and should be prepared to
produce yourself.

Proof of Theorem 3.2.1. We use induction. The induction hypothesis, P(n), will
be equation (3.2).

Base case: P(0) is true, because both sides of equation (3.2) equal zero when
n=0.

Inductive step: Assume that P (n) is true, where n is any nonnegative integer.
Then

n(n+1) : . :
14+2434+-+n+m+1)= — + (n + 1) (by induction hypothesis)
1 2
= % (by simple algebra)

which proves P(n + 1).
So it follows by induction that P (n) is true for all nonnegative n. |
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21’[

2)1

Figure 3.1 A 2" x 2" courtyard for n = 3.

Induction was helpful for proving the correctness of this summation formula, but
not helpful for discovering it in the first place. Tricks and methods for finding such
formulas will be covered in Part III of the text.

3.2.5 A More Challenging Example

During the development of MIT’s famous Stata Center, as costs rose further and
further beyond budget, there were some radical fundraising ideas. One rumored
plan was to install a big courtyard with dimensions 2" x 2" (as shown in Figure 3.1
for the case where n = 3) and to have one of the central squares* be occupied by a
statue of a wealthy potential donor (who we will refer to as “Bill”, for the purposes
of preserving anonymity). A complication was that the building’s unconventional
architect, Frank Gehry, was alleged to require that only special L-shaped tiles (show
in Figure 3.2) be used for the courtyard. It was quickly determined that a courtyard
meeting these constraints exists, at least for n = 2. (See Figure 3.3.) But what
about for larger values of n? Is there a way to tile a 2" x 2" courtyard with L-
shaped tiles around a statue in the center? Let’s try to prove that this is so.

Theorem 3.2.2. For all n > 0 there exists a tiling of a 2" x 2" courtyard with Bill
in a central square.

Proof. (doomed attempt) The proof is by induction. Let P(n) be the proposition
that there exists a tiling of a 2" x 2" courtyard with Bill in the center.

“In the special case n = 0, the whole courtyard consists of a single central square; otherwise,
there are four central squares.
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Figure 3.2 The special L-shaped tile.

Figure 3.3 A tiling using L-shaped tiles for n = 2 with Bill in a center square.
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Base case: P(0) is true because Bill fills the whole courtyard.

Inductive step: Assume that there is a tiling of a 2" x 2" courtyard with Bill in
the center for some n > 0. We must prove that there is a way to tile a 271 x 27+1
courtyard with Bill in the center ... . |

Now we’re in trouble! The ability to tile a smaller courtyard with Bill in the
center isn’t much help in tiling a larger courtyard with Bill in the center. We haven’t
figured out how to bridge the gap between P(n) and P(n + 1).

So if we’re going to prove Theorem 3.2.2 by induction, we’re going to need some
other induction hypothesis than simply the statement about » that we’re trying to
prove.

When this happens, your first fallback should be to look for a stronger induction
hypothesis; that is, one which implies your previous hypothesis. For example,
we could make P(n) the proposition that for every location of Bill in a 2" x 2"
courtyard, there exists a tiling of the remainder.

This advice may sound bizarre: “If you can’t prove something, try to prove some-
thing grander!” But for induction arguments, this makes sense. In the inductive
step, where you have to prove P(n) IMPLIES P(n + 1), you're in better shape
because you can assume P (n), which is now a more powerful statement. Let’s see
how this plays out in the case of courtyard tiling.

Proof (successful attempt). The proof is by induction. Let P(n) be the proposition
that for every location of Bill in a 2" x 2" courtyard, there exists a tiling of the
remainder.

Base case: P(0) is true because Bill fills the whole courtyard.

Inductive step: Assume that P(n) is true for some n > 0; that is, for every
location of Bill in a 2" x 2" courtyard, there exists a tiling of the remainder. Divide
the 21 x 271 courtyard into four quadrants, each 2" x2". One quadrant contains
Bill (B in the diagram below). Place a temporary Bill (X in the diagram) in each of
the three central squares lying outside this quadrant as shown in Figure 3.4.

Now we can tile each of the four quadrants by the induction assumption. Replac-
ing the three temporary Bills with a single L-shaped tile completes the job. This
proves that P(n) implies P(n + 1) for all n > 0. Thus P(m) is true for alln € N,
and the theorem follows as a special case where we put Bill in a central square. W

This proof has two nice properties. First, not only does the argument guarantee
that a tiling exists, but also it gives an algorithm for finding such a tiling. Second,
we have a stronger result: if Bill wanted a statue on the edge of the courtyard, away
from the pigeons, we could accommodate him!

Strengthening the induction hypothesis is often a good move when an induction
proof won’t go through. But keep in mind that the stronger assertion must actually
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2)1

2il

n 2n

Figure 3.4 Using a stronger inductive hypothesis to prove Theorem 3.2.2.

be true; otherwise, there isn’t much hope of constructing a valid proof! Sometimes
finding just the right induction hypothesis requires trial, error, and insight. For
example, mathematicians spent almost twenty years trying to prove or disprove
the conjecture that “Every planar graph is 5-choosable™. Then, in 1994, Carsten
Thomassen gave an induction proof simple enough to explain on a napkin. The
key turned out to be finding an extremely clever induction hypothesis; with that in
hand, completing the argument was easy!

3.2.6 A Faulty Induction Proof

If we have done a good job in writing this text, right about now you should be
thinking, “Hey, this induction stuff isn’t so hard after all—just show P(0) is true
and that P(n) implies P(n + 1) for any number n.” And, you would be right,
although sometimes when you start doing induction proofs on your own, you can
run into trouble. For example, we will now attempt to ruin your day by using
induction to “prove” that all horses are the same color. And just when you thought
it was safe to skip class and work on your robot program instead. Bummer!

False Theorem. All horses are the same color.

Notice that no n is mentioned in this assertion, so we’re going to have to re-
formulate it in a way that makes an n explicit. In particular, we’ll (falsely) prove
that

55-choosability is a slight generalization of 5-colorability. Although every planar graph is 4-
colorable and therefore 5-colorable, not every planar graph is 4-choosable. If this all sounds like
nonsense, don’t panic. We’ll discuss graphs, planarity, and coloring in Part II of the text.
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False Theorem 3.2.3. In every set of n > 1 horses, all the horses are the same
color.

This a statement about all integers n > 1 rather > 0, so it’s natural to use a
slight variation on induction: prove P (1) in the base case and then prove that P (n)
implies P(n+ 1) for all n > 1 in the inductive step. This is a perfectly valid variant
of induction and is not the problem with the proof below.

Bogus proof. The proof is by induction on n. The induction hypothesis, P (n), will
be
In every set of n horses, all are the same color. 34

Base case: (n = 1). P(1) is true, because in a set of horses of size 1, there’s
only one horse, and this horse is definitely the same color as itself.

Inductive step: Assume that P(n) is true for some n > 1. That is, assume that
in every set of n horses, all are the same color. Now consider a set of n + 1 horses:

hl’ h27 L] hn» hn+1
By our assumption, the first # horses are the same color:

hl’ h27 R hn» hn+1
same color
Also by our assumption, the last n horses are the same color:

hl» h2, LI hn» hn+1

same color

So h; is the same color as the remaining horses besides h,41—that is, s, ...,
hy)—and likewise /i, 1 is the same color as the remaining horses besides h1—/2,
..., hy. Since hy and hy 4, are the same color as hy, ..., hy, horses hy, ho, ...,
hy+1 must all be the same color, and so P(n + 1) is true. Thus, P(n) implies
Pn+1).

By the principle of induction, P (n) is true for all n > 1. |

We’ve proved something false! Is math broken? Should we all become poets?
No, this proof has a mistake.
The first error in this argument is in the sentence that begins “So /1 is the same

color as the remaining horses besides h,+1—ha, ..., hp)...”
The “...” notation in the expression “hy, ha, ..., hy, hy41” creates the im-
pression that there are some remaining horses (namely 4, ..., i) besides #; and

hy+1. However, this is not true when n = 1. In that case, hy, ha, ..., hy, hpt1 =
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h1, hy and there are no remaining horses besides /1 and 4, +1. So /i and A, need
not be the same color!

This mistake knocks a critical link out of our induction argument. We proved
P (1) and we correctly proved P(2) — P(3), P(3) — P(4), etc. But we failed
to prove P(1) —> P(2), and so everything falls apart: we can not conclude that
P(2), P(3), etc., are true. And, of course, these propositions are all false; there are
sets of n non-uniformly-colored horses for all n > 2.

Students sometimes claim that the mistake in the proof is because P(n) is false
for n > 2, and the proof assumes something false, namely, P (n), in order to prove
P(n + 1). You should think about how to explain to such a student why this claim
would get no credit on a Math for Computer Science exam.

3.2.7 Induction versus Well Ordering

The Induction Rule looks nothing like the Well Ordering Principle, but these two
proof methods are closely related. In fact, as the examples above suggest, we can
take any Well Ordering proof and reformat it into an Induction proof. Conversely,
it’s equally easy to take any Induction proof and reformat it into a Well Ordering
proof.

So what’s the difference? Well, sometimes induction proofs are clearer because
they resemble recursive procedures that reduce handling an input of size n + 1 to
handling one of size n. On the other hand, Well Ordering proofs sometimes seem
more natural, and also come out slightly shorter. The choice of method is really a
matter of style and is up to you.

3.3 Invariants

One of the most important uses of induction in computer science involves proving
that a program or process preserves one or more desirable properties as it proceeds.
A property that is preserved through a series of operations or steps is known as an
invariant. Examples of desirable invariants include properties such as a variable
never exceeding a certain value, the altitude of a plane never dropping below 1,000
feet without the wingflaps and landing gear being deployed, and the temperature of
a nuclear reactor never exceeding the threshold for a meltdown.

We typically use induction to prove that a proposition is an invariant. In particu-
lar, we show that the proposition is true at the beginning (this is the base case) and
that if it is true after ¢ steps have been taken, it will also be true after step ¢ + 1 (this
is the inductive step). We can then use the induction principle to conclude that the
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proposition is indeed an invariant, namely, that it will always hold.

3.3.1 A Simple Example: The Diagonally-Moving Robot

Invariants are useful in systems that have a start state (or starting configuration)
and a well-defined series of steps during which the system can change state.® For
example, suppose that you have a robot that can walk across diagonals on an infinite
2-dimensional grid. The robot starts at position (0, 0) and at each step it moves up
or down by 1 unit vertically and left or right by 1 unit horizontally. To be clear, the
robot must move by exactly 1 unit in each dimension during each step, since it can
only traverse diagonals.

In this example, the state of the robot at any time can be specified by a coordinate
pair (x, y) that denotes the robot’s position. The start state is (0, 0) since it is given
that the robot starts at that position. After the first step, the robot could be in states
(1,1, (1,—-1), (=1, 1), or (—1,—1). After two steps, there are 9 possible states for
the robot, including (0, 0).

Can the robot ever reach position (1, 0)?

After playing around with the robot for a bit, it will become apparent that the
robot will never be able to reach position (1, 0). This is because the robot can only
reach positions (x, y) for which x 4+ y is even. This crucial observation quickly
leads to the formulation of a predicate

P(¢) :: if the robot is in state (x, y) after ¢ steps, then x + y is even

which we can prove to be an invariant by induction.
Theorem 3.3.1. The sum of robot’s coordinates is always even.

Proof. We will prove that P is an invariant by induction.

P(0) is true since the robot starts at (0, 0) and 0 + 0 is even.

Assume that P(t) is true for the inductive step. Let (x, y) be the position of the
robot after ¢ steps. Since P(¢) is assumed to be true, we know that x 4 y is even.
There are four cases to consider for step ¢ 4+ 1, depending on which direction the
robot moves.

Case 1 The robot moves to (x + 1,y 4+ 1). Then the sum of the coordinates is
x + y + 2, which is even, and so P (¢ + 1) is true.

Case 2 The robot moves to (x + 1, y —1). The the sum of the coordinates is x + y,
which is even, and so P(¢ + 1) is true.

6Such systems are known as state machines and we will study them in greater detail in Chapter 8.




“mcs-ftlI” — 2010/9/8 — 0:40 — page 58 — #64

58

Chapter 3 Induction

Case 3 The robot moves to (x — 1, y + 1). The the sum of the coordinates is x + y,
as with Case 2, and so P(t + 1) is true.

Case 4 The robot moves to (x — 1,y — 1). The the sum of the coordinates is
x + y — 2, which is even, and so P(¢ + 1) is true.

In every case, P(¢t + 1) is true and so we have proved P () IMPLIES P (¢ + 1) and
so0, by induction, we know that P () is true for all ¢ > 0. [ |

Corollary 3.3.2. The robot can never reach position (1, 0).

Proof. By Theorem 3.3.1, we know the robot can only reach positions with coor-
dinates that sum to an even number, and thus it cannot reach position (1, 0). |

Since this was the first time we proved that a predicate was an invariant, we were
careful to go through all four cases in gory detail. As you become more experienced
with such proofs, you will likely become more brief as well. Indeed, if we were
going through the proof again at a later point in the text, we might simply note that
the sum of the coordinates after stept + 1 canbeonly x+y,x+y+2o0orx+y—2
and therefore that the sum is even.

3.3.2 The Invariant Method

In summary, if you would like to prove that some property NICE holds for every
step of a process, then it is often helpful to use the following method:

e Define P(¢) to be the predicate that NICE holds immediately after step ¢.
e Show that P(0) is true, namely that NICE holds for the start state.

e Show that
Vt € N. P(¢) IMPLIES P(t + 1),

namely, that for any ¢ > 0, if NICE holds immediately after step 7, it must
also hold after the following step.

3.3.3 A More Challenging Example: The 15-Puzzle

In the late 19th century, Noyes Chapman, a postmaster in Canastota, New York,
invented the 15-puzzle’, which consisted of a 4 x 4 grid containing 15 numbered
blocks in which the 14-block and the 15-block were out of order. The objective was
to move the blocks one at a time into an adjacent hole in the grid so as to eventually

7 Actually, there is a dispute about who really invented the 15-puzzle. Sam Lloyd, a well-known
puzzle designer, claimed to be the inventor, but this claim has since been discounted.
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1 2 3 4 1 2 3 4
5 6 7 8 5 6 7 8
9 10 11 12 9 10 11
13 15 14 13 15 14 12
(a) (b)

Figure 3.5 The 15-puzzle in its starting configuration (a) and after the 12-block
is moved into the hole below (b).

13 14 || 15

Figure 3.6 The desired final configuration for the 15-puzzle. Can it be achieved
by only moving one block at a time into an adjacent hole?

get all 15 blocks into their natural order. A picture of the 15-puzzle is shown in
Figure 3.5 along with the configuration after the 12-block is moved into the hole
below. The desired final configuration is shown in Figure 3.6.

The 15-puzzle became very popular in North America and Europe and is still
sold in game and puzzle shops today. Prizes were offered for its solution, but
it is doubtful that they were ever awarded, since it is impossible to get from the
configuration in Figure 3.5(a) to the configuration in Figure 3.6 by only moving
one block at a time into an adjacent hole. The proof of this fact is a little tricky so
we have left it for you to figure out on your own! Instead, we will prove that the
analogous task for the much easier §-puzzle cannot be performed. Both proofs, of
course, make use of the Invariant Method.
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Figure 3.7 The 8-Puzzle in its initial configuration (a) and after one (b) and
two (c¢) possible moves.

3.3.4 The §-Puzzle

In the 8-Puzzle, there are 8 lettered tiles (A—H) and a blank square arranged in a
3 x 3 grid. Any lettered tile adjacent to the blank square can be slid into the blank.
For example, a sequence of two moves is illustrated in Figure 3.7.

In the initial configuration shown in Figure 3.7(a), the G and H tiles are out of
order. We can find a way of swapping G and H so that they are in the right order,
but then other letters may be out of order. Can you find a sequence of moves that
puts these two letters in correct order, but returns every other tile to its original
position? Some experimentation suggests that the answer is probably “no,” and we
will prove that is so by finding an invariant, namely, a property of the puzzle that is
always maintained, no matter how you move the tiles around. If we can then show
that putting all the tiles in the correct order would violate the invariant, then we can
conclude that the puzzle cannot be solved.

Theorem 3.3.3. No sequence of legal moves transforms the configuration in Fig-
ure 3.7(a) into the configuration in Figure 3.8.

We’ll build up a sequence of observations, stated as lemmas. Once we achieve
a critical mass, we’ll assemble these observations into a complete proof of Theo-
rem 3.3.3.

Define a row move as a move in which a tile slides horizontally and a column
move as one in which the tile slides vertically. Assume that tiles are read top-
to-bottom and left-to-right like English text, that is, the natural order, defined as
follows: So when we say that two tiles are “out of order”, we mean that the larger
letter precedes the smaller letter in this natural order.

Our difficulty is that one pair of tiles (the G and H) is out of order initially. An
immediate observation is that row moves alone are of little value in addressing this
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A B ‘ C ’
D E ‘ F ’
G H

1 2 3
4 5 6
7 8 9

problem:
Lemma 3.3.4. A row move does not change the order of the tiles.

Proof. A row move moves a tile from cell i to cell i + 1 or vice versa. This tile
does not change its order with respect to any other tile. Since no other tile moves,
there is no change in the order of any of the other pairs of tiles. |

Let’s turn to column moves. This is the more interesting case, since here the
order can change. For example, the column move in Figure 3.9 changes the relative
order of the pairs (G, H) and (G, E).

Lemma 3.3.5. A column move changes the relative order of exactly two pairs of
tiles.

Proof. Sliding a tile down moves it after the next two tiles in the order. Sliding a
tile up moves it before the previous two tiles in the order. Either way, the relative
order changes between the moved tile and each of the two tiles it crosses. The
relative order between any other pair of tiles does not change. |

These observations suggest that there are limitations on how tiles can be swapped.
Some such limitation may lead to the invariant we need. In order to reason about
swaps more precisely, let’s define a term referring to a pair of items that are out of
order:
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NAE
D F
H E ‘ G

(a)

Figure 3.9 An example of a column move in which the G-tile is moved into the
adjacent hole above. In this case, G changes order with E and H .

Definition 3.3.6. A pair of letters L; and L, is an inversion if L1 precedes L in

(b)

the alphabet, but L appears after L, in the puzzle order.

For example, in the puzzle below, there are three inversions: (D, F), (E, F),

(E,G).
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There are no inversions in the end state:

A B ‘ C ’
D E ‘ F ’
G H

Let’s work out the effects of row and column moves in terms of inversions.

Lemma 3.3.7. During a move, the number of inversions can only increase by 2,
decrease by 2, or remain the same.

Proof. By Lemma 3.3.4, a row move does not change the order of the tiles, and so
a row move does not change the number of inversions.

By Lemma 3.3.5, a column move changes the relative order of exactly 2 pairs
of tiles. There are three cases: If both pairs were originally in order, then the
number of inversions after the move goes up by 2. If both pairs were originally
inverted, then the number of inversions after the move goes down by 2. If one
pair was originally inverted and the other was originally in order, then the number
of inversions stays the same (since changing the former pair makes the number of
inversions smaller by 1, and changing the latter pair makes the number of inversions
larger by 1). |

We are almost there. If the number of inversions only changes by 2, then what
about the parity of the number of inversions? (The “parity” of a number refers to
whether the number is even or odd. For example, 7 and 5 have odd parity, and 18
and 0 have even parity.)

Since adding or subtracting 2 from a number does not change its parity, we have
the following corollary to Lemma 3.3.7:

Corollary 3.3.8. Neither a row move nor a column move ever changes the parity
of the number of inversions.

Now we can bundle up all these observations and state an invariant, that is, a
property of the puzzle that never changes, no matter how you slide the tiles around.

Lemma 3.3.9. In every configuration reachable from the configuration shown in
Figure 3.7(a), the parity of the number of inversions is odd.
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Proof. We use induction. Let P(n) be the proposition that after » moves from the
above configuration, the parity of the number of inversions is odd.

Base case: After zero moves, exactly one pair of tiles is inverted (G and H),
which is an odd number. Therefore P (0) is true.

Inductive step: Now we must prove that P(n) implies P(n + 1) for all n > 0.
So assume that P(n) is true; that is, after n moves the parity of the number of

inversions is odd. Consider any sequence of n + 1 moves my, ..., my+1. By the
induction hypothesis P(n), we know that the parity after moves my, ..., my is
odd. By Corollary 3.3.8, we know that the parity does not change during m1, .
Therefore, the parity of the number of inversions after moves my, ..., m, 41 is odd,
so we have that P(n + 1) is true.

By the principle of induction, P (n) is true for all n > 0. |

The theorem we originally set out to prove is restated below. With our invariant
in hand, the proof is simple.

Theorem. No sequence of legal moves transforms the board below on the left into
the board below on the right.

e )]
DOE N DRD

Proof. In the target configuration on the right, the total number of inversions is
zero, which is even. Therefore, by Lemma 3.3.9, the target configuration is un-
reachable. |

3.4 Strong Induction

Strong induction is a variation of ordinary induction that is useful when the pred-
icate P(n + 1) naturally depends on P(a) for values of @ < n. As with ordinary
induction, strong induction is useful to prove that a predicate P(n) is true for all
neN.
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3.4.1 A Rule for Strong Induction

Principle of Strong Induction. Let P(n) be a predicate. If
e P(0) is true, and
e foralln e N, P(0), P(1), ..., P(n) together imply P(n + 1),

then P(n) is true for all n € N.

The only change from the ordinary induction principle is that strong induction
allows you to assume more stuff in the inductive step of your proof! In an ordinary
induction argument, you assume that P(n) is true and try to prove that P(n + 1)
is also true. In a strong induction argument, you may assume that P(0), P(1), ...,
and P (n) are all true when you go to prove P (n + 1). These extra assumptions can
only make your job easier. Hence the name: strong induction.

Formulated as a proof rule, strong induction is

Rule. Strong Induction Rule

P(0), Vn eN.(P(0)AND P(1) AND ... AND P(m)) IMPLIES P(n + 1)]
Vm € N. P(m)

The template for strong induction proofs is identical to the template given in
Section 3.2.3 for ordinary induction except for two things:

e you should state that your proof is by strong induction, and

e you can assume that P(0), P(1), ..., P(n) are all true instead of only P (n)
during the inductive step.
3.4.2 Some Examples
Products of Primes

As a first example, we’ll use strong induction to re-prove Theorem 3.1.2 which we
previously proved using Well Ordering.

Lemma 3.4.1. Every integer greater than 1 is a product of primes.

Proof. We will prove Lemma 3.4.1 by strong induction, letting the induction hy-
pothesis, P(n), be
n is a product of primes.

So Lemma 3.4.1 will follow if we prove that P () holds for all n > 2.
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Base Case: (n = 2) P(2) is true because 2 is prime, and so it is a length one
product of primes by convention.

Inductive step: Suppose that n > 2 and that i is a product of primes for every
integer i where 2 <i < n + 1. We must show that P(n + 1) holds, namely, that
n + 1 is also a product of primes. We argue by cases:

If n + 1 is itself prime, then it is a length one product of primes by convention,
and so P(n + 1) holds in this case.

Otherwise, n + 1 is not prime, which by definition means n + 1 = km for some
integers k, m such that 2 < k,m < n + 1. Now by the strong induction hypothesis,
we know that k is a product of primes. Likewise, m is a product of primes. It
follows immediately that km = n is also a product of primes. Therefore, P(n + 1)
holds in this case as well.

So P(n + 1) holds in any case, which completes the proof by strong induction
that P(n) holds for all n > 2.

|

Making Change

The country Inductia, whose unit of currency is the Strong, has coins worth 3Sg
(3 Strongs) and 5Sg. Although the Inductians have some trouble making small
change like 4Sg or 7Sg, it turns out that they can collect coins to make change for
any number that is at least 8 Strongs.

Strong induction makes this easy to prove for n + 1 > 11, because then (n +
1) — 3 > 8, so by strong induction the Inductians can make change for exactly
(n + 1) — 3 Strongs, and then they can add a 3Sg coin to get (n + 1)Sg. So the only
thing to do is check that they can make change for all the amounts from 8 to 10Sg,
which is not too hard to do.

Here’s a detailed writeup using the official format:

Proof. We prove by strong induction that the Inductians can make change for any
amount of at least 8Sg. The induction hypothesis, P(n) will be:

There is a collection of coins whose value is n + 8 Strongs.

Base case: P(0) is true because a 3Sg coin together with a 5Sg coin makes 8Sg.

Inductive step: We assume P (/) holds for all m < n, and prove that P(n + 1)
holds. We argue by cases:

Case (n + 1 = 1): We have to make (n + 1) + 8 = 9Sg. We can do this using
three 3Sg coins.

Case (n 4+ 1 =2): We have to make (n + 1) + 8 = 10Sg. Use two 5Sg coins.
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Stack Heights Score
10
5 5 25 points
5 3 2 6
4 3 2 1 4
2 321 2 4
2 22121 2
1 221211 1
1 121 2111 1
1 111 21111 1
1 111111111 1
Total Score = 45 points

Figure 3.10 An example of the stacking game with n = 10 boxes. On each line,
the underlined stack is divided in the next step.

Case (n +1 > 3): Then 0 < n — 2 < n, so by the strong induction hypothesis,
the Inductians can make change for n — 2 Strong. Now by adding a 3Sg coin, they
can make change for (n + 1)Sg.

Since n > 0, we know that n + 1 > 1 and thus that the three cases cover
every possibility. Since P(n + 1) is true in every case, we can conclude by strong
induction that for all n > 0, the Inductians can make change for n + 8 Strong. That
is, they can make change for any number of eight or more Strong.

|

The Stacking Game

Here is another exciting game that’s surely about to sweep the nation!

You begin with a stack of #n boxes. Then you make a sequence of moves. In each
move, you divide one stack of boxes into two nonempty stacks. The game ends
when you have n stacks, each containing a single box. You earn points for each
move; in particular, if you divide one stack of height @ + b into two stacks with
heights a and b, then you score ab points for that move. Your overall score is the
sum of the points that you earn for each move. What strategy should you use to
maximize your total score?

As an example, suppose that we begin with a stack of n = 10 boxes. Then the
game might proceed as shown in Figure 3.10. Can you find a better strategy?

Let’s use strong induction to analyze the unstacking game. We’ll prove that your
score is determined entirely by the number of boxes—your strategy is irrelevant!
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Theorem 3.4.2. Every way of unstacking n blocks gives a score of n(n — 1)/2
points.

There are a couple technical points to notice in the proof:

e The template for a strong induction proof mirrors the template for ordinary
induction.

e As with ordinary induction, we have some freedom to adjust indices. In this
case, we prove P(1) in the base case and prove that P(1),..., P(n) imply
P(n 4+ 1) for all n > 1 in the inductive step.

Proof. The proof is by strong induction. Let P(n) be the proposition that every
way of unstacking n blocks gives a score of n(n — 1)/2.

Base case: If n = 1, then there is only one block. No moves are possible, and
so the total score for the game is 1(1 — 1)/2 = 0. Therefore, P(1) is true.

Inductive step: Now we must show that P(1), ..., P(n) imply P(n + 1) for
all n > 1. So assume that P(1), ..., P(n) are all true and that we have a stack of
n + 1 blocks. The first move must split this stack into substacks with positive sizes
aand b wherea +b =n + 1 and 0 < a, b < n. Now the total score for the game
is the sum of points for this first move plus points obtained by unstacking the two
resulting substacks:

total score = (score for 1st move)
+ (score for unstacking a blocks)
+ (score for unstacking b blocks)
ala—1 bb—-1
@-1  bb-1

=ab + 7 7 by P(a) and P (b)
B (@a+b)?—(a+b) _(a+b)(@a+b)—-1)
B 2 B 2
_(n+Dn
2
This shows that P(1), P(2), ..., P(n) imply P(n + 1).
Therefore, the claim is true by strong induction. |

3.4.3 Strong Induction versus Induction

Is strong induction really “stronger” than ordinary induction? It certainly looks that
way. After all, you can assume a lot more when proving the induction step. But
actually, any proof using strong induction can be reformatted into a proof using
ordinary induction—you just need to use a “stronger” induction hypothesis.
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Which method should you use? Whichever you find easier. But whichever
method you choose, be sure to state the method up front so that the reader can
understand and more easily verify your proof.

3.5 Structural Induction

Up to now, we have focussed on induction over the natural numbers. But the idea
of induction is far more general—it can be applied to a much richer class of sets.
In particular, it is especially useful in connection with sets or data types that are
defined recursively.

3.5.1 Recursive Data Types

Recursive data types play a central role in programming. They are specified by
recursive definitions that say how to build something from its parts. Recursive
definitions have two parts:

e Base case(s) that don’t depend on anything else.

e Constructor case(s) that depend on previous cases.
Let’s see how this works in a couple of examples: Strings of brackets and expres-

sion evaluation.

Example 1: Strings of Brackets

Let brkts be the set of all sequences (or strings) of square brackets. For example,
the following two strings are in brkts:

[IICCCC01T and [LCTICTICN (3.5)

Definition 3.5.1. The set brkts of strings of brackets can be defined recursively
as follows:

e Base case: The empty string, A, is in brkts.

e Constructor case: If s € brkts, then s] and s[ are in brkts.

Here, we’re writing s] to indicate the string that is the sequence of brackets (if
any) in the string s, followed by a right bracket; similarly for s[ .

A string s € brkts is called a matched string if its brackets can be “matched
up” in the usual way. For example, the left hand string in 3.5 is not matched because
its second right bracket does not have a matching left bracket. The string on the
right is matched. The set of matched strings can be defined recursively as follows.




“mcs-ftlI” — 2010/9/8 — 0:40 — page 70 — #76

70

Chapter 3 Induction

Definition 3.5.2. Recursively define the set, RecMatch, of strings as follows:
e Base case: A € RecMatch.

e Constructor case: If 5, € RecMatch, then

[ s]t € RecMatch.

Here we’re writing [ s ]¢ to indicate the string that starts with a left bracket,
followed by the sequence of brackets (if any) in the string s, followed by a right
bracket, and ending with the sequence of brackets in the string ¢.

Using this definition, we can see that A € RecMatch by the Base case, so

[A]A =[] € RecMatch

by the Constructor case. So now,

[A1[] =1[111 € RecMatch (lettings = A,t =[])
[[11X =111] € RecMatch (letting s =[], = A)
[[11[]1 € RecMatch (lettings =[], =D

are also strings in RecMatch by repeated applications of the Constructor case.

In general, RecMatch will contain precisely the strings with matching brack-
ets. This is because the constructor case is, in effect, identifying the bracket that
matches the leftmost bracket in any string. Since that matching bracket is unique,
this method of constructing RecMatch gives a unique way of constructing any string
with matched brackets. This will turn out to be important later when we talk about
ambiguity.

Strings with matched brackets arise in the area of expression parsing. A brief
history of the advances in this field is provided in the box on the next page.

Example 2: Arithmetic Expressions

Expression evaluation is a key feature of programming languages, and recognition
of expressions as a recursive data type is a key to understanding how they can be
processed.

To illustrate this approach we’ll work with a toy example: arithmetic expressions
like 3x2 4 2x + 1 involving only one variable, “x.” We’ll refer to the data type of
such expressions as Aexp. Here is its definition:

Definition 3.5.3. The set Aexp is defined recursively as follows:

e Base cases:
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Expression Parsing

During the early development of computer science in the 1950’s and 60’s, creation
of effective programming language compilers was a central concern. A key aspect
in processing a program for compilation was expression parsing. The problem
was to take in an expression like

x4+ y=x* 72 = y+7
and put in the brackets that determined how it should be evaluated—should it be

[[x+y]>|<22+y]—|—7, or,
x+[y*z2+[y+7]) o
[x + [y * 221 + [y + 7.

or...?

The Turing award (the “Nobel Prize” of computer science) was ultimately be-
stowed on Robert Floyd, for, among other things, being discoverer of a simple
program that would insert the brackets properly.

In the 70’s and 80’s, this parsing technology was packaged into high-level
compiler-compilers that automatically generated parsers from expression gram-
mars. This automation of parsing was so effective that the subject stopped de-
manding attention and largely disappeared from the computer science curriculum
by the 1990’s.
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1. The variable, x, is in Aexp.

2. The arabic numeral, k, for any nonnegative integer, k, is in Aexp.

e Constructor cases: If e, f € Aexp, then

3. (e + f) € Aexp. The expression (¢ + f) is called a sum. The Aexp’s
e and f are called the components of the sum; they’re also called the
summands.

4. (ex* f) € Aexp. The expression (e * f') is called a product. The Aexp’s
e and f are called the components of the product; they’re also called
the multiplier and multiplicand.

5. —(e) € Aexp. The expression —(e) is called a negative.
Notice that Aexp’s are fully parenthesized, and exponents aren’t allowed. So the
Aexp version of the polynomial expression 3x2 4 2x + 1 would officially be written

as
(Bx(x*xx))+ ((2*x)+ 1)). (3.6)

These parentheses and *’s clutter up examples, so we’ll often use simpler expres-
sions like “3x2 + 2x + 1” instead of (3.6). But it’s important to recognize that
3x2 + 2x + 1is not an Aexp; it’s an abbreviation for an Aexp.

3.5.2 Structural Induction on Recursive Data Types

Structural induction is a method for proving that some property, P, holds for all the
elements of a recursively-defined data type. The proof consists of two steps:

e Prove P for the base cases of the definition.

e Prove P for the constructor cases of the definition, assuming that it is true
for the component data items.

A very simple application of structural induction proves that (recursively-defined)
matched strings always have an equal number of left and right brackets. To do this,
define a predicate, P, on strings s € brkts:

P(s) ::= s has an equal number of left and right brackets.

Theorem 3.5.4. P(s) holds for all s € RecMatch.

Proof. By structural induction on the definition that s € RecMatch, using P(s) as
the induction hypothesis.
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Base case: P(A) holds because the empty string has zero left and zero right
brackets.

Constructor case: For r = [s]¢, we must show that P(r) holds, given that
P(s) and P(¢) holds. So let ng, n; be, respectively, the number of left brackets in
s and ¢. So the number of left brackets in r is 1 + ng + n;.

Now from the respective hypotheses P(s) and P(¢), we know that the number
of right brackets in s is ng, and likewise, the number of right brackets in 7 is n;. So
the number of right brackets in r is 1 4 ny + n;, which is the same as the number
of left brackets. This proves P (r). We conclude by structural induction that P (s)
holds for all s € RecMatch. |

3.5.3 Functions on Recursively-defined Data Types

A Quick Review of Functions

A function assigns an element of one set, called the domain, to elements of another
set, called the codomain. The notation

f:A— B

indicates that f is a function with domain, A, and codomain, B. The familiar
notation “ f(a) = b” indicates that f assigns the element b € B to a. Here b
would be called the value of f at argument a.

Functions are often defined by formulas as in:

1
S1(x) = 2
where x is a real-valued variable, or
fa(y.z) i=yl0yz
where y and z range over binary strings, or
f3(x,n) ::= the pair (n, x)

where n ranges over the nonnegative integers.

A function with a finite domain could be specified by a table that shows the value
of the function at each element of the domain. For example, a function f4(P, Q)
where P and Q are propositional variables is specified by:

P Q| fa(P.Q)
T T T
T F F
F T T
F F T
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Notice that f4 could also have been described by a formula:

fa(P, Q) ::= [P IMPLIES Q].

A function might also be defined by a procedure for computing its value at any
element of its domain, or by some other kind of specification. For example, define
f5(») to be the length of a left to right search of the bits in the binary string y until
a 1 appears, SO

f5(0010) = 3,
f5(100) = 1,
f5(0000) is undefined.

Notice that f5 does not assign a value to a string of just 0’s. This illustrates an
important fact about functions: they need not assign a value to every element in the
domain. In fact this came up in our first example f(x) = 1/x2, which does not
assign a value to 0. So in general, functions may be partial functions, meaning that
there may be domain elements for which the function is not defined. If a function
is defined on every element of its domain, it is called a total function.

It’s often useful to find the set of values a function takes when applied to the
elements in a set of arguments. Soif f : A — B, and S is a subset of A, we define
f(S) to be the set of all the values that f takes when it is applied to elements of S.
That is,

f(S):=1{be B| f(s) =bforsomes € S}.

For example, if we let [r, s] denote the interval from r to s on the real line, then
A((1,2]) = [1/4.1].

For another example, let’s take the “search for a 1” function, f5. If we let X be
the set of binary words which start with an even number of 0’s followed by a 1,
then f5(X) would be the odd nonnegative integers.

Applying f to a set, S, of arguments is referred to as “applying f pointwise to
S, and the set f(S) is referred to as the image of S under f.® The set of values
that arise from applying f to all possible arguments is called the range of f. That
is,

range( f) ::= f(domain( f)).

8There is a picky distinction between the function f which applies to elements of A and the
function which applies f pointwise to subsets of A, because the domain of f is A, while the domain
of pointwise- f is P(A). It is usually clear from context whether f or pointwise- f is meant, so there
is no harm in overloading the symbol f in this way.
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Recursively-Defined Functions

Functions on recursively-defined data types can be defined recursively using the
same cases as the data type definition. Namely, to define a function, f, on a recur-
sive data type, define the value of f for the base cases of the data type definition,
and then define the value of f in each constructor case in terms of the values of f
on the component data items.

For example, consider the function

eval : Aexp X Z — Z,

which evaluates any expression in Aexp using the value n for x. It is useful to
express this function with a recursive definition as follows:

Definition 3.5.5. The evaluation function, eval : Aexp X Z — Z, is defined recur-
sively on expressions, e € Aexp, as follows. Let n be any integer.

e Base cases:

1. Casele is x]
eval(x,n) :=n.

(The value of the variable, x, is given to be n.)

2. Casele is k]
eval(k,n) :=k.

(The value of the numeral k is the integer k, no matter what value x
has.)

e Constructor cases:
3. Casele is (e1 + e2)]
eval((ey + e2),n) :=eval(ey,n) + eval(ez, n).
4. Casele is (eq * e2)]
eval((ey * e2),n) ::=eval(ey, n) - eval(ea, n).
5. Casele is —(e1)]

eval(—(ey),n) == —eval(ey, n).
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For example, here’s how the recursive definition of eval would arrive at the value
of 3 + x2 when x is 2:

eval((3 + (x % x)),2) = eval(3,2) +eval((x * x),2)  (by Def 3.5.5.3)

= 3+ eval((x * x),2) (by Def 3.5.5.2)
= 3 + (eval(x, 2) - eval(x, 2)) (by Def 3.5.5.4)
=34+(2-2) (by Def 3.5.5.1)
=34+4="7.

A Second Example

We next consider the function on matched strings that specifies the depth of the
matched brackets in any string. This function can be specified recursively as fol-
lows:

Definition 3.5.6. The depth d(s) of a string s € RecMatch is defined recursively
by the rules:

o d(A):=0.
e d([s]t) :=max{d(s) + 1,d (1)}

Ambiguity

When a recursive definition of a data type allows the same element to be constructed
in more than one way, the definition is said to be ambiguous. A function defined
recursively from an ambiguous definition of a data type will not be well-defined
unless the values specified for the different ways of constructing the element agree.

We were careful to choose an unambiguous definition of RecMatch to ensure that
functions defined recursively on the definition would always be well-defined. As
an example of the trouble an ambiguous definition can cause, let’s consider another
definition of the matched strings.

Definition 3.5.7. Define the set, M C brkts recursively as follows:
e Basecase: A € M,
e Constructor cases: if 5,7 € M, then the strings [ s ] and st are also in M.

By using structural induction, it is possible to prove that M = RecMatch. In-
deed, the definition of M might even seem like a more natural way to define the set
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of matched strings than the definition of RecMatch. But the definition of M is am-
biguous, while the (perhaps less natural) definition of RecMatch is unambiguous.
Does this ambiguity matter? Yes, it can. For example, suppose we defined

fA) =1,
f(Is]) =1+ f(s),
fG)=(f)+D-(f@)+1) for st # A.

Let a be the string [ [ ]] € M built by two successive applications of the first M
constructor starting with A. Next let

b:=uaa

= [[111[]]

and

c:=bb
=[0IIC0IIC0]1C0L0T]

each be built by successive applications of the second M constructor starting with
a.

Alternatively, we can build ba from the second constructor with s = b and
t = a, and then get to ¢ using the second constructor with s = ba and ¢t = a.

By applying these rules to the first way of constructing ¢, f(a) = 2, f(b) =
2+ 1D2+1) =9,and f(c) = f(bb) = (94 1)(9 + 1) = 100. Using the
second way of constructing ¢, we find that f(ba) = (9 4+ 1)(2 + 1) = 27 and
f(c) = f(baa) = (27 + 1)(2 + 1) = 84. The outcome is that f(c) is defined to
be both 100 and 84, which shows that the rules defining f" are inconsistent.

Note that structural induction remains a sound proof method even for ambiguous
recursive definitions, which is why it is easy to prove that M = RecMatch.

3.5.4 Recursive Functions on N—Structural Induction versus
Ordinary Induction

The nonnegative integers can be understood as a recursive data type.
Definition 3.5.8. The set, N, is a data type defined recursivly as:
e Base Case: 0 € N.

e Constructor Case: If n € N, then the successor,n + 1, of n is in N.
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This means that ordinary induction is a special case of structural induction on the
recursive Definition 3.5.8. Conversely, most proofs based on structural induction
that you will encounter in computer science can also be reformatted into proofs that
use only ordinary induction. The decision as to which technique to use is up to you,
but it will often be the case that structural induction provides the easiest approach
when you are dealing with recursive data structures or functions.

Definition 3.5.8 also justifies the familiar recursive definitions of functions on
the nonnegative integers. Here are some examples.

The Factorial Function

The factorial function is often written “n!.” You will be seeing it a lot in Parts III
and IV of this text. For now, we’ll use the notation fac(n) and define it recursively
as follows:

e Base Case: fac(0) ::= 1.
e Constructor Case: fac(n + 1) ::= (n 4+ 1) - fac(n) forn > 0.

The Fibonacci numbers.

Fibonacci numbers arose out of an effort 800 years ago to model population growth.
We will study them at some length in Part III. The nth Fibonacci number, fib(n),
can be defined recursively by:

e Base Cases: fib(0) ::= 0 and fib(1) ::= 1
e Constructor Case: fib(n) ::= fib(n — 1) + fib(n — 2) forn > 2.

Here the recursive step starts at n = 2 with base cases for n = 0 and n = 1. This
is needed since the recursion relies on two previous values.

What is fib(4)? Well, fib(2) = fib(1) 4 fib(0) = 1, fib(3) = fib(2) 4 fib(1) = 2,
so fib(4) = 3. The sequence starts out 0,1, 1,2,3,5,8,13,21,....
Sum-notation

Let “S(n)” abbreviate the expression “Y_r_, f(i).” We can recursively define S(n)
with the rules

e Base Case: S(0) :=0.

e Constructor Case: S(n + 1) ::= f(n + 1) + S(n) forn > 0.
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Ill-formed Function Definitions

There are some blunders to watch out for when defining functions recursively. Be-
low are some function specifications that resemble good definitions of functions on
the nonnegative integers, but they aren’t.

Definition 3.5.9.
filn) =24+ filn—1). 3.7

This “definition” has no base case. If some function, f1, satisfied (3.7), so would
a function obtained by adding a constant to the value of fj. So equation (3.7) does
not uniquely define an f7.

Definition 3.5.10.

07 lfl’l = O’
fa(n) = . 3.8)
fa(n 4+ 1) otherwise.

This “definition” has a base case, but still doesn’t uniquely determine f>. Any
function that is 0 at 0 and constant everywhere else would satisfy the specification,
so (3.8) also does not uniquely define anything.

In a typical programming language, evaluation of f,(1) would begin with a re-
cursive call of f5(2), which would lead to a recursive call of f5(3), ... with recur-
sive calls continuing without end. This “operational” approach interprets (3.8) as
defining a partial function, f5, that is undefined everywhere but 0.

Definition 3.5.11.

0, if n is divisible by 2,
f3(n) := 41, ifnisdivisible by 3, 3.9
2, otherwise.

This “definition” is inconsistent: it requires f3(6) = 0 and f3(6) = 1, so (3.9)
doesn’t define anything.

A Mysterious Function
Mathematicians have been wondering about the following function specification

for many years:

1, ifn <1,
Ja(n) =1 fa(n/2) if n > 11is even, (3.10)
fa(Bn 4+ 1) ifn > 1isodd.
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For example, f4(3) = 1 because

Ja@3) = fa(10) = fa(S) = fa(16) == fa(8) = fa(4) = fa(2) = fa(1) =1.

The constant function equal to 1 will satisfy (3.10), but it’s not known if another
function does too. The problem is that the third case specifies f4(n) in terms of f4
at arguments larger than n, and so cannot be justified by induction on N. It’s known
that any f4 satisfying (3.10) equals 1 for all n up to over a billion.
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Number theory is the study of the integers. Why anyone would want to study the
integers is not immediately obvious. First of all, what’s to know? There’s 0, there’s
1, 2, 3, and so on, and, oh yeah, -1, -2, .... Which one don’t you understand? Sec-
ond, what practical value is there in it? The mathematician G. H. Hardy expressed
pleasure in its impracticality when he wrote:

[Number theorists] may be justified in rejoicing that there is one sci-
ence, at any rate, and that their own, whose very remoteness from or-
dinary human activities should keep it gentle and clean.

Hardy was specially concerned that number theory not be used in warfare; he was
a pacifist. You may applaud his sentiments, but he got it wrong: Number Theory
underlies modern cryptography, which is what makes secure online communication
possible. Secure communication is of course crucial in war—which may leave poor
Hardy spinning in his grave. It’s also central to online commerce. Every time you
buy a book from Amazon, check your grades on WebSIS, or use a PayPal account,
you are relying on number theoretic algorithms.

Number theory also provides an excellent environment for us to practice and
apply the proof techniques that we developed in Chapters 2 and 3.

Since we’ll be focusing on properties of the integers, we’ll adopt the default
convention in this chapter that variables range over the set of integers, 7.

4.1 Divisibility
The nature of number theory emerges as soon as we consider the divides relation
a divides b iff ak = b for some k.

The notation, a | b, is an abbreviation for “a divides .” If a | b, then we also
say that b is a multiple of a. A consequence of this definition is that every number
divides zero.

This seems simple enough, but let’s play with this definition. The Pythagoreans,
an ancient sect of mathematical mystics, said that a number is perfect if it equals the
sum of its positive integral divisors, excluding itself. For example, 6 =1+ 2 4 3
and 28 = 1 + 2 + 4 + 7 + 14 are perfect numbers. On the other hand, 10 is not
perfect because 14245 = §, and 12 is not perfect because 1 +2+3+4+46 = 16.
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Euclid characterized all the even perfect numbers around 300 BC. But is there an
odd perfect number? More than two thousand years later, we still don’t know! All
numbers up to about 103°% have been ruled out, but no one has proved that there
isn’t an odd perfect number waiting just over the horizon.

So a half-page into number theory, we’ve strayed past the outer limits of human
knowledge! This is pretty typical; number theory is full of questions that are easy
to pose, but incredibly difficult to answer.! For example, several such problems
are shown in the box on the following page. Interestingly, we’ll see that computer
scientists have found ways to turn some of these difficulties to their advantage.

4.1.1 Facts about Divisibility

The lemma below states some basic facts about divisibility that are not difficult to
prove:

Lemma 4.1.1. The following statements about divisibility hold.
1. Ifa | b, then a | bc for all c.
2. Ifa|bandb |c, thena | c.
3. Ifa|banda |c, thena | sb+ tc forall s andt.
4. Forallc #0,a | b ifand only if ca | cb.

Proof. We’ll prove only part 2.; the other proofs are similar.

Proof of 2: Assume a | b and b | c¢. Since a | b, there exists an integer k
such that ak; = b. Since b | c, there exists an integer k» such that bk, = c.
Substituting ak for b in the second equation gives (ak1)ks = c¢. Soa(ki1kz) = c,
which implies that a | c. |

4.1.2 When Divisibility Goes Bad

As you learned in elementary school, if one number does not evenly divide another,
you get a “quotient” and a “remainder” left over. More precisely:

Theorem 4.1.2 (Division Theorem). > Let n and d be integers such that d > 0.
Then there exists a unique pair of integers q and r, such that

n=gq-d+rAND 0 <r <d. 4.1

'Don’t Panic—we’re going to stick to some relatively benign parts of number theory. These
super-hard unsolved problems rarely get put on problem sets.

3This theorem is often called the “Division Algorithm,” even though it is not what we would call
an algorithm. We will take this familiar result for granted without proof.
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Famous Conjectures in Number Theory
Fermat’s Last Theorem There are no positive integers x, y, and z such that

X"+ yn g

for some integer n > 2. In a book he was reading around 1630, Fermat
claimed to have a proof but not enough space in the margin to write it
down. Wiles finally gave a proof of the theorem in 1994, after seven years
of working in secrecy and isolation in his attic. His proof did not fit in any
margin.

Goldbach Conjecture Every even integer greater than two is equal to the sum of
two primesz. For example, 4 =2+ 2,6 =3+ 3,8 = 3 + 5, etc. The
conjecture holds for all numbers up to 10'®. In 1939 Schnirelman proved
that every even number can be written as the sum of not more than 300,000
primes, which was a start. Today, we know that every even number is the
sum of at most 6 primes.

Twin Prime Conjecture There are infinitely many primes p such that p + 2 is
also a prime. In 1966 Chen showed that there are infinitely many primes p
such that p + 2 is the product of at most two primes. So the conjecture is
known to be almost true!

Primality Testing There is an efficient way to determine whether a number is
prime. A naive search for factors of an integer n takes a number of steps
proportional to /7, which is exponential in the size of n in decimal or bi-
nary notation. All known procedures for prime checking blew up like this
on various inputs. Finally in 2002, an amazingly simple, new method was
discovered by Agrawal, Kayal, and Saxena, which showed that prime test-
ing only required a polynomial number of steps. Their paper began with a
quote from Gauss emphasizing the importance and antiquity of the prob-
lem even in his time—two centuries ago. So prime testing is definitely not
in the category of infeasible problems requiring an exponentially growing
number of steps in bad cases.

Factoring Given the product of two large primes n = pgq, there is no efficient
way to recover the primes p and g. The best known algorithm is the “num-
ber field sieve”, which runs in time proportional to:

el.9(lnn)1/3(ln1n n)2/3

This is infeasible when # has 300 digits or more.
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The number ¢ is called the quotient and the number r is called the remainder of
n divided by d. We use the notation qcnt(n, d) for the quotient and rem(n, d) for
the remainder.

For example, qcnt(2716,10) = 271 and rem(2716,10) = 6, since 2716 =
271 - 10 + 6. Similarly, rem(—11,7) = 3, since —11 = (=2) - 7 + 3. There
is a remainder operator built into many programming languages. For example,
the expression “32 % 5 evaluates to 2 in Java, C, and C++. However, all these
languages treat negative numbers strangely.

4.1.3 Die Hard

Simon: On the fountain, there should be 2 jugs, do you see them? A 5-gallon and
a 3-gallon. Fill one of the jugs with exactly 4 gallons of water and place it on
the scale and the timer will stop. You must be precise; one ounce more or less
will result in detonation. If you’re still alive in 5 minutes, we’ll speak.

Bruce: Wait, wait a second. I don’t get it. Do you get it?

Samuel: No.

Bruce: Get the jugs. Obviously, we can’t fill the 3-gallon jug with 4 gallons of
water.

Samuel: Obviously.

Bruce: All right. I know, here we go. We fill the 3-gallon jug exactly to the top,
right?

Samuel: Uh-huh.

Bruce: Okay, now we pour this 3 gallons into the 5-gallon jug, giving us exactly
3 gallons in the 5-gallon jug, right?

Samuel: Right, then what?

Bruce: All right. We take the 3-gallon jug and fill it a third of the way...

Samuel: No! He said, “Be precise.” Exactly 4 gallons.

Bruce: Sh—. Every cop within 50 miles is running his a— off and I’'m out here
playing kids’ games in the park.

Samuel: Hey, you want to focus on the problem at hand?

The preceding script is from the movie Die Hard 3: With a Vengeance. In the
movie, Samuel L. Jackson and Bruce Willis have to disarm a bomb planted by the
diabolical Simon Gruber. Fortunately, they find a solution in the nick of time. (No
doubt reading the script helped.) On the surface, Die Hard 3 is just a B-grade
action movie; however, we think the inner message of the film is that everyone
should learn at least a little number theory.

Unfortunately, Hollywood never lets go of a gimmick. Although there were no
water jug tests in Die Hard 4: Live Free or Die Hard, rumor has it that the jugs will
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return in future sequels:

Die Hard 5: Die Hardest Bruce goes on vacation and—shockingly—happens into
a terrorist plot. To save the day, he must make 3 gallons using 21- and 26-
gallon jugs.

Die Hard 6: Die of Old Age Bruce must save his assisted living facility from a
criminal mastermind by forming 2 gallons with 899- and 1147-gallon jugs.

Die Hard 7: Die Once and For All Bruce has to make 4 gallons using 3- and 6-
gallon jugs.

It would be nice if we could solve all these silly water jug questions at once. In
particular, how can one form g gallons using jugs with capacities a and b?
That’s where number theory comes in handy.

Finding an Invariant Property

Suppose that we have water jugs with capacities @ and b with b > a. The state of
the system is described below with a pair of numbers (x, y), where x is the amount
of water in the jug with capacity a and y is the amount in the jug with capacity b.
Let’s carry out sample operations and see what happens, assuming the b-jug is big
enough:

(0,0) — (a,0) fill first jug
— (0,a) pour first into second
— (a,a) fill first jug
— (2a —b,b) pour first into second (assuming 2a > b)
— (2a —b,0) empty second jug
— (0,2a — b) pour first into second
— (a,2a —b) fill first
— (3a —2b,b) pour first into second (assuming 3a > 2b)

What leaps out is that at every step, the amount of water in each jug is of the form
s-a+t-b 4.2)

for some integers s and . An expression of the form (4.2) is called an integer linear
combination of a and b, but in this chapter we’ll just call it a linear combination,
since we’re only talking integers. So we’re suggesting:

Lemma 4.1.3. Suppose that we have water jugs with capacities a and b. Then the
amount of water in each jug is always a linear combination of a and b.
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Lemma 4.1.3 is easy to prove by induction on the number of pourings.

Proof. The induction hypothesis, P(n), is the proposition that after n steps, the
amount of water in each jug is a linear combination of @ and b.

Base case: (n = 0). P(0) is true, because both jugs are initially empty, and
0-a+0-b=0.

Inductive step. We assume by induction hypothesis that after n steps the amount
of water in each jug is a linear combination of a and b. There are two cases:

o If we fill a jug from the fountain or empty a jug into the fountain, then that jug
is empty or full. The amount in the other jug remains a linear combination
of a and b. So P(n + 1) holds.

e Otherwise, we pour water from one jug to another until one is empty or the
other is full. By our assumption, the amount in each jug is a linear combina-
tion of @ and b before we begin pouring:

Jji=s1-a+t1-b
Jjo=S2-a+1t2-b

After pouring, one jug is either empty (contains O gallons) or full (contains a
or b gallons). Thus, the other jug contains either j; + j, gallons, ji + j» —a,
or j1 + j» — b gallons, all of which are linear combinations of @ and b. So
P(n + 1) holds in this case as well.

So in any case, P(n + 1) follows, completing the proof by induction. |

So we have established that the jug problem has an invariant property, namely
that the amount of water in every jug is always a linear combination of the capacities
of the jugs. This lemma has an important corollary:

Corollary 4.1.4. Bruce dies.

Proof. In Die Hard 7, Bruce has water jugs with capacities 3 and 6 and must form
4 gallons of water. However, the amount in each jug is always of the form 3s 4 61
by Lemma 4.1.3. This is always a multiple of 3 by part 3 of Lemma 4.1.1, so he
cannot measure out 4 gallons. |

But Lemma 4.1.3 isn’t very satisfying. We’ve just managed to recast a pretty
understandable question about water jugs into a complicated question about linear
combinations. This might not seem like a lot of progress. Fortunately, linear com-
binations are closely related to something more familiar, namely greatest common
divisors, and these will help us solve the water jug problem.
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4.2 The Greatest Common Divisor

The greatest common divisor of a and b is exactly what you’d guess: the largest
number that is a divisor of both @ and b. It is denoted by gcd(a, b). For example,
gcd(18,24) = 6. The greatest common divisor turns out to be a very valuable
piece of information about the relationship between a and b and for reasoning about
integers in general. So we’ll be making lots of arguments about greatest common
divisors in what follows.

4.2.1 Linear Combinations and the GCD

The theorem below relates the greatest common divisor to linear combinations.
This theorem is very useful; take the time to understand it and then remember it!

Theorem 4.2.1. The greatest common divisor of a and b is equal to the smallest
positive linear combination of a and b.

For example, the greatest common divisor of 52 and 44 is 4. And, sure enough,
4 is a linear combination of 52 and 44:

6-52+ (=7)-44 = 4

Furthermore, no linear combination of 52 and 44 is equal to a smaller positive
integer.

Proof of Theorem 4.2.1. By the Well Ordering Principle, there is a smallest positive
linear combination of @ and b; call it m. We’ll prove that m = ged(a, b) by showing
both gcd(a, b) < m and m < gcd(a, b).

First, we show that gcd(a, b) < m. Now any common divisor of ¢ and b—that
is, any ¢ such that ¢ | @ and ¢ | b—will divide both sa and ¢b, and therefore also
sa + tb for any s and ¢. The gcd(a, b) is by definition a common divisor of a and
b, so

gcd(a,b) | sa +th 4.3)

for every s and ¢. In particular, gcd(a, b) | m, which implies that gcd(a, b) < m.
Now, we show that m < gcd(a,b). We do this by showing that m | a. A
symmetric argument shows that m | b, which means that m is a common divisor of
a and b. Thus, m must be less than or equal to the greatest common divisor of a
and b.
All that remains is to show that m | a. By the Division Algorithm, there exists a
quotient ¢ and remainder r such that:

a=qg-m+r (where 0 <r < m)
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Recall that m = sa + tb for some integers s and 7. Substituting in for m gives:

a=gq-(sa+tb)+r, o)
r=(1—-gs)a+ (—qt)b.

We’ve just expressed r as a linear combination of a and ». However, m is the
smallest positive linear combination and 0 < r < m. The only possibility is that
the remainder r is not positive; that is, 7 = 0. This implies m | a. |

Corollary 4.2.2. An integer is linear combination of a and b iff it is a multiple of
gcd(a, b).

Proof. By (4.3), every linear combination of a and b is a multiple of gecd(a, b).
Conversely, since gcd(a, b) is a linear combination of @ and b, every multiple of
gcd(a, b) is as well. |

Now we can restate the water jugs lemma in terms of the greatest common divi-
sor:

Corollary 4.2.3. Suppose that we have water jugs with capacities a and b. Then
the amount of water in each jug is always a multiple of gcd(a, b).

For example, there is no way to form 4 gallons using 3- and 6-gallon jugs, be-
cause 4 is not a multiple of gcd(3, 6) = 3.

4.2.2 Properties of the Greatest Common Divisor
We’ll often make use of some basic ged facts:
Lemma 4.2.4. The following statements about the greatest common divisor hold:
1. Every common divisor of a and b divides gcd(a, b).
2. ged(ka,kb) =k - ged(a, b) for all k > 0.
3. Ifged(a,b) = 1 and ged(a, ¢) = 1, then ged(a, be) = 1.
4. Ifa | bc and ged(a,b) = 1, then a | c.
5. ged(a, b) = ged(b, rem(a, b)).

Here’s the trick to proving these statements: translate the gcd world to the linear
combination world using Theorem 4.2.1, argue about linear combinations, and then
translate back using Theorem 4.2.1 again.
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Proof. We prove only parts 3. and 4.
Proof of 3. The assumptions together with Theorem 4.2.1 imply that there exist
integers s, ¢, u, and v such that:

sa—+th =1

ua +ve =1
Multiplying these two equations gives:
(sa 4+ th)(ua + ve) =1

The left side can be rewritten as a - (asu + btu + csv) + bc(tv). This is a linear
combination of a and bc that is equal to 1, so gcd(a, bc) = 1 by Theorem 4.2.1.
Proof of 4. Theorem 4.2.1 says that gcd(ac, bc) is equal to a linear combination
of ac and bc. Now a | ac trivially and a | bc by assumption. Therefore, a divides
every linear combination of ac and bc. In particular, ¢ divides ged(ac,bc) =
¢ -ged(a,b) = ¢ -1 = c. The first equality uses part 2. of this lemma, and the
second uses the assumption that gcd(a, b) = 1. |

4.2.3 Euclid’s Algorithm

Part (5) of Lemma 4.2.4 is useful for quickly computing the greatest common divi-
sor of two numbers. For example, we could compute the greatest common divisor
of 1147 and 899 by repeatedly applying part (5):

ged(1147,899) = ged(899, rem(1147, 899))

=248
= gcd(248, rem(899, 248))
N —’
=155
= gcd(155,rem(248, 155))
—_—
=93
= ged(93, rem(155, 93))
N———’
=62
= gcd(62,rem(93, 62))
N——
=31
= gcd(31,rem(62, 31))
N e’
=0
= ged(31,0)

=31
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The last equation might look wrong, but 31 is a divisor of both 31 and O since every
integer divides 0.

This process is called Euclid’s algorithm and it was discovered by the Greeks
over 3000 years ago. You can prove that the algorithm always eventually terminates
by using induction and the fact that the numbers in each step keep getting smaller
until the remainder is 0, whereupon you have computed the GCD. In fact, the
numbers are getting smaller quickly (by at least a factor of 2 every two steps) and so
Euler’s Algorithm is quite fast. The fact that Euclid’s Algorithm actually produces
the GCD (and not something different) can also be proved by an inductive invariant
argument.

The calculation that gcd(1147, 899) = 31 together with Corollary 4.2.3 implies
that there is no way to measure out 2 gallons of water using jugs with capacities
1147 and 899, since we can only obtain multiples of 31 gallons with these jugs.
This is good news—Bruce won’t even survive Die Hard 6!

But what about Die Hard 57 Is it possible for Bruce to make 3 gallons using 21-
and 26-gallon jugs? Using Euclid’s algorithm:

gcd(26,21) = ged(21,5) = ged(5,1) = 1.

Since 3 is a multiple of 1, so we can’t rule out the possibility that 3 gallons can be
formed. On the other hand, we don’t know if it can be done either. To resolve the
matter, we will need more number theory.

4.2.4 One Solution for All Water Jug Problems

Corollary 4.2.2 says that 3 can be written as a linear combination of 21 and 26,
since 3 is a multiple of gcd(21,26) = 1. In other words, there exist integers s and
t such that:

3=s5-2141-26

We don’t know what the coefficients s and ¢ are, but we do know that they exist.
Now the coefficient s could be either positive or negative. However, we can
readily transform this linear combination into an equivalent linear combination

3=s"-2141¢-26 (4.4)

where the coefficient s’ is positive. The trick is to notice that if we increase s by
26 in the original equation and decrease ¢ by 21, then the value of the expression
s -21 4t - 26 is unchanged overall. Thus, by repeatedly increasing the value of s
(by 26 at a time) and decreasing the value of # (by 21 at a time), we get a linear
combination s” - 21 + ¢’ - 26 = 3 where the coefficient s’ is positive. Notice that
then ¢ must be negative; otherwise, this expression would be much greater than 3.
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Now we can form 3 gallons using jugs with capacities 21 and 26: We simply
repeat the following steps s’ times:

1. Fill the 21-gallon jug.

2. Pour all the water in the 21-gallon jug into the 26-gallon jug. If at any time
the 26-gallon jug becomes full, empty it out, and continue pouring the 21-
gallon jug into the 26-gallon jug.

At the end of this process, we must have have emptied the 26-gallon jug exactly
|t] times. Here’s why: we’ve taken s’ - 21 gallons of water from the fountain, and
we’ve poured out some multiple of 26 gallons. If we emptied fewer than |¢/| times,
then by (4.4), the big jug would be left with at least 3 4 26 gallons, which is more
than it can hold; if we emptied it more times, the big jug would be left containing
at most 3 — 26 gallons, which is nonsense. But once we have emptied the 26-gallon
jug exactly |¢’| times, equation (4.4) implies that there are exactly 3 gallons left.
Remarkably, we don’t even need to know the coefficients s” and ¢’ in order to
use this strategy! Instead of repeating the outer loop s’ times, we could just repeat
until we obtain 3 gallons, since that must happen eventually. Of course, we have to
keep track of the amounts in the two jugs so we know when we’re done. Here’s the
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solution that approach gives:

fill 21 pour 21 into 26

0,00 — (21,00 ———— (0,21)
fill 21 pour 21 into 26 empty 26 pour 21 into 26
5 @1,21) ———  (16,26) —— (16,0) —— >
fill 21 pour 21 into 26 empty 26 pour 21 into 26
— (@1,1) ——— (11,26) —— (11,0) ———
fill 21 pour 21 into 26 empty 26 pour 21 into 26
— (21,11) —— (6,26) —— (6,0) ———
fill 21 pour 21 into 26 empty 26 pour 21 into 26
— (21,6) ——— (1,26 —— (1,0) ——
fill 21 pour 21 into 26
— (21,1) —> (0,22)
fill 21 pour 21 into 26 empty 26 pour 21 into 26
=5 @21,22) —— (17,26) —— (17,0) —————
fill 21 pour 21 into 26 empty 26 pour 21 into 26
— (21,17) ——— (12,26) —— (12,0) ——
fill 21 pour 21 into 26 empty 26 pour 21 into 26
5 @eL12) ——— 5 (7,260 ——  (7,0) ————
fill 21 pour 21 into 26 empty 26 pour 21 into 26
- (1,7) —/—5 (2.26) —— (2,0) —
fill 21 pour 21 into 26
5 (2L,2) ——— (0,23)
fill 21 pour 21 into 26 empty 26 pour 21 into 26
— (21,23) ——— (18,26) —— (18,0) ———
fill 21 pour 21 into 26 empty 26 pour 21 into 26
5 @1,18) ——— 5 (13,26) —— (13,0) ——— >
fill 21 pour 21 into 26 empty 26 pour 21 into 26
== @eL13) ——— (8,260 ——> (8,0) ——
fill 21 pour 21 into 26 empty 26 pour 21 into 26

— (21,8 ———M (3,26 —— (3,00 ——m

The same approach works regardless of the jug capacities and even regardless
the amount we’re trying to produce! Simply repeat these two steps until the desired
amount of water is obtained:

1. Fill the smaller jug.

2. Pour all the water in the smaller jug into the larger jug. If at any time the
larger jug becomes full, empty it out, and continue pouring the smaller jug
into the larger jug.

By the same reasoning as before, this method eventually generates every multiple
of the greatest common divisor of the jug capacities—all the quantities we can
possibly produce. No ingenuity is needed at all!

4.2.5 The Pulverizer

We have shown that no matter which pair of numbers a and b we are given, there
is always a pair of integer coefficients s and ¢ such that

gcd(a, b) = sa + tb.

(0, 16)
(0, 11)
(0,6)
0,1)

(0, 17)
(0, 12)
0.7)
0,2)

(0, 18)
(0, 13)
(0,8)
(0,3)
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Unfortunately, the proof was nonconstructive: it didn’t suggest a way for finding
such s and 7. That job is tackled by a mathematical tool that dates to sixth-century
India, where it was called kuttak, which means “The Pulverizer”. Today, the Pul-
verizer is more commonly known as “the extended Euclidean GCD algorithm”,
because it is so close to Euclid’s Algorithm.

Euclid’s Algorithm for finding the GCD of two numbers relies on repeated ap-
plication of the equation:

ged(a, b) = ged(b,rem(a, b,)).

For example, we can compute the GCD of 259 and 70 as follows:

gcd(259,70) = ged(70, 49) since rem(259, 70) = 49
= gcd(49,21) since rem(70, 49) = 21
= gcd(21,7) since rem(49,21) = 7
= gcd(7,0) since rem(21,7) =0
=17.

The Pulverizer goes through the same steps, but requires some extra bookkeeping
along the way: as we compute gcd(a, b), we keep track of how to write each of
the remainders (49, 21, and 7, in the example) as a linear combination of ¢ and b
(this is worthwhile, because our objective is to write the last nonzero remainder,
which is the GCD, as such a linear combination). For our example, here is this
extra bookkeeping:

x y (rem(x,y)) = x—gq-y
259 70 49 = 259-3-70
70 49 21 = 70—1-49
= 70—1-(259—3-70)
= —1:259+4-70
49 21 7 = 49-2.21
= (259—3-70) —2-(—1-259 + 4-70)
13.259—11-70]
21 7 0

We began by initializing two variables, x = a and y = b. In the first two columns
above, we carried out Euclid’s algorithm. At each step, we computed rem(x, y),
which can be written in the form x — g - y. (Remember that the Division Algorithm
says x = ¢ - y + r, where r is the remainder. We get r = x — ¢ - y by rearranging
terms.) Then we replaced x and y in this equation with equivalent linear combina-
tions of a and b, which we already had computed. After simplifying, we were left
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with a linear combination of @ and b that was equal to the remainder as desired.
The final solution is boxed.

You can prove that the Pulverizer always works and that it terminates by using
induction. Indeed, you can “pulverize” very large numbers very quickly by using
this algorithm. As we will soon see, its speed makes the Pulverizer a very useful
tool in the field of cryptography.

4.3 The Fundamental Theorem of Arithmetic

We now have almost enough tools to prove something that you probably already
know.

Theorem 4.3.1 (Fundamental Theorem of Arithmetic). Every positive integer n
can be written in a unique way as a product of primes:

n=pi-p2--p; (pr = p2=---=pj)

Notice that the theorem would be false if 1 were considered a prime; for example,
15 could be written as 3-5or 1-3-5or 12-3-5. Also, we're relying on a standard
convention: the product of an empty set of numbers is defined to be 1, much as the
sum of an empty set of numbers is defined to be 0. Without this convention, the
theorem would be false forn = 1.

There is a certain wonder in the Fundamental Theorem, even if you’ve known it
since you were in a crib. Primes show up erratically in the sequence of integers. In
fact, their distribution seems almost random:

2,3,5,7,11,13,17,19,23,29,31,37,41, 43, ...

Basic questions about this sequence have stumped humanity for centuries. And yet
we know that every natural number can be built up from primes in exactly one way.
These quirky numbers are the building blocks for the integers.

The Fundamental Theorem is not hard to prove, but we’ll need a couple of pre-
liminary facts.

Lemma 4.3.2. If p is a prime and p | ab, then p | a or p | b.

Proof. The greatest common divisor of @ and p must be either 1 or p, since these
are the only positive divisors of p. If gcd(a, p) = p, then the claim holds, be-
cause a is a multiple of p. Otherwise, gcd(a, p) = 1 and so p | b by part (4) of
Lemma 4.2 4. |
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The Prime Number Theorem

Let 7w (x) denote the number of primes less than or equal to x. For example,
(10) = 4 because 2, 3, 5, and 7 are the primes less than or equal to 10. Primes
are very irregularly distributed, so the growth of r is similarly erratic. However,
the Prime Number Theorem gives an approximate answer:

m(x)

lim =1
x—o00 x/Inx

Thus, primes gradually taper off. As a rule of thumb, about 1 integer out of every
In x in the vicinity of x is a prime.

The Prime Number Theorem was conjectured by Legendre in 1798 and proved a
century later by de la Vallee Poussin and Hadamard in 1896. However, after his
death, a notebook of Gauss was found to contain the same conjecture, which he
apparently made in 1791 at age 15. (You sort of have to feel sorry for all the oth-
erwise “great” mathematicians who had the misfortune of being contemporaries
of Gauss.)

In late 2004 a billboard appeared in various locations around the country:

first 10-digit prime found

. o com
in consecutive digits of e

Substituting the correct number for the expression in curly-braces produced the
URL for a Google employment page. The idea was that Google was interested in
hiring the sort of people that could and would solve such a problem.

How hard is this problem? Would you have to look through thousands or millions
or billions of digits of e to find a 10-digit prime? The rule of thumb derived from
the Prime Number Theorem says that among 10-digit numbers, about 1 in

In10'° ~ 23

is prime. This suggests that the problem isn’t really so hard! Sure enough, the
first 10-digit prime in consecutive digits of e appears quite early:

e =2.718281828459045235360287471352662497757247093699959574966
9676277240766303535475945713821785251664274274663919320030
599218174135966290435729003342952605956307381323286279434 . ..
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A routine induction argument extends this statement to:
Lemma 4.3.3. Let p be a prime. If p | ayaz -+ - ay, then p divides some a;.
Now we’re ready to prove the Fundamental Theorem of Arithmetic.

Proof. Theorem 3.1.2 showed, using the Well Ordering Principle, that every posi-
tive integer can be expressed as a product of primes. So we just have to prove this
expression is unique. We will use Well Ordering to prove this too.

The proof is by contradiction: assume, contrary to the claim, that there exist
positive integers that can be written as products of primes in more than one way.
By the Well Ordering Principle, there is a smallest integer with this property. Call
this integer n, and let

n=pi1-p2--pj
=dq1-92-"-qk

be two of the (possibly many) ways to write n as a product of primes. Then p; | n
and so p1 | q192 - - - qx. Lemma 4.3.3 implies that p; divides one of the primes ¢;.
But since g; is a prime, it must be that p; = ¢g;. Deleting p; from the first product
and ¢; from the second, we find that n/ p; is a positive integer smaller than n that
can also be written as a product of primes in two distinct ways. But this contradicts
the definition of n as the smallest such positive integer. |

4.4 Alan Turing

The man pictured in Figure 4.1 is Alan Turing, the most important figure in the
history of computer science. For decades, his fascinating life story was shrouded
by government secrecy, societal taboo, and even his own deceptions.

At age 24, Turing wrote a paper entitled On Computable Numbers, with an Ap-
plication to the Entscheidungsproblem. The crux of the paper was an elegant way
to model a computer in mathematical terms. This was a breakthrough, because it
allowed the tools of mathematics to be brought to bear on questions of computation.
For example, with his model in hand, Turing immediately proved that there exist
problems that no computer can solve—no matter how ingenious the programmer.
Turing’s paper is all the more remarkable because he wrote it in 1936, a full decade
before any electronic computer actually existed.

The word “Entscheidungsproblem” in the title refers to one of the 28 mathemat-
ical problems posed by David Hilbert in 1900 as challenges to mathematicians of




“mcs-ftI” — 2010/9/8 — 0:40 — page 97 — #103

4.4. Alan Turing 97

Figure 4.1 Alan Turing

the 20th century. Turing knocked that one off in the same paper. And perhaps
you’ve heard of the “Church-Turing thesis”? Same paper. So Turing was obviously
a brilliant guy who generated lots of amazing ideas. But this lecture is about one of
Turing’s less-amazing ideas. It involved codes. It involved number theory. And it
was sort of stupid.

Let’s look back to the fall of 1937. Nazi Germany was rearming under Adolf
Hitler, world-shattering war looked imminent, and—Ilike us—Alan Turing was pon-
dering the usefulness of number theory. He foresaw that preserving military secrets
would be vital in the coming conflict and proposed a way fo encrypt communica-
tions using number theory. This is an idea that has ricocheted up to our own time.
Today, number theory is the basis for numerous public-key cryptosystems, digital
signature schemes, cryptographic hash functions, and electronic payment systems.
Furthermore, military funding agencies are among the biggest investors in crypto-
graphic research. Sorry Hardy!

Soon after devising his code, Turing disappeared from public view, and half a
century would pass before the world learned the full story of where he’d gone and
what he did there. We’ll come back to Turing’s life in a little while; for now, let’s
investigate the code Turing left behind. The details are uncertain, since he never
formally published the idea, so we’ll consider a couple of possibilities.
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4.4.1 Turing’s Code (Version 1.0)

The first challenge is to translate a text message into an integer so we can perform
mathematical operations on it. This step is not intended to make a message harder
to read, so the details are not too important. Here is one approach: replace each
letter of the message with two digits (4 = 01, B = 02, C = 03, etc.) and string all
the digits together to form one huge number. For example, the message “victory”
could be translated this way:

£3]

“v i ¢ t o r Yy
—- 22 09 03 20 15 18 25

Turing’s code requires the message to be a prime number, so we may need to pad
the result with a few more digits to make a prime. In this case, appending the digits
13 gives the number 2209032015182513, which is prime.

Here is how the encryption process works. In the description below, m is the
unencoded message (which we want to keep secret), m* is the encrypted message
(which the Nazis may intercept), and k is the key.

Beforehand The sender and receiver agree on a secret key, which is a large prime

k.

Encryption The sender encrypts the message m by computing:

m*=m-k

Decryption The receiver decrypts m™ by computing:

m* m-k

—:_:m

k

For example, suppose that the secret key is the prime number k& = 22801763489
and the message m is “victory”. Then the encrypted message is:

m*=m-k
= 2209032015182513 - 22801763489
= 50369825549820718594667857

There are a couple of questions that one might naturally ask about Turing’s code.

1. How can the sender and receiver ensure that m and k are prime numbers, as
required?
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The general problem of determining whether a large number is prime or com-
posite has been studied for centuries, and reasonably good primality tests
were known even in Turing’s time. In 2002, Manindra Agrawal, Neeraj
Kayal, and Nitin Saxena announced a primality test that is guaranteed to
work on a number n in about (logn)'? steps, that is, a number of steps
bounded by a twelfth degree polynomial in the length (in bits) of the in-
put, n. This definitively places primality testing way below the problems
of exponential difficulty. Amazingly, the description of their breakthrough
algorithm was only thirteen lines long!

Of course, a twelfth degree polynomial grows pretty fast, so the Agrawal, et
al. procedure is of no practical use. Still, good ideas have a way of breeding
more good ideas, so there’s certainly hope that further improvements will
lead to a procedure that is useful in practice. But the truth is, there’s no
practical need to improve it, since very efficient probabilistic procedures for
prime-testing have been known since the early 1970°s. These procedures
have some probability of giving a wrong answer, but their probability of
being wrong is so tiny that relying on their answers is the best bet you’ll ever
make.

2. Is Turing’s code secure?

The Nazis see only the encrypted message m* = m - k, so recovering the
original message m requires factoring m™*. Despite immense efforts, no re-
ally efficient factoring algorithm has ever been found. It appears to be a
fundamentally difficult problem, though a breakthrough someday is not im-
possible. In effect, Turing’s code puts to practical use his discovery that
there are limits to the power of computation. Thus, provided m and k are
sufficiently large, the Nazis seem to be out of luck!

This all sounds promising, but there is a major flaw in Turing’s code.

4.4.2 Breaking Turing’s Code

Let’s consider what happens when the sender transmits a second message using
Turing’s code and the same key. This gives the Nazis two encrypted messages to
look at:

mi =my -k and my =my -k

The greatest common divisor of the two encrypted messages, m} and m3, is the
secret key k. And, as we’ve seen, the GCD of two numbers can be computed very
efficiently. So after the second message is sent, the Nazis can recover the secret key
and read every message!
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It is difficult to believe a mathematician as brilliant as Turing could overlook
such a glaring problem. One possible explanation is that he had a slightly different
system in mind, one based on modular arithmetic.

4.5 Modular Arithmetic

On page 1 of his masterpiece on number theory, Disquisitiones Arithmeticae, Gauss
introduced the notion of “congruence”. Now, Gauss is another guy who managed
to cough up a half-decent idea every now and then, so let’s take a look at this one.
Gauss said that a is congruent to b modulo n iff n | (a — b). This is written

a=b (modn).

For example:
29=15 (mod 7) because7 | (29— 15).

There is a close connection between congruences and remainders:
Lemma 4.5.1 (Congruences and Remainders).
a=b (modn) if rem(a,n)=rem(b,n).

Proof. By the Division Theorem, there exist unique pairs of integers ¢, r; and
g2, r» such that:

a=qin+r; where 0 < ry < n,

b=qn+r where 0 < ry < n.
Subtracting the second equation from the first gives:
a—b=(q1—q)n+ (r1—r2) where —n <r; —rp <n.

Now a = b (mod n) if and only if n divides the left side. This is true if and only
if n divides the right side, which holds if and only if r; — r» is a multiple of n.
Given the bounds on r; — r3, this happens precisely when r; = r3, that is, when
rem(a,n) = rem(b, n). |

So we can also see that

29=15 (mod 7) because rem(29,7) =1 = rem(15,7).
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This formulation explains why the congruence relation has properties like an equal-
ity relation. Notice that even though (mod 7) appears over on the right side, the =
symbol, it isn’t any more strongly associated with the 15 than with the 29. It would
really be clearer to write 29 = 097 15 for example, but the notation with the
modulus at the end is firmly entrenched and we’ll stick to it.

We’ll make frequent use of the following immediate Corollary of Lemma 4.5.1:

Corollary 4.5.2.
a =rem(a,n) (mod n)

Still another way to think about congruence modulo # is that it defines a partition
of the integers into n sets so that congruent numbers are all in the same set. For
example, suppose that we’re working modulo 3. Then we can partition the integers
into 3 sets as follows:

{ ..., =6, =3, 0, 3, 6, 9, ... }
{ ..., =5 2,1, 4, 7,10, ... }
{ ..., —4, -1, 2,5 8 11, ... }

according to whether their remainders on division by 3 are 0, 1, or 2. The upshot
is that when arithmetic is done modulo n there are really only n different kinds
of numbers to worry about, because there are only n possible remainders. In this
sense, modular arithmetic is a simplification of ordinary arithmetic and thus is a
good reasoning tool.

There are many useful facts about congruences, some of which are listed in the
lemma below. The overall theme is that congruences work a lot like equations,
though there are a couple of exceptions.

Lemma 4.5.3 (Facts About Congruences). The following hold forn > 1:
1. a =a (mod n)
2. a =b (mod n) implies b = a (mod n)
3.

N

= b (mod n) and b = ¢ (mod n) implies a = ¢ (mod n)

R
Q

= b (mod n) impliesa +c = b + ¢ (mod n)
5. a=b (mod n) implies ac = bc (mod n)
6. a=b (mod n) andc =d (mod n) implya +c =b+ d (mod n)

7. a=b (mod n)and c = d (mod n) imply ac = bd (mod n)
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Proof. Parts 1-3. follow immediately from Lemma 4.5.1. Part 4. follows imme-
diately from the definition that a = b (mod n) iff n | (a — b). Likewise, part 5.
follows because if n | (@ — b) then it divides (a — b)c = ac — bc. To prove part 6.,
assume

a=>b (modn) 4.5)
and
c=d (mod n). 4.6)
Then
a+c=b+c¢ (modn) (by part 4. and (4.5)),
c+b=d+b (modn) (by part 4. and (4.6)), so
b+c=b+d (modn) and therefore
a+c=b+d (modn) (by part 3.)
Part 7 has a similar proof. |

4.5.1 Turing’s Code (Version 2.0)

In 1940, France had fallen before Hitler’s army, and Britain stood alone against
the Nazis in western Europe. British resistance depended on a steady flow of sup-
plies brought across the north Atlantic from the United States by convoys of ships.
These convoys were engaged in a cat-and-mouse game with German “U-boats”—
submarines—which prowled the Atlantic, trying to sink supply ships and starve
Britain into submission. The outcome of this struggle pivoted on a balance of in-
formation: could the Germans locate convoys better than the Allies could locate
U-boats or vice versa?

Germany lost.

But a critical reason behind Germany’s loss was made public only in 1974: Ger-
many’s naval code, Enigma, had been broken by the Polish Cipher Bureau (see
http://en.wikipedia.org/wiki/Polish_Cipher_Bureau) and the
secret had been turned over to the British a few weeks before the Nazi invasion of
Poland in 1939. Throughout much of the war, the Allies were able to route con-
voys around German submarines by listening in to German communications. The
British government didn’t explain how Enigma was broken until 1996. When it
was finally released (by the US), the story revealed that Alan Turing had joined the
secret British codebreaking effort at Bletchley Park in 1939, where he became the
lead developer of methods for rapid, bulk decryption of German Enigma messages.
Turing’s Enigma deciphering was an invaluable contribution to the Allied victory
over Hitler.



http://en.wikipedia.org/wiki/Polish_Cipher_Bureau
http://en.wikipedia.org/wiki/Polish_Cipher_Bureau

“mes-ftI” — 2010/9/8 — 0:40 — page 103 — #109

4.6. Arithmetic with a Prime Modulus 103

Governments are always tight-lipped about cryptography, but the half-century of
official silence about Turing’s role in breaking Enigma and saving Britain may be
related to some disturbing events after the war. More on that later. Let’s get back to
number theory and consider an alternative interpretation of Turing’s code. Perhaps
we had the basic idea right (multiply the message by the key), but erred in using
conventional arithmetic instead of modular arithmetic. Maybe this is what Turing
meant:

Beforehand The sender and receiver agree on a large prime p, which may be made
public. (This will be the modulus for all our arithmetic.) They also agree on
asecretkey k € {1,2,...,p—1}.

Encryption The message m can be any integer in the set {0,1,2,...,p — 1}; in
particular, the message is no longer required to be a prime. The sender en-
crypts the message m to produce m™* by computing:

m* = rem(mk, p) 4.7

Decryption (Uh-oh.)

The decryption step is a problem. We might hope to decrypt in the same way as
before: by dividing the encrypted message m™* by the key k. The difficulty is that
m™ is the remainder when mk is divided by p. So dividing m™* by k might not even
give us an integer!

This decoding difficulty can be overcome with a better understanding of arith-
metic modulo a prime.

4.6 Arithmetic with a Prime Modulus

4.6.1 Multiplicative Inverses

The multiplicative inverse of a number x is another number x ! such that:
x-x =1
Generally, multiplicative inverses exist over the real numbers. For example, the
multiplicative inverse of 3 is 1/3 since:
1
3.-=1
3

The sole exception is that 0 does not have an inverse.
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On the other hand, inverses generally do not exist over the integers. For example,
7 can not be multiplied by another integer to give 1.

Surprisingly, multiplicative inverses do exist when we’re working modulo a prime
number. For example, if we’re working modulo 5, then 3 is a multiplicative inverse
of 7, since:

7-3=1 (mod)5)

(All numbers congruent to 3 modulo 5 are also multiplicative inverses of 7; for
example, 7-8 = 1 (mod 5) as well.) The only exception is that numbers congruent
to 0 modulo 5 (that is, the multiples of 5) do not have inverses, much as 0 does not
have an inverse over the real numbers. Let’s prove this.

Lemma 4.6.1. If p is prime and k is not a multiple of p, then k has a multiplicative
inverse modulo p.

Proof. Since p is prime, it has only two divisors: 1 and p. And since & is not a mul-
tiple of p, we must have gcd(p, k) = 1. Therefore, there is a linear combination of
p and k equal to 1:

sp+thk=1

Rearranging terms gives:
sp=1—tk

This implies that p | (1 — tk) by the definition of divisibility, and therefore tk = 1
(mod p) by the definition of congruence. Thus, ¢ is a multiplicative inverse of
k. |

Multiplicative inverses are the key to decryption in Turing’s code. Specifically,
we can recover the original message by multiplying the encoded message by the
inverse of the key:

m* - k™' = rem(mk, p) - k™! (the def. (4.7) of m™)
= (mk)k™! (mod p) (by Cor. 4.5.2)
=m (mod p).

This shows that m*k~! is congruent to the original message m. Since m was in
the range 0, 1, ..., p — 1, we can recover it exactly by taking a remainder:

m = rem(m*k~1, p).

So all we need to decrypt the message is to find a value of k~!. From the proof of
Lemma 4.6.1, we know that ¢ is such a value, where sp +tk = 1. Finding ¢ is easy
using the Pulverizer.
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4.6.2 Cancellation

Another sense in which real numbers are nice is that one can cancel multiplicative
terms. In other words, if we know that m1k = m»k, then we can cancel the k’s
and conclude that m{ = my, provided k # 0. In general, cancellation is not valid
in modular arithmetic. For example,

2-3=4-3 (mod 6),

but canceling the 3’s leads to the false conclusion that 2 = 4 (mod 6). The fact
that multiplicative terms can not be canceled is the most significant sense in which
congruences differ from ordinary equations. However, this difference goes away if
we’re working modulo a prime; then cancellation is valid.

Lemma 4.6.2. Suppose p is a prime and k is not a multiple of p. Then
ak = bk (mod p) IMPLIES a=b (mod p).

Proof. Multiply both sides of the congruence by k1. |

We can use this lemma to get a bit more insight into how Turing’s code works.
In particular, the encryption operation in Turing’s code permutes the set of possible
messages. This is stated more precisely in the following corollary.

Corollary 4.6.3. Suppose p is a prime and k is not a multiple of p. Then the
sequence:

rem((1-k), p), rem(2-k),p), ..., rem(((p—1)-k).p)

is a permutation® of the sequence:

I, 2, ..., (p—=1.

Proof. The sequence of remainders contains p — 1 numbers. Since i - k is not
divisible by p fori = 1,... p — 1, all these remainders are in the range 1 to p — 1
by the definition of remainder. Furthermore, the remainders are all different: no
two numbers in the range 1 to p — 1 are congruent modulo p, and by Lemma 4.6.2,
i-k = j-k (mod p) if and only if i = j (mod p). Thus, the sequence of
remainders must contain all of the numbers from 1 to p — 1 in some order. |

4A permutation of a sequence of elements is a reordering of the elements.
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For example, suppose p = 5 and k = 3. Then the sequence:

rem((1-3),5), rem((2-3),5), rem((3-3),5), rem((4-3),5)

=3 =1 =4 =2

is a permutation of 1, 2, 3, 4. As long as the Nazis don’t know the secret key k,
they don’t know how the set of possible messages are permuted by the process of
encryption and thus they can’t read encoded messages.

4.6.3 Fermat’s Little Theorem

An alternative approach to finding the inverse of the secret key k in Turing’s code
(about equally efficient and probably more memorable) is to rely on Fermat’s Little
Theorem, which is much easier than his famous Last Theorem.

Theorem 4.6.4 (Fermat’s Little Theorem). Suppose p is a prime and k is not a

multiple of p. Then:
kP~''=1 (mod p)

Proof. We reason as follows:

(p—D!e=1-2---(p—1)

=rem(k, p) - rem(2k, p)---rem((p — 1)k, p) (by Cor 4.6.3)
=k-2k---(p— Dk (mod p) (by Cor4.5.2)
=(p—-D!kP7! (mod p) (rearranging terms)

Now (p — 1)!is not a multiple of p because the prime factorizations of 1,2, ...,
(p — 1) contain only primes smaller than p. So by Lemma 4.6.2, we can cancel
(p — 1! from the first and last expressions, which proves the claim. |

Here is how we can find inverses using Fermat’s Theorem. Suppose p is a prime
and k is not a multiple of p. Then, by Fermat’s Theorem, we know that:

kP~2. k=1 (mod p)

Therefore, k?~2 must be a multiplicative inverse of k. For example, suppose that
we want the multiplicative inverse of 6 modulo 17. Then we need to compute
rem(6'°, 17), which we can do by successive squaring. All the congruences below
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hold modulo 17.

6> =36=2

645(62)252254

68 =6 =4>=16
6°=6%.6*.62.6=16-4-2-6=3

Therefore, rem(615 ,17) = 3. Sure enough, 3 is the multiplicative inverse of 6
modulo 17, since:
3-6=1 (mod 17)

In general, if we were working modulo a prime p, finding a multiplicative in-
verse by trying every value between 1 and p — 1 would require about p operations.
However, the approach above requires only about 2 log p operations, which is far
better when p is large.

4.6.4 Breaking Turing’s Code—Again

The Germans didn’t bother to encrypt their weather reports with the highly-secure
Enigma system. After all, so what if the Allies learned that there was rain off the
south coast of Iceland? But, amazingly, this practice provided the British with a
critical edge in the Atlantic naval battle during 1941.

The problem was that some of those weather reports had originally been trans-
mitted using Enigma from U-boats out in the Atlantic. Thus, the British obtained
both unencrypted reports and the same reports encrypted with Enigma. By com-
paring the two, the British were able to determine which key the Germans were
using that day and could read all other Enigma-encoded traffic. Today, this would
be called a known-plaintext attack.

Let’s see how a known-plaintext attack would work against Turing’s code. Sup-
pose that the Nazis know both m and m™* where:

m* =mk (mod p)

Now they can compute:

mP~2 . m* = mP~2 . rem(mk, p) (def. (4.7) of m™)
=mP2.mk (mod p) (by Cor 4.5.2)
=m? 1.k (mod p)
=k (mod p) (Fermat’s Theorem)

Now the Nazis have the secret key k and can decrypt any message!
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This is a huge vulnerability, so Turing’s code has no practical value. Fortunately,
Turing got better at cryptography after devising this code; his subsequent decipher-
ing of Enigma messages surely saved thousands of lives, if not the whole of Britain.

4.6.5 Turing Postscript

A few years after the war, Turing’s home was robbed. Detectives soon determined
that a former homosexual lover of Turing’s had conspired in the robbery. So they
arrested him—that is, they arrested Alan Turing—because homosexuality was a
British crime punishable by up to two years in prison at that time. Turing was
sentenced to a hormonal “treatment” for his homosexuality: he was given estrogen
injections. He began to develop breasts.

Three years later, Alan Turing, the founder of computer science, was dead. His
mother explained what happened in a biography of her own son. Despite her re-
peated warnings, Turing carried out chemistry experiments in his own home. Ap-
parently, her worst fear was realized: by working with potassium cyanide while
eating an apple, he poisoned himself.

However, Turing remained a puzzle to the very end. His mother was a devoutly
religious woman who considered suicide a sin. And, other biographers have pointed
out, Turing had previously discussed committing suicide by eating a poisoned ap-
ple. Evidently, Alan Turing, who founded computer science and saved his country,
took his own life in the end, and in just such a way that his mother could believe it
was an accident.

Turing’s last project before he disappeared from public view in 1939 involved the
construction of an elaborate mechanical device to test a mathematical conjecture
called the Riemann Hypothesis. This conjecture first appeared in a sketchy paper
by Bernhard Riemann in 1859 and is now one of the most famous unsolved problem
in mathematics.

4.7 Arithmetic with an Arbitrary Modulus

Turing’s code did not work as he hoped. However, his essential idea—using num-
ber theory as the basis for cryptography—succeeded spectacularly in the decades
after his death.

In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman at MIT proposed a
highly secure cryptosystem (called RSA) based on number theory. Despite decades
of attack, no significant weakness has been found. Moreover, RSA has a major
advantage over traditional codes: the sender and receiver of an encrypted mes-
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The Riemann Hypothesis

The formula for the sum of an infinite geometric series says:

1

l+x+x2+x° 4. =
I—x

35, X = %, X = z5, and so on for each prime number gives a
sequence of equations:

Substituting x = = !

LU B SR

2s 22s 23s 1_1/2s

LR S R

3s 32s 33s 1_1/3s

LR S R

5s 52s 53s 1_1/53
etc.

Multiplying together all the left sides and all the right sides gives:

S (=)

p Eprimes

The sum on the left is obtained by multiplying out all the infinite series and ap-
plying the Fundamental Theorem of Arithmetic. For example, the term 1/300°
in the sum is obtained by multiplying 1/225 from the first equation by 1/3% in
the second and 1/52% in the third. Riemann noted that every prime appears in the
expression on the right. So he proposed to learn about the primes by studying
the equivalent, but simpler expression on the left. In particular, he regarded s as
a complex number and the left side as a function, ¢(s). Riemann found that the
distribution of primes is related to values of s for which {(s) = 0, which led to
his famous conjecture:

Definition 4.6.5. The Riemann Hypothesis: Every nontrivial zero of the zeta func-
tion ¢(s) lies on the line s = 1/2 + ci in the complex plane.

A proof would immediately imply, among other things, a strong form of the Prime
Number Theorem.

Researchers continue to work intensely to settle this conjecture, as they have for
over a century. It is another of the Millennium Problems whose solver will earn
$1,000,000 from the Clay Institute.



http://www.claymath.org/millennium/
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sage need not meet beforehand to agree on a secret key. Rather, the receiver has
both a secret key, which she guards closely, and a public key, which she distributes
as widely as possible. The sender then encrypts his message using her widely-
distributed public key. Then she decrypts the received message using her closely-
held private key. The use of such a public key cryptography system allows you
and Amazon, for example, to engage in a secure transaction without meeting up
beforehand in a dark alley to exchange a key.

Interestingly, RSA does not operate modulo a prime, as Turing’s scheme may
have, but rather modulo the product of two large primes. Thus, we’ll need to know a
bit about how arithmetic works modulo a composite number in order to understand
RSA. Arithmetic modulo an arbitrary positive integer is really only a little more
painful than working modulo a prime—though you may think this is like the doctor
saying, “This is only going to hurt a little,” before he jams a big needle in your arm.

4.7.1 Relative Primality

First, we need a new definition. Integers a and b are relatively prime iff gcd(a, b) =
1. For example, 8 and 15 are relatively prime, since gcd(8, 15) = 1. Note that,
except for multiples of p, every integer is relatively prime to a prime number p.

Next we’ll need to generalize what we know about arithmetic modulo a prime
to work modulo an arbitrary positive integer n. The basic theme is that arithmetic
modulo 7 may be complicated, but the integers relatively prime to n remain fairly
well-behaved. For example, the proof of Lemma 4.6.1 of an inverse for k modulo
p extends to an inverse for k relatively prime to n:

Lemma 4.7.1. Let n be a positive integer. If k is relatively prime fo n, then there
exists an integer k' such that:

k-k'=1 (mod n)

As a consequence of this lemma, we can cancel a multiplicative term from both
sides of a congruence if that term is relatively prime to the modulus:

Corollary 4.7.2. Suppose n is a positive integer and k is relatively prime to n. If
ak = bk (mod n)

then
a=>b (modn)

This holds because we can multiply both sides of the first congruence by k!
and simplify to obtain the second.
The following lemma is the natural generalization of Corollary 4.6.3.
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Lemma 4.7.3. Suppose n is a positive integer and k is relatively prime to n. Let
k1, ..., ky denote all the integers relatively prime to n in the range 1 ton — 1. Then
the sequence:

rem(ky - k,n), rem(ks-k,n), rem(ks-k,n), ... rem(ky-k,n)
is a permutation of the sequence:
ki, ko, ... Lk

Proof. We will show that the remainders in the first sequence are all distinct and
are equal to some member of the sequence of k;’s. Since the two sequences have
the same length, the first must be a permutation of the second.

First, we show that the remainders in the first sequence are all distinct. Suppose
that rem(k; k,n) = rem(k jk,n). This is equivalent to k;k = k;k (mod n), which
implies k; = k; (mod n) by Corollary 4.7.2. This, in turn, means that k; = k;
since both are between 1 and n — 1. Thus, none of the remainder terms in the first
sequence is equal to any other remainder term.

Next, we show that each remainder in the first sequence equals one of the k;. By
assumption, ged(k;,n) = 1 and ged(k,n) = 1, which means that

gcd(n,rem(k;k,n)) = ged(kik,n) (by part (5) of Lemma 4.2.4)
=1 (by part (3) of Lemma 4.2.4).

Since rem(k;k,n) is in the range from O to n — 1 by the definition of remainder,
and since it is relatively prime to 7, it must (by definition of the k;’s) be equal to
some k. [

4.7.2 Euler’s Theorem

RSA relies heavily on a generalization of Fermat’s Theorem known as Euler’s The-
orem. For both theorems, the exponent of k needed to produce an inverse of k mod-
ulo n depends on the number of integers in the set {1, 2, ...,n} (denoted [1, n]) that
are relatively prime to n. This value is known as Euler’s ¢ function (a.k.a. Euler’s
totient function) and it is denoted as ¢(n). For example, ¢(7) = 6 since 1, 2, 3, 4,
5, and 6 are all relatively prime to 7. Similarly, ¢(12) = 4 since 1,5, 7, and 11 are
the only numbers in [1, 12] that are relatively prime to 12.

If n is prime, then ¢p(n) = n — 1 since every number less than a prime number
is relatively prime to that prime. When n is composite, however, the ¢ function
gets a little complicated. The following theorem characterizes the ¢ function for

SRecall that ged(n, n) = n and so n is never relatively prime to itself.
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composite 7. We won’t prove the theorem in its full generality, although we will
give a proof for the special case when # is the product of two primes since that is
the case that matters for RSA.

Theorem 4.7.4. For any number n, if p1, p2, ..., pj are the (distinct) prime factors
of n, then
1 1 1
om)y=n{l—— )1 ——)...[1——).
p1 P2 pPj

ST TR
w0

= 80.

For example,

Corollary 4.7.5. Let n = pq where p and q are different primes. Then ¢(n) =
(p—D(g—D.

Corollary 4.7.5 follows easily from Theorem 4.7.4, but since Corollary 4.7.5 is
important to RSA and we have not provided a proof of Theorem 4.7.4, we will give
a direct proof of Corollary 4.7.5 in what follows.

Proof of Corollary 4.7.5. Since p and g are prime, any number that is not relatively
prime to n = pg must be a multiple of p or a multiple of g. Among the numbers 1,
2, ..., pq, there are precisely ¢ multiples of p and p multiples of g. Since p and ¢
are relatively prime, the only number in [1, pg] that is a multiple of both p and ¢
is pq. Hence, there are p + g — 1 numbers in [1, pg] that are not relatively prime
to n. This means that

¢p(n)=pqg—p—q+1
=(p—-Dg-1,

as claimed.® [ |

We can now prove Euler’s Theorem:

OThis proof provides a brief preview of the kinds of counting arguments that we will explore more
fully in Part III.
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Theorem 4.7.6 (Euler’s Theorem). Suppose n is a positive integer and k is rela-

tively prime to n. Then
k™ =1 (mod n)

Proof. Letky, ...,k denote all integers relatively prime to n such that 0 < k; < n.
Then r = ¢(n), by the definition of the function ¢p. The remainder of the proof
mirrors the proof of Fermat’s Theorem. In particular,

ki ko---k,
=rem(k; - k,n) -rem(ky - k,n)---rem(k, - k,n)  (by Lemma 4.7.3)
=(k1-k)-(kp-k)----(kr-k) (mod n) (by Cor4.5.2)
= (k1 -ko---ky)-k" (mod n) (rearranging terms)

Part (3) of Lemma 4.2.4. implies that k; - k5 - - - k; is relatively prime to n. So by
Corollary 4.7.2, we can cancel this product from the first and last expressions. This
proves the claim. |

We can find multiplicative inverses using Euler’s theorem as we did with Fer-
mat’s theorem: if k is relatively prime to n, then k™1 is a multiplicative inverse
of k modulo n. However, this approach requires computing ¢(n). Computing
¢(n) is easy (using Theorem 4.7.4) if we know the prime factorization of n. Un-
fortunately, finding the factors of n can be hard to do when 7 is large and so the
Pulverizer is often the best approach to computing inverses modulo 7.

4.8 The RSA Algorithm

Finally, we are ready to see how the RSA public key encryption scheme works. The
details are in the box on the next page.

It is not immediately clear from the description of the RSA cryptosystem that
the decoding of the encrypted message is, in fact, the original unencrypted mes-
sage. In order to check that this is the case, we need to show that the decryption
rem((m’)?, n) is indeed equal to the sender’s message m. Since m’ = rem(m®, n),
m' is congruent to m® modulo n by Corollary 4.5.2. That is,

m' =m® (mod n).

By raising both sides to the power d, we obtain the congruence

m")¢ =m®®  (mod n). (4.8)
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The RSA Cryptosystem

Beforehand The receiver creates a public key and a secret key as follows.

1. Generate two distinct primes, p and ¢g. Since they can be used to
generate the secret key, they must be kept hidden.

2. Letn = pq.

3. Select an integer e such that gcd(e, (p — 1)(¢ — 1)) = 1.
The public key is the pair (e, n). This should be distributed widely.

4. Compute d suchthatde =1 (mod (p—1)(¢—1)). This can be done
using the Pulverizer.
The secret key is the pair (d, n). This should be kept hidden!

Encoding Given a message m, the sender first checks that gcd(m,n) = 1.“ The
sender then encrypts message m to produce m’ using the public key:

m’ = rem(m®,n).

Decoding The receiver decrypts message m’ back to message m using the secret
key:
m = rem((m’)?, n).

“It would be very bad if gcd(m, n) equals p or ¢ since then it would be easy for someone to use
the encoded message to compute the secret key If ged(m,n) = n, then the encoded message would
be 0, which is fairly useless. For very large values of n, it is extremely unlikely that gcd(m, n) # 1.
If this does happen, you should get a new set of keys or, at the very least, add some bits to m so that
the resulting message is relatively prime to 7.
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The encryption exponent e and the decryption exponent d are chosen such that
de = 1 (mod (p — 1)(g — 1)). So, there exists an integer r such that ed =
14+ 7r(p—1)(g —1). By substituting 1 4+ r(p — 1)(¢ — 1) for ed in Equation 4.8,
we obtain

m)?% =m-m"P~DE=D  (mod n). (4.9)

By Euler’s Theorem and the assumption that gcd(m, n) = 1, we know that
m®™ =1 (mod n).
From Corollary 4.7.5, we know that ¢ (n) = (p — 1)(¢ — 1). Hence,

m"¢ =m-m™P~VE=D  (mod n)
=m-1" (mod n)

=m (mod n).

Hence, the decryption process indeed reproduces the original message m.

Is it hard for someone without the secret key to decrypt the message? No one
knows for sure but it is generally believed that if n is a very large number (say, with
a thousand digits), then it is difficult to reverse engineer d from e and n. Of course,
it is easy to compute d if you know p and g (by using the Pulverizer) but it is not
known how to quickly factor n into p and ¢ when #n is very large. Maybe with a
little more studying of number theory, you will be the first to figure out how to do
it. Although, we should warn you that Gauss worked on it for years without a lot to
show for his efforts. And if you do figure it out, you might wind up meeting some
serious-looking fellows in black suits. . ..
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Introduction

Structure is fundamental in computer science. Whether you are writing code, solv-
ing an optimization problem, or designing a network, you will be dealing with
structure. The better you can understand the structure, the better your results will
be. And if you can reason about structure, then you will be in a good position to
convince others (and yourself) that your results are worthy.

The most important structure in computer science is a graph, also known as a net-
work). Graphs provide an excellent mechanism for modeling associations between
pairs of objects; for example, two exams that cannot be given at the same time, two
people that like each other, or two subroutines that can be run independently. In
Chapter 5, we study graphs that represent symmetric relationships, like those just
mentioned. In Chapter 6, we consider graphs where the relationship is one-way;
that is, a situation where you can go from x to y but not necessarily vice-versa.

In Chapter 7, we consider the more general notion of a relation and we examine
important classes of relations such as partially ordered sets. Partially ordered sets
arise frequently in scheduling problems.

We conclude in Chapter 8 with a discussion of state machines. State machines
can be used to model a variety of processes and are a fundamental tool in proving
that an algorithm terminates and that it produces the correct output.




“mes-ftI” — 2010/9/8 — 0:40 — page 120 — #126




“mes-ftI” — 2010/9/8 — 0:40 — page 121 — #127

5 Graph Theory

Informally, a graph is a bunch of dots and lines where the lines connect some pairs
of dots. An example is shown in Figure 5.1. The dots are called nodes (or vertices)
and the lines are called edges.

c e
Figure 5.1 An example of a graph with 9 nodes and 8 edges.

Graphs are ubiquitous in computer science because they provide a handy way
to represent a relationship between pairs of objects. The objects represent items
of interest such as programs, people, cities, or web pages, and we place an edge
between a pair of nodes if they are related in a certain way. For example, an edge
between a pair of people might indicate that they like (or, in alternate scenarios,
that they don’t like) each other. An edge between a pair of courses might indicate
that one needs to be taken before the other.

In this chapter, we will focus our attention on simple graphs where the relation-
ship denoted by an edge is symmetric. Afterward, in Chapter 6, we consider the
situation where the edge denotes a one-way relationship, for example, where one
web page points to the other.'

5.1 Definitions

5.1.1 Simple Graphs

Definition 5.1.1. A simple graph G consists of a nonempty set V', called the ver-
tices (aka nodes®) of G, and a set E of two-element subsets of V. The members
of E are called the edges of G, and we write G = (V, E).

ITwo Stanford students analyzed such a graph to become multibillionaires. So, pay attention to
graph theory, and who knows what might happen!
ZWe will use the terms vertex and node interchangeably.
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The vertices correspond to the dots in Figure 5.1, and the edges correspond to the
lines. The graph in Figure 5.1 is expressed mathematically as G = (V, E), where:

V ={a,b,c,d,e, f,g.h,i}
E ={{a,b}.{a,c}.{b.d}.{c.d}.{c.e} {e, f}.{e. g} {h.i}}.

Note that {a, b} and {b, a} are different descriptions of the same edge, since sets
are unordered. In this case, the graph G = (V, E) has 9 nodes and 8 edges.

Definition 5.1.2. Two vertices in a simple graph are said to be adjacent if they
are joined by an edge, and an edge is said to be incident to the vertices it joins.
The number of edges incident to a vertex v is called the degree of the vertex and
is denoted by deg(v); equivalently, the degree of a vertex is equals the number of
vertices adjacent to it.

For example, in the simple graph shown in Figure 5.1, vertex a is adjacent to b
and b is adjacent to d, and the edge {a, ¢} is incident to vertices a and c. Vertex h
has degree 1, d has degree 2, and deg(e) = 3. It is possible for a vertex to have
degree 0, in which case it is not adjacent to any other vertices. A simple graph does
not need to have any edges at all —in which case, the degree of every vertex is zero
and |E| = 0° —but it does need to have at least one vertex, that is, |V| > 1.

Note that simple graphs do not have any self-loops (that is, an edge of the form
{a,a}) since an edge is defined to be a set of two vertices. In addition, there is at
most one edge between any pair of vertices in a simple graph. In other words, a
simple graph does not contain multiedges or multiple edges. That is because E is a
set. Lastly, and most importantly, simple graphs do not contain directed edges (that
is, edges of the form (a, b) instead of {a, b}).

There’s no harm in relaxing these conditions, and some authors do, but we don’t
need self-loops, multiple edges between the same two vertices, or graphs with no
vertices, and it’s simpler not to have them around. We will consider graphs with di-
rected edges (called directed graphs or digraphs) at length in Chapter 6. Since we’ll
only be considering simple graphs in this chapter, we’ll just call them “graphs”
from now on.

5.1.2 Some Common Graphs

Some graphs come up so frequently that they have names. The complete graph
on n vertices, denoted K, has an edge between every two vertices, for a total of
n(n — 1)/2 edges. For example, K5 is shown in Figure 5.2.

The empty graph has no edges at all. For example, the empty graph with 5 nodes
is shown in Figure 5.3.

3The cardinality, | E|, of the set E is the number of elements in E.
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Figure 5.2 The complete graph on 5 nodes, Ks.

[ ] [ ]
Figure 5.3 The empty graph with 5 nodes.
The n-node graph containing n — 1 edges in sequence is known as the line
graph L,. More formally, L, = (V, E) where
V = {vl,vz,...,vn}

and
E = {{v1,v2},{v2.v3},... . {Un—1.Vn}}

For example, L5 is displayed in Figure 5.4.
If we add the edge {v,, v1} to the line graph L,, we get the graph C,, consisting
of a simple cycle. For example, Cs is illustrated in Figure 5.5.

Figure 5.4 The 5-node line graph Ls.
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Figure 5.5 The 5-node cycle graph Cs.

(@) (b)

Figure 5.6 Two graphs that are isomorphic to Cy.

5.1.3 Isomorphism

Two graphs that look the same might actually be different in a formal sense. For
example, the two graphs in Figure 5.6 are both simple cycles with 4 vertices, but one
graph has vertex set {a, b, ¢, d } while the other has vertex set {1, 2, 3, 4}. Strictly
speaking, these graphs are different mathematical objects, but this is a frustrating
distinction since the graphs look the same!

Fortunately, we can neatly capture the idea of “looks the same” through the no-
tion of graph isomorphism.

Definition 5.1.3. If G; = (V1, E1) and G, = (V», E») are two graphs, then we
say that Gy is isomorphic to G iff there exists a bijection* f : Vi — V5 such that
for every pair of vertices u, v € Vi:

{u,v} € E1 iff {f(u), f(v)} € Es.
The function f is called an isomorphism between G1 and G».

In other words, two graphs are isomorphic if they are the same up to a relabeling
of their vertices. For example, here is an isomorphism between vertices in the two

4A bijection f : Vi — V» is a function that associates every node in ¥; with a unique node in V>
and vice-versa. We will study bijections more deeply in Part III.
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Figure 5.7 Two ways of drawing Cs.

graphs shown in Figure 5.6:

a corresponds to 1 b corresponds to 2
d corresponds to 4 ¢ corresponds to 3.

You can check that there is an edge between two vertices in the graph on the left if
and only if there is an edge between the two corresponding vertices in the graph on
the right.

Two isomorphic graphs may be drawn very differently. For example, we have
shown two different ways of drawing Cs in Figure 5.7.

Isomorphism preserves the connection properties of a graph, abstracting out what
the vertices are called, what they are made out of, or where they appear in a drawing
of the graph. More precisely, a property of a graph is said to be preserved under
isomorphism if whenever G has that property, every graph isomorphic to G also
has that property. For example, isomorphic graphs must have the same number of
vertices. What’s more, if f is a graph isomorphism that maps a vertex, v, of one
graph to the vertex, f(v), of an isomorphic graph, then by definition of isomor-
phism, every vertex adjacent to v in the first graph will be mapped by f to a vertex
adjacent to f(v) in the isomorphic graph. This means that v and f(v) will have the
same degree. So if one graph has a vertex of degree 4 and another does not, then
they can’t be isomorphic. In fact, they can’t be isomorphic if the number of degree
4 vertices in each of the graphs is not the same.

Looking for preserved properties can make it easy to determine that two graphs
are not isomorphic, or to actually find an isomorphism between them if there is
one. In practice, it’s frequently easy to decide whether two graphs are isomorphic.
However, no one has yet found a general procedure for determining whether two
graphs are isomorphic that is guaranteed to run in polynomial time> in |V|.

Having such a procedure would be useful. For example, it would make it easy
to search for a particular molecule in a database given the molecular bonds. On

3L.e., in an amount of time that is upper-bounded by |V |€ where ¢ is a fixed number independent
of |V|.
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the other hand, knowing there is no such efficient procedure would also be valu-
able: secure protocols for encryption and remote authentication can be built on the
hypothesis that graph isomorphism is computationally exhausting.

5.1.4 Subgraphs

Definition 5.1.4. A graph G; = (V1, E1) is said to be a subgraph of a graph
Gy, = (Vz, Ez) if Vi CVoand E; C Es.

For example, the empty graph on n nodes is a subgraph of L,, L, is a subgraph
of Cp, and Cy, is a subgraph of K. Also, the graph G = (V, E) where

V={g hi} and E ={{h,i}}

is a subgraph of the graph in Figure 5.1. On the other hand, any graph containing an
edge {g, h} would not be a subgraph of the graph in Figure 5.1 because the graph
in Figure 5.1 does not contain this edge.

Note that since a subgraph is itself a graph, the endpoints of any edge in a sub-
graph must also be in the subgraph. In other words if G’ = (V'/, E’) is a subgraph
of some graph G, and {v;,v;} € E’, then it must be the case that v; € V' and
v; € V.

5.1.5 Weighted Graphs

Sometimes, we will use edges to denote a connection between a pair of nodes where
the connection has a capacity or weight. For example, we might be interested in the
capacity of an Internet fiber between a pair of computers, the resistance of a wire
between a pair of terminals, the tension of a spring connecting a pair of devices in
a dynamical system, the tension of a bond between a pair of atoms in a molecule,
or the distance of a highway between a pair of cities.

In such cases, it is useful to represent the system with an edge-weighted graph
(aka a weighted graph). A weighted graph is the same as a simple graph except
that we associate a real number (that is, the weight) with each edge in the graph.
Mathematically speaking, a weighted graph consists of a graph G = (V, E) and
a weight function w : £ — R. For example, Figure 5.8 shows a weighted graph
where the weight of edge {a, b} is 5.

5.1.6 Adjacency Matrices

There are many ways to represent a graph. We have already seen two ways: you
can draw it, as in Figure 5.8 for example, or you can represent it with sets —as in
G = (V, E). Another common representation is with an adjacency matrix.
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Figure 5.8 A 4-node weighted graph where the edge {a, b} has weight 5.

010 1 05 0 0

1 010 50 6 0

01 0 1 06 0 =3

1 010 00 =3 0
(@) (b)

Figure 5.9 Examples of adjacency matrices. (a) shows the adjacency matrix for
the graph in Figure 5.6(a) and (b) shows the adjacency matrix for the weighted
graph in Figure 5.8. In each case, we set v1 = a, v = b, v3 = c,and vy = d to
construct the matrix.

Definition 5.1.5. Given an n-node graph G = (V, E) where V = {v,v2,..., s},
the adjacency matrix for G is the n x n matrix Ag = {a;; } where

1 if{vi,v;} € E
ajj = .
0 otherwise.

If G is a weighted graph with edge weights given by w : £ — R, then the adja-
cency matrix for G is Ag = {a;;} where

g — w({vi,v;}) if{vi, v} e E
o 0 otherwise.

For example, Figure 5.9 displays the adjacency matrices for the graphs shown in
Figures 5.6(a) and 5.8 where vy = a, v, = b,v3 =c,andvg = d.
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5.2 Matching Problems

We begin our study of graph theory by considering the scenario where the nodes
in a graph represent people and the edges represent a relationship between pairs
of people such as “likes”, “marries”, and so on. Now, you may be wondering
what marriage has to do with computer science, and with good reason. It turns out
that the techniques we will develop apply to much more general scenarios where
instead of matching men to women, we need to match packets to paths in a network,
applicants to jobs, or Internet traffic to web servers. And, as we will describe later,
these techniques are widely used in practice.

In our first example, we will show how graph theory can be used to debunk an
urban legend about sexual practices in America. Yes, you read correctly. So, fasten
your seat belt—who knew that math might actually be interesting!

5.2.1 Sexin America

On average, who has more opposite-gender partners: men or women?

Sexual demographics have been the subject of many studies. In one of the largest,
researchers from the University of Chicago interviewed a random sample of 2500
Americans over several years to try to get an answer to this question. Their study,
published in 1994, and entitled The Social Organization of Sexuality found that, on
average, men have 74% more opposite-gender partners than women.

Other studies have found that the disparity is even larger. In particular, ABC
News claimed that the average man has 20 partners over his lifetime, and the aver-
age woman has 6, for a percentage disparity of 233%. The ABC News study, aired
on Primetime Live in 2004, purported to be one of the most scientific ever done,
with only a 2.5% margin of error. It was called “American Sex Survey: A peek
between the sheets.” The promotion for the study is even better:

A ground breaking ABC News “Primetime Live” survey finds a range
of eye-popping sexual activities, fantasies and attitudes in this country,
confirming some conventional wisdom, exploding some myths—and
venturing where few scientific surveys have gone before.

Probably that last part about going where few scientific surveys have gone before
is pretty accurate!

Yet again, in August, 2007, the N.Y. Times reported on a study by the National
Center for Health Statistics of the U.S. Government showing that men had seven
partners while women had four.
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Anyway, whose numbers do you think are more accurate, the University of
Chicago, ABC News, or the National Center for Health Statistics?—don’t answer;
this is a setup question like “When did you stop beating your wife?” Using a little
graph theory, we will now explain why none of these findings can be anywhere near
the truth.

Let’s model the question of heterosexual partners in graph theoretic terms. To
do this, we’ll let G be the graph whose vertices, V', are all the people in America.
Then we split V' into two separate subsets: M, which contains all the males, and
F, which contains all the females.® We’ll put an edge between a male and a female
iff they have been sexual partners. A possible subgraph of this graph is illustrated
in Figure 5.10 with males on the left and females on the right.

W

VAN

Figure 5.10 A possible subgraph of the sex partners graph.

Actually, G is a pretty hard graph to figure out, let alone draw. The graph is
enormous: the US population is about 300 million, so |V'| & 300M . In the United
States, approximately 50.8% of the populatin is female and 49.2% is male, and
so |[M| ~ 147.6M, and |F| ~ 152.4M. And we don’t even have trustworthy
estimates of how many edges there are, let alone exactly which couples are adja-
cent. But it turns out that we don’t need to know any of this to debunk the sex
surveys—we just need to figure out the relationship between the average number
of partners per male and partners per female. To do this, we note that every edge
is incident to exactly one M vertex and one F vertex (remember, we’re only con-
sidering male-female relationships); so the sum of the degrees of the M vertices
equals the number of edges, and the sum of the degrees of the F' vertices equals the

SFor simplicity, we’ll ignore the possibility of someone being both, or neither, a man and a woman.
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number of edges. So these sums are equal:

D deg(x) = ) deg(y).

xeM yeF

If we divide both sides of this equation by the product of the sizes of the two sets,
|M| - | F|, we obtain

(erMdeg(x)). 1 :(ZyeFdeg(y)) | s

|M]| |F] |F| M|

Notice that
Zx eM deg (x )
|M |

is simply the average degree of a node in M. This is the average number of
opposite-gender partners for a male in America. Similarly,

ZxGF deg(x)
| F|

is the average degree of a node in F, which is the average number of opposite-
gender partners for a female in America. Hence, Equation 5.1 implies that on
average, an American male has | F'|/|M | times as many opposite-gender partners
as the average American female.

From the Census Bureau reports, we know that there are slightly more females
than males in America; in particular | F'|/|M | is about 1.035. So we know that on
average, males have 3.5% more opposite-gender partners than females. Of course,
this statistic really says nothing about any sex’s promiscuity or selectivity. Remark-
ably, promiscuity is completely irrelevant in this analysis. That is because the ratio
of the average number of partners is completely determined by the relative number
of males and females. Collectively, males and females have the same number of
opposite gender partners, since it takes one of each set for every partnership, but
there are fewer males, so they have a higher ratio. This means that the University
of Chicago, ABC, and the Federal Government studies are way off. After a huge
effort, they gave a totally wrong answer.

There’s no definite explanation for why such surveys are consistently wrong.
One hypothesis is that males exaggerate their number of partners—or maybe fe-
males downplay theirs—but these explanations are speculative. Interestingly, the
principal author of the National Center for Health Statistics study reported that she
knew the results had to be wrong, but that was the data collected, and her job was
to report it.
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The same underlying issue has led to serious misinterpretations of other survey
data. For example, a few years ago, the Boston Globe ran a story on a survey of
the study habits of students on Boston area campuses. Their survey showed that on
average, minority students tended to study with non-minority students more than
the other way around. They went on at great length to explain why this “remarkable
phenomenon” might be true. But it’s not remarkable at all—using our graph theory
formulation, we can see that all it says is that there are fewer minority students than
non-minority students, which is, of course what “minority” means.

The Handshaking Lemma

The previous argument hinged on the connection between a sum of degrees and the
number edges. There is a simple connection between these quantities in any graph:

Lemma 5.2.1 (The Handshaking Lemma). The sum of the degrees of the vertices
in a graph equals twice the number of edges.

Proof. Every edge contributes two to the sum of the degrees, one for each of its
endpoints. |

Lemma 5.2.1 is called the Handshake Lemma because if we total up the number
of people each person at a party shakes hands with, the total will be twice the
number of handshakes that occurred.

5.2.2 Bipartite Matchings

There were two kinds of vertices in the “Sex in America” graph—males and fe-
males, and edges only went between the two kinds. Graphs like this come up so
frequently that they have earned a special name—they are called bipartite graphs.

Definition 5.2.2. A bipartite graph is a graph together with a partition of its vertices
into two sets, L and R, such that every edge is incident to a vertex in L and to a
vertex in R.

The bipartite matching problem is related to the sex-in-America problem that we
just studied; only now the goal is to get everyone happily married. As you might
imagine, this is not possible for a variety of reasons, not the least of which is the
fact that there are more women in America than men. So, it is simply not possible
to marry every woman to a man so that every man is married only once.

But what about getting a mate for every man so that every woman is married
only once? Is it possible to do this so that each man is paired with a woman that
he likes? The answer, of course, depends on the bipartite graph that represents who
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Alice
Chuck
Martha
Tom
Sara
Michael
Jane
John
Mergatroid

Figure 5.11 A graph where an edge between a man and woman denotes that the
man likes the woman.

likes who, but the good news is that it is possible to find natural properties of the
who-likes-who graph that completely determine the answer to this question.

In general, suppose that we have a set of men and an equal-sized or larger set
of women, and there is a graph with an edge between a man and a woman if the
man likes the woman. Note that in this scenario, the “likes” relationship need not
be symmetric, since for the time being, we will only worry about finding a mate for
each man that he likes.” (Later, we will consider the “likes” relationship from the
female perspective as well.) For example, we might obtain the graph in Figure 5.11.

In this problem, a matching will mean a way of assigning every man to a woman
so that different men are assigned to different women, and a man is always assigned
to a woman that he likes. For example, one possible matching for the men is shown
in Figure 5.12.

The Matching Condition

A famous result known as Hall’s Matching Theorem gives necessary and sufficient
conditions for the existence of a matching in a bipartite graph. It turns out to be a
remarkably useful mathematical tool.

We’ll state and prove Hall’s Theorem using man-likes-woman terminology. De-
fine the set of women liked by a given set of men to consist of all women liked by
at least one of those men. For example, the set of women liked by Tom and John in

"By the way, we do not mean to imply that marriage should or should not be of a heterosexual
nature. Nor do we mean to imply that men should get their choice instead of women. It’s just that
with bipartite graphs, the edges only connected male nodes to female nodes and there are fewer men
in America. So please don’t take offense.
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Alice
Chuck
Martha
Tom
Sara
Michael
Jane
John
Mergatroid

Figure 5.12 One possible matching for the men is shown with bold edges. For
example, John is matched with Jane.

Figure 5.11 consists of Martha, Sarah, and Mergatroid. For us to have any chance
at all of matching up the men, the following matching condition must hold:

Every subset of men likes at least as large a set of women.

For example, we can not find a matching if some set of 4 men like only 3 women.
Hall’s Theorem says that this necessary condition is actually sufficient; if the match-
ing condition holds, then a matching exists.

Theorem 5.2.3. A matching for a set of men M with a set of women W can be
found if and only if the matching condition holds.

Proof. First, let’s suppose that a matching exists and show that the matching condi-
tion holds. Consider an arbitrary subset of men. Each man likes at least the woman
he is matched with. Therefore, every subset of men likes at least as large a set of
women. Thus, the matching condition holds.

Next, let’s suppose that the matching condition holds and show that a matching
exists. We use strong induction on |M |, the number of men, on the predicate:

P (m) ::= for any set of m men M, if the matching condition holds

for M, then there is a matching for M.

Base Case (|M| = 1): If [M| = 1, then the matching condition implies that the
lone man likes at least one woman, and so a matching exists.

Inductive Step: We need to show that P(m) IMPLIES P(m + 1). Suppose that
M| =m+1>2.
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Case 1: Every proper subset® of men likes a strictly larger set of women. In this
case, we have some latitude: we pair an arbitrary man with a woman he
likes and send them both away. The matching condition still holds for the
remaining men and women since we have removed only one woman, so we
can match the rest of the men by induction.

Case 2: Some proper subset of men X C M likes an equal-size set of women
Y C W. We match the men in X with the women in Y by induction and
send them all away. We can also match the rest of the men by induction
if we show that the matching condition holds for the remaining men and
women. To check the matching condition for the remaining people, consider
an arbitrary subset of the remaining men X’ € (M — X), and let Y’ be
the set of remaining women that they like. We must show that | X’| < |Y’|.
Originally, the combined set of men X U X' liked the set of women Y U Y.
So, by the matching condition, we know:

XUX'|<|YuY/|

We sent away | X | men from the set on the left (Ileaving X”) and sent away an
equal number of women from the set on the right (leaving Y’). Therefore, it
must be that | X’| < |Y’| as claimed.

So in both cases, there is a matching for the men, which completes the proof of
the Inductive step. The theorem follows by induction. |

The proof of Theorem 5.2.3 gives an algorithm for finding a matching in a bipar-
tite graph, albeit not a very efficient one. However, efficient algorithms for finding a
matching in a bipartite graph do exist. Thus, if a problem can be reduced to finding
a matching, the problem can be solved from a computational perspective.

A Formal Statement

Let’s restate Theorem 5.2.3 in abstract terms so that you’ll not always be con-
demned to saying, “Now this group of men likes at least as many women...”

Definition 5.2.4. A matching in a graph, G, is a set of edges such that no two
edges in the set share a vertex. A matching is said to cover a set, L, of vertices iff
each vertex in L has an edge of the matching incident to it. A matching is said to
be perfect if every node in the graph is incident to an edge in the matching. In any
graph, the set N(S), of neighbors of some set, S, of vertices is the set of all vertices
adjacent to some vertex in S. That is,

N(S) :={r | {s,r}isanedge for somes € § }.

8Recall that a subset A of B is properif A # B.
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S is called a bottleneck if
|S| > [N(S)|.

Theorem 5.2.5 (Hall’s Theorem). Let G be a bipartite graph with vertex partition
L, R. There is matching in G that covers L iff no subset of L is a bottleneck.

An Easy Matching Condition

The bipartite matching condition requires that every subset of men has a certain
property. In general, verifying that every subset has some property, even if it’s easy
to check any particular subset for the property, quickly becomes overwhelming
because the number of subsets of even relatively small sets is enormous—over a
billion subsets for a set of size 30. However, there is a simple property of vertex
degrees in a bipartite graph that guarantees the existence of a matching. Namely,
call a bipartite graph degree-constrained if vertex degrees on the left are at least as
large as those on the right. More precisely,

Definition 5.2.6. A bipartite graph G with vertex partition L, R where |L| < |R|
is degree-constrained if deg(l) > deg(r) forevery/ € L andr € R.

For example, the graph in Figure 5.11 is degree constrained since every node on
the left is adjacent to at least two nodes on the right while every node on the right
is incident to at most two nodes on the left.

Theorem 5.2.7. Let G be a bipartite graph with vertex partition L, R where |L| <
|R|. If G is degree-constrained, then there is a matching that covers L.

Proof. The proof is by contradiction. Suppose that G is degree constrained but that
there is no matching that covers L. By Theorem 5.2.5, this means that there must
be a bottleneck S C L.

Let d be a value such that deg(/) > x > deg(r) forevery/ € L andr € R.
Since every edge incident to a node in S is incident to a node in N(S), we know
that

IN(S)|x = [S]|x
and thus that
IN(S)| = |S].
This means that S is not a bottleneck, which is a contradiction. Hence G has a
matching that covers L. |

Regular graphs provide a large class of graphs that often arise in practice that are
degree constrained. Hence, we can use Theorem 5.2.7 to prove that every regular
bipartite graph has a perfect matching. This turns out to be a surprisingly useful
result in computer science
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Definition 5.2.8. A graph is said to be regular if every node has the same degree.
Theorem 5.2.9. Every regular bipartite graph has a perfect matching.

Proof. Let G be a regular bipartite graph with vertex partition L, R where |L| <
|R|. Since regular graphs are degree-constrained, we know by Theorem 5.2.7 that
there must be a matching in G that covers L. Since G is regular, we also know that
|L| = |R| and thus the matching must also cover R. This means that every node
in G is incident to an edge in the matching and thus G has a perfect matching. W

5.2.3 The Stable Marriage Problem

We next consider a version of the bipartite matching problem where there are an
equal number of men and women, and where each person has preferences about
who they would like to marry. In fact, we assume that each man has a complete list
of all the women ranked according to his preferences, with no ties. Likewise, each
woman has a ranked list of all of the men.

The preferences don’t have to be symmetric. That is, Jennifer might like Brad
best, but Brad doesn’t necessarily like Jennifer best. The goal is to marry everyone:
every man must marry exactly one woman and vice-versa—no polygamy. More-
over, we would like to find a matching between men and women that is stable in
the sense that there is no pair of people that prefer each other to their spouses.

For example, suppose every man likes Angelina best, and every woman likes
Brad best, but Brad and Angelina are married to other people, say Jennifer and Billy
Bob. Now Brad and Angelina prefer each other to their spouses, which puts their
marriages at risk: pretty soon, they’re likely to start spending late nights together
working on problem sets!

This unfortunate situation is illustrated in Figure 5.13, where the digits “1” and
“2” near a man shows which of the two women he ranks first second, respectively,
and similarly for the women.

More generally, in any matching, a man and woman who are not married to each
other and who like each other better than their spouses, is called a rogue couple. In
the situation shown in Figure 5.13, Brad and Angelina would be a rogue couple.

Having a rogue couple is not a good thing, since it threatens the stability of the
marriages. On the other hand, if there are no rogue couples, then for any man and
woman who are not married to each other, at least one likes their spouse better than
the other, and so they won’t be tempted to start an affair.

Definition 5.2.10. A stable matching is a matching with no rogue couples.

The question is, given everybody’s preferences, how do you find a stable set of
marriages? In the example consisting solely of the four people in Figure 5.13, we
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Jennifer

Billy Bob | 2 Angelina

Figure 5.13 Preferences for four people. Both men like Angelina best and both
women like Brad best.

could let Brad and Angelina both have their first choices by marrying each other.
Now neither Brad nor Angelina prefers anybody else to their spouse, so neither
will be in a rogue couple. This leaves Jen not-so-happily married to Billy Bob, but
neither Jen nor Billy Bob can entice somebody else to marry them, and so there is
a stable matching.

Surprisingly, there is always a stable matching among a group of men and women.
The surprise springs in part from considering the apparently similar “buddy” match-
ing problem. That is, if people can be paired off as buddies, regardless of gender,
then a stable matching may not be possible. For example, Figure 5.14 shows a situ-
ation with a love triangle and a fourth person who is everyone’s last choice. In this
figure Mergatroid’s preferences aren’t shown because they don’t even matter. Let’s
see why there is no stable matching.

Alex

Bobby Joe

Mergatroid

Figure 5.14 Some preferences with no stable buddy matching.

Lemma 5.2.11. There is no stable buddy matching among the four people in Fig-
ure 5.14.




“mes-ftI” — 2010/9/8 — 0:40 — page 138 — #144

138

Chapter 5  Graph Theory

Proof. We’ll prove this by contradiction.

Assume, for the purposes of contradiction, that there is a stable matching. Then
there are two members of the love triangle that are matched. Since preferences in
the triangle are symmetric, we may assume in particular, that Robin and Alex are
matched. Then the other pair must be Bobby-Joe matched with Mergatroid.

But then there is a rogue couple: Alex likes Bobby-Joe best, and Bobby-Joe
prefers Alex to his buddy Mergatroid. That is, Alex and Bobby-Joe are a rogue
couple, contradicting the assumed stability of the matching. |

So getting a stable buddy matching may not only be hard, it may be impossible.
But when mens are only allowed to marry women, and vice versa, then it turns out
that a stable matching can always be found.’

The Mating Ritual

The procedure for finding a stable matching involves a Mating Ritual that takes
place over several days. The following events happen each day:

Morning: Each woman stands on her balcony. Each man stands under the bal-
cony of his favorite among the women on his list, and he serenades her. If a man
has no women left on his list, he stays home and does his math homework.

Afternoon: Each woman who has one or more suitors serenading her, says to
her favorite among them, “We might get engaged. Come back tomorrow.” To the
other suitors, she says, “No. I will never marry you! Take a hike!”

Evening: Any man who is told by a woman to take a hike, crosses that woman
off his list.

Termination condition: When a day arrives in which every woman has at most
one suitor, the ritual ends with each woman marrying her suitor, if she has one.

There are a number of facts about this Mating Ritual that we would like to prove:

e The Ritual eventually reaches the termination condition.
e Everybody ends up married.

e The resulting marriages are stable.

There is a Marriage Day

It’s easy to see why the Mating Ritual has a terminal day when people finally get
married. Every day on which the ritual hasn’t terminated, at least one man crosses
a woman off his list. (If the ritual hasn’t terminated, there must be some woman
serenaded by at least two men, and at least one of them will have to cross her off his

90Once again, we disclaim any political statement here—its just the way that the math works out.
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list). If we start with » men and n women, then each of the n men’s lists initially
has n women on it, for a total of n? list entries. Since no women ever gets added
to a list, the total number of entries on the lists decreases every day that the Ritual
continues, and so the Ritual can continue for at most n? days.

They All Live Happily Every After...

We still have to prove that the Mating Ritual leaves everyone in a stable marriage.
To do this, we note one very useful fact about the Ritual: if a woman has a favorite
suitor on some morning of the Ritual, then that favorite suitor will still be serenad-
ing her the next morning—because his list won’t have changed. So she is sure to
have today’s favorite man among her suitors tomorrow. That means she will be able
to choose a favorite suitor tomorrow who is at least as desirable to her as today’s
favorite. So day by day, her favorite suitor can stay the same or get better, never
worse. This sounds like an invariant, and it is.

Definition 5.2.12. Let P be the predicate: For every woman, w, and every man,
m, if w is crossed off m’s list, then w has a suitor whom she prefers over m.

Lemma 5.2.13. P is an invariant for The Mating Ritual.

Proof. By induction on the number of days.

Base Case: In the beginning (that is, at the end of day 0), every woman is on every
list—no one has been crossed off and so P is vacuously true.

Inductive Step: Assume P is true at the end of day d and let w be a woman that
has been crossed off a man m’s list by the end of day d + 1.

Case 1: w was crossed off m’s list on day d + 1. Then, w must have a suitor she
prefers on day d + 1.

Case 2: w was crossed off m’s list prior to day d + 1. Since P is true at the end of
day d, this means that w has a suitor she prefers to m on day d. She therefore
has the same suitor or someone she prefers better at the end of day d + 1.

In both cases, P is true at the end of day d + 1 and so P must be an invariant. W
With Lemma 5.2.13 in hand, we can now prove:
Theorem 5.2.14. Everyone is married by the Mating Ritual.

Proof. By contradiction. Assume that it is the last day of the Mating Ritual and
someone does not get married. Since there are an equal number of men and women,
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and since bigamy is not allowed, this means that at least one man (call him Bob)
and at least one woman do not get married.

Since Bob is not married, he can’t be serenading anybody and so his list must
be empty. This means that Bob has crossed every woman off his list and so, by
invariant P, every woman has a suitor whom she prefers to Bob. Since it is the last
day and every woman still has a suitor, this means that every woman gets married.
This is a contradiction since we already argued that at least one woman is not
married. Hence our assumption must be false and so everyone must be married. W

Theorem 5.2.15. The Mating Ritual produces a stable matching.

Proof. Let Brad and Jen be any man and woman, respectively, that are not married
to each other on the last day of the Mating Ritual. We will prove that Brad and Jen
are not a rogue couple, and thus that all marriages on the last day are stable. There
are two cases to consider.

Case 1: Jen is not on Brad’s list by the end. Then by invariant P, we know that
Jen has a suitor (and hence a husband) that she prefers to Brad. So she’s not
going to run off with Brad—Brad and Jen cannot be a rogue couple.

Case 2: Jen is on Brad’s list. But since Brad is not married to Jen, he must be
choosing to serenade his wife instead of Jen, so he must prefer his wife. So
he’s not going to run off with Jen—once again, Brad and Jenn are not a rogue
couple. |

... Especially the Men

Who is favored by the Mating Ritual, the men or the women? The women seem
to have all the power: they stand on their balconies choosing the finest among
their suitors and spurning the rest. What’s more, we know their suitors can only
change for the better as the Ritual progresses. Similarly, a man keeps serenading
the woman he most prefers among those on his list until he must cross her off,
at which point he serenades the next most preferred woman on his list. So from
the man’s perspective, the woman he is serenading can only change for the worse.
Sounds like a good deal for the women.

But it’s not! The fact is that from the beginning, the men are serenading their
first choice woman, and the desirability of the woman being serenaded decreases
only enough to ensure overall stability. The Mating Ritual actually does as well as
possible for all the men and does the worst possible job for the women.

To explain all this we need some definitions. Let’s begin by observing that while
The Mating Ritual produces one stable matching, there may be other stable match-
ings among the same set of men and women. For example, reversing the roles of
men and women will often yield a different stable matching among them.
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But some spouses might be out of the question in all possible stable matchings.
For example, given the preferences shown in Figure 5.13, Brad is just not in the
realm of possibility for Jennifer, since if you ever pair them, Brad and Angelina
will form a rogue couple.

Definition 5.2.16. Given a set of preference lists for all men and women, one per-
son is in another person’s realm of possible spouses if there is a stable matching
in which the two people are married. A person’s optimal spouse is their most pre-
ferred person within their realm of possibility. A person’s pessimal spouse is their
least preferred person in their realm of possibility.

Everybody has an optimal and a pessimal spouse, since we know there is at least
one stable matching, namely, the one produced by the Mating Ritual. Now here is
the shocking truth about the Mating Ritual:

Theorem 5.2.17. The Mating Ritual marries every man to his optimal spouse.

Proof. By contradiction. Assume for the purpose of contradiction that some man
does not get his optimal spouse. Then there must have been a day when he crossed
off his optimal spouse—otherwise he would still be serenading (and would ulti-
mately marry) her or some even more desirable woman.

By the Well Ordering Principle, there must be a first day when a man (call him
“Keith”) crosses off his optimal spouse (call her Nicole). According to the rules of
the Ritual, Keith crosses off Nicole because Nicole has a preferred suitor (call him
Tom), so

Nicole prefers Tom to Keith. (%)

Since this is the first day an optimal woman gets crossed off, we know that Tom
had not previously crossed off his optimal spouse, and so

Tom ranks Nicole at least as high as his optimal spouse. ()

By the definition of an optimal spouse, there must be some stable set of marriages in
which Keith gets his optimal spouse, Nicole. But then the preferences given in ()
and (xx) imply that Nicole and Tom are a rogue couple within this supposedly
stable set of marriages (think about it). This is a contradiction. [ |

Theorem 5.2.18. The Mating Ritual marries every woman to her pessimal spouse.

Proof. By contradiction. Assume that the theorem is not true. Hence there must
be a stable set of marriages M where some woman (call her Nicole) is married to
a man (call him Tom) that she likes less than her spouse in The Mating Ritual (call
him Keith). This means that

Nicole prefers Keith to Tom. (+)




“mes-ftI” — 2010/9/8 — 0:40 — page 142 — #148

142

Chapter 5  Graph Theory

By Theorem 5.2.17 and the fact that Nicole and Keith are married in the Mating
Ritual, we know that

Keith prefers Nicole to his spouse in M. (++)

This means that Keith and Nicole form a rogue couple in M, which contradicts the
stability of M. |

Applications

The Mating Ritual was first announced in a paper by D. Gale and L.S. Shapley in
1962, but ten years before the Gale-Shapley paper was published, and unknown
by them, a similar algorithm was being used to assign residents to hospitals by the
National Resident Matching Program (NRMP)!?. The NRMP has, since the turn
of the twentieth century, assigned each year’s pool of medical school graduates to
hospital residencies (formerly called “internships”) with hospitals and graduates
playing the roles of men and women. (In this case, there may be multiple women
married to one man, a scenario we consider in the problem section at the end of the
chapter.). Before the Ritual-like algorithm was adopted, there were chronic disrup-
tions and awkward countermeasures taken to preserve assignments of graduates to
residencies. The Ritual resolved these problems so successfully, that it was used
essentially without change at least through 1989.!!

The Internet infrastructure company, Akamai, also uses a variation of the Mating
Ritual to assign web traffic to its servers. In the early days, Akamai used other com-
binatorial optimization algorithms that got to be too slow as the number of servers
(over 65,000 in 2010) and requests (over 800 billion per day) increased. Akamai
switched to a Ritual-like approach since it is fast and can be run in a distributed
manner. In this case, web requests correspond to women and web servers corre-
spond to men. The web requests have preferences based on latency and packet loss,
and the web servers have preferences based on cost of bandwidth and collocation.

Not surprisingly, the Mating Ritual is also used by at least one large online dating
agency. Even here, there is no serenading going on—everything is handled by
computer.

100f course, there is no serenading going on in the hospitals—the preferences are submitted to a
program and the whole process is carried out by a computer.

"'Much more about the Stable Marriage Problem can be found in the very readable mathematical
monograph by Dan Gusfield and Robert W. Irving, The Stable Marriage Problem: Structure and
Algorithms, MIT Press, Cambridge, Massachusetts, 1989, 240 pp.



http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=7676
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=7676
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6.170

6.002 6.003

6.041 6.042

Figure 5.15 A scheduling graph for five exams. Exams connected by an edge
cannot be given at the same time.

5.3 Coloring

In Section 5.2, we used edges to indicate an affinity between a pair of nodes. We
now consider situations where it is useful to use edges to represent a conflict be-
tween a pair of nodes. For example, consider the following exam scheduling prob-
lem.

5.3.1 An Exam Scheduling Problem

Each term, the MIT Schedules Office must assign a time slot for each final exam.
This is not easy, because some students are taking several classes with finals, and
(even at MIT) a student can take only one test during a particular time slot. The
Schedules Office wants to avoid all conflicts. Of course, you can make such a
schedule by having every exam in a different slot, but then you would need hun-
dreds of slots for the hundreds of courses, and the exam period would run all year!
So, the Schedules Office would also like to keep exam period short.

The Schedules Office’s problem is easy to describe as a graph. There will be a
vertex for each course with a final exam, and two vertices will be adjacent exactly
when some student is taking both courses. For example, suppose we need to sched-
ule exams for 6.041, 6.042, 6.002, 6.003 and 6.170. The scheduling graph might
appear as in Figure 5.15.

6.002 and 6.042 cannot have an exam at the same time since there are students in
both courses, so there is an edge between their nodes. On the other hand, 6.042 and
6.170 can have an exam at the same time if they’re taught at the same time (which
they sometimes are), since no student can be enrolled in both (that is, no student
should be enrolled in both when they have a timing conflict).
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blue

red green

green blue

Figure 5.16 A 3-coloring of the exam graph from Figure 5.15.

We next identify each time slot with a color. For example, Monday morning
is red, Monday afternoon is blue, Tuesday morning is green, etc. Assigning an
exam to a time slot is then equivalent to coloring the corresponding vertex. The
main constraint is that adjacent vertices must get different colors—otherwise, some
student has two exams at the same time. Furthermore, in order to keep the exam
period short, we should try to color all the vertices using as few different colors as
possible. As shown in Figure 5.16, three colors suffice for our example.

The coloring in Figure 5.16 corresponds to giving one final on Monday morning
(red), two Monday afternoon (blue), and two Tuesday morning (green). Can we use
fewer than three colors? No! We can’t use only two colors since there is a triangle
in the graph, and three vertices in a triangle must all have different colors.

This is an example of a graph coloring problem: given a graph G, assign colors
to each node such that adjacent nodes have different colors. A color assignment
with this property is called a valid coloring of the graph—a “coloring,” for short.
A graph G is k-colorable if it has a coloring that uses at most k colors.

Definition 5.3.1. The minimum value of k£ for which a graph G has a valid k-
coloring is called its chromatic number, y(G).

In general, trying to figure out if you can color a graph with a fixed number of
colors can take a long time. It’s a classic example of a problem for which no fast
algorithms are known. It is easy to check if a coloring works, but it seems really
hard to find it. (If you figure out how, then you can get a $1 million Clay prize.)

5.3.2 Degree-Bounded Coloring

There are some simple graph properties that give useful upper bounds on the chro-
matic number. For example, if the graph is bipartite, then we can color it with 2
colors (one color for the nodes in the “left” set and a second color for the nodes
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in the “right” set). In fact, if the graph has any edges at all, then being bipartite is
equivalent to being 2-colorable.

Alternatively, if the graph is planar, then the famous 4-Color Theorem says that
the graph is 4-colorable. This is a hard result to prove, but we will come close in
Section 5.8 where we define planar graphs and prove that they are 5-colorable.

The chromatic number of a graph can also be shown to be small if the vertex
degrees of the graph are small. In particular, if we have an upper bound on the
degrees of all the vertices in a graph, then we can easily find a coloring with only
one more color than the degree bound.

Theorem 5.3.2. A graph with maximum degree at most k is (k + 1)-colorable.

The natural way to try to prove this theorem is to use induction on k. Unfor-
tunately, this approach leads to disaster. It is not that it is impossible, just that it
is extremely painful and would ruin your week if you tried it on an exam. When
you encounter such a disaster when using induction on graphs, it is usually best to
change what you are inducting on. In graphs, typical good choices for the induction
parameter are n, the number of nodes, or e, the number of edges.

Proof of Theorem 5.3.2. We use induction on the number of vertices in the graph,
which we denote by n. Let P(n) be the proposition that an n-vertex graph with
maximum degree at most k is (k + 1)-colorable.

Base case (n = 1): A 1-vertex graph has maximum degree 0 and is 1-colorable, so
P(1) is true.

Inductive step: Now assume that P (n) is true, and let G be an (n + 1)-vertex graph
with maximum degree at most k. Remove a vertex v (and all edges incident to it),
leaving an n-vertex subgraph, H. The maximum degree of H is at most k, and so
H is (k + 1)-colorable by our assumption P (7). Now add back vertex v. We can
assign v a color (from the set of k 4 1 colors) that is different from all its adjacent
vertices, since there are at most k vertices adjacent to v and so at least one of the
k + 1 colors is still available. Therefore, G is (k + 1)-colorable. This completes
the inductive step, and the theorem follows by induction. |

Sometimes k + 1 colors is the best you can do. For example, in the complete
graph, K;, every one of its n vertices is adjacent to all the others, so all » must be
assigned different colors. Of course n colors is also enough, so y(K,) = n. In
this case, every node has degree k = n — 1 and so this is an example where Theo-
rem 5.3.2 gives the best possible bound. By a similar argument, we can show that
Theorem 5.3.2 gives the best possible bound for any graph with degree bounded by
k that has K as a subgraph.
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Figure 5.17 A 7-node star graph.

But sometimes k£ + 1 colors is far from the best that you can do. For example,
the n-node star graph shown in Figure 5.17 has maximum degree n — 1 but can be
colored using just 2 colors.

5.3.3 Why coloring?

One reason coloring problems frequently arise in practice is because scheduling
conflicts are so common. For example, at Akamai, a new version of software is
deployed over each of 75,000 servers every few days. The updates cannot be done
at the same time since the servers need to be taken down in order to deploy the
software. Also, the servers cannot be handled one at a time, since it would take
forever to update them all (each one takes about an hour). Moreover, certain pairs
of servers cannot be taken down at the same time since they have common critical
functions. This problem was eventually solved by making a 75,000-node conflict
graph and coloring it with 8 colors—so only 8 waves of install are needed!

Another example comes from the need to assign frequencies to radio stations. If
two stations have an overlap in their broadcast area, they can’t be given the same
frequency. Frequencies are precious and expensive, so you want to minimize the
number handed out. This amounts to finding the minimum coloring for a graph
whose vertices are the stations and whose edges connect stations with overlapping
areas.

Coloring also comes up in allocating registers for program variables. While a
variable is in use, its value needs to be saved in a register. Registers can be reused
for different variables but two variables need different registers if they are refer-
enced during overlapping intervals of program execution. So register allocation is
the coloring problem for a graph whose vertices are the variables; vertices are ad-
jacent if their intervals overlap, and the colors are registers. Once again, the goal is
to minimize the number of colors needed to color the graph.

Finally, there’s the famous map coloring problem stated in Proposition 1.3.4.
The question is how many colors are needed to color a map so that adjacent ter-
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ritories get different colors? This is the same as the number of colors needed to
color a graph that can be drawn in the plane without edges crossing. A proof that
four colors are enough for planar graphs was acclaimed when it was discovered
about thirty years ago. Implicit in that proof was a 4-coloring procedure that takes
time proportional to the number of vertices in the graph (countries in the map).
Surprisingly, it’s another of those million dollar prize questions to find an efficient
procedure to tell if a planar graph really needs four colors or if three will actually
do the job. (It’s always easy to tell if an arbitrary graph is 2-colorable.) In Sec-
tion 5.8, we’ll develop enough planar graph theory to present an easy proof that all
planar graphs are 5-colorable.

5.4 Getting from A to B in a Graph

5.4.1 Paths and Walks

Definition 5.4.1. A walk'? in a graph, G, is a sequence of vertices

V0o, V1,..., V0

and edges
{vo, vi} {vi, va), ..o {vk—1, v}

such that {v;, vj 41} is an edge of G for all i where 0 < i < k . The walk is said to
start at vy and to end at vy, and the length of the walk is defined to be k. An edge,
{u, v}, is traversed n times by the walk if there are n different values of i such that
{vi,vix1} = {u,v}. A path is a walk where all the v;’s are different, that is, i # j
implies v; # v;. For simplicity, we will refer to paths and walks by the sequence
of vertices.!?

For example, the graph in Figure 5.18 has a length 6 path a, b, ¢, d, e, f, g.
This is the longest path in the graph. Of course, the graph has walks with arbitrarily
large lengths; for example, a, b, a, b, a, b, .. ..

The length of a walk or path is the total number of times it traverses edges, which
is one less than its length as a sequence of vertices. For example, the length 6 path
a,b,c,d,e, f,g contains a sequence of 7 vertices.

12Some texts use the word path for our definition of walk and the term simple path for our definition
of path.

13This works fine for simple graphs since the edges in a walk are completely determined by the
sequence of vertices and there is no ambiguity. For graphs with multiple edges, we would need to
specity the edges as well as the nodes.
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Figure 5.18 A graph containing a path a, b, ¢, d, e, f, g of length 6.

5.4.2 Finding a Path

Where there’s a walk, there’s a path. This is sort of obvious, but it’s easy enough to
prove rigorously using the Well Ordering Principle.

Lemma 5.4.2. If there is a walk from a vertex u to a vertex v in a graph, then there
is a path from u to v.

Proof. Since there is a walk from u to v, there must, by the Well-ordering Principle,
be a minimum length walk from u to v. If the minimum length is zero or one, this
minimum length walk is itself a path from u to v. Otherwise, there is a minimum
length walk

Vo, V1,..., Uk

from 4 = vg to v = v where k > 2. We claim this walk must be a path. To
prove the claim, suppose to the contrary that the walk is not a path; that is, some
vertex on the walk occurs twice. This means that there are integers i, j such that
0 <i < j <k withv; = v;. Then deleting the subsequence

Vi+1,-..,VUj
yields a strictly shorter walk
vo,vl,...,v,-,vj+1,vj+2,...,vk
from u to v, contradicting the minimality of the given walk. |

Actually, we proved something stronger:

Corollary 5.4.3. For any walk of length k in a graph, there is a path of length at
most k with the same endpoints. Moreover, the shortest walk between a pair of
vertices is, in fact, a path.
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Figure 5.19 A graph for which there are 5 walks of length 3 from v; to vg4.
The walks are (v, v2, V1, v4), (V1, V3, V1, V4), (V1, V4, V1, V4), (U1, V2, V3, V4), and
(Ul, v49 v31 v4)'

5.4.3 Numbers of Walks

Given a pair of nodes that are connected by a walk of length k in a graph, there are
often many walks that can be used to get from one node to the other. For example,
there are 5 walks of length 3 that start at v; and end at v4 in the graph shown in
Figure 5.19.

There is a surprising relationship between the number of walks of length k be-
tween a pair of nodes in a graph G and the kth power of the adjacency matrix Ag
for G. The relationship is captured in the following theorem.

Theorem 5.4.4. Let G = (V, E) be an n-node graph with V.= {v1,v2,..., U}
and let Ag = {a;j} denote the adjacency matrix for G. Let ag-{) denote the (i, j)-
entry of the kth power of Ag. Then the number of walks of length k between v;

and vj isa;;’.

In other words, we can determine the number of walks of length k between any
pair of nodes simply by computing the kth power of the adjacency matrix! That’s
pretty amazing.

For example, the first three powers of the adjacency matrix for the graph in Fig-
ure 5.19 are:

01 11 31 2 1 4 555
~Jr o 10 > |1 21 2 3 |52 52
A= 1 1 0 1 A" = 2 1 3 1 A= 55 45
1 010 1 21 2 52 52
Sure enough, the (1,4) coordinate of A3 is aﬁ) = 5, which is the number of
3)

length 3 walks from vy to v4. And a,, = 2, which is the number of length 3 walks
from v, to vg4. By proving the theorem, we’ll discover why it is true and thereby
uncover the relationship between matrix multiplication and numbers of walks.
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Proof of Theorem 5.4.4. The proof is by induction on k. We will let P (k) be the
predicate that the theorem is true for k. Let Pl.S.k) denote the number of walks of
length k between v; and v;. Then P (k) is the predicate

Vi.jeln]. PP =all. (5.2)

Base Case (k = 1): There are two cases to consider:

Case 1: {v;,v;} € E. Then P.(.l) = 1 since there is precisely one walk of length 1

between v; and v;. Moreover, {v;,v;} € E means that a( )

m _ Q).
Pl.j =a;; in this case.

= a;j = 1. So,

Case 2: {v;,vj} ¢ E. Then P-(-l) = 0 since there cannot be any walks of length 1
between v; and v;. Moreover, {v;,v;} ¢ E means thata;; = 0. So, P(l)

(1) in this case as well.

Hence, P (1) must be true.

Inductive Step: Assume P (k) is true. In other words, assume that equation 5.2
holds.

We can group (and thus count the number of) walks of length k 41 from v; to v;
according to the first edge in the walk (call it {v;, v;}). This means that

t:{Uj ,Ut}EE
(k+1) k)
Pt = Y pf (5.3)

where the sum is over all 7 such that {v;, v} is an edge. Using the fact that q;; = 1
if {v;, v;} € E and a;; = 0 otherwise, we can rewrite Equation 5.3 as follows:

P+ Za,,p<k>.

By the inductive hypothesis, P ) — (f) and thus

P =S
t=1

But the formula for matrix multiplication gives that
(k+1) Z a,,a(k).

and so we must have P§k+1) l.(]].cﬂ) foralli, j € [1,n]. Hence P(k + 1) is true
and the induction is complete. |
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5.4.4 Shortest Paths

Although the connection between the power of the adjacency matrix and the num-
ber of walks is cool (at least if you are a mathematician), the problem of counting
walks does not come up very often in practice. Much more important is the problem
of finding the shortest path between a pair of nodes in a graph.

There is good news and bad news to report on this front. The good news is that
it is not very hard to find a shortest path. The bad news is that you can’t win one of
those million dollar prizes for doing it.

In fact, there are several good algorithms known for finding a Shortest Path be-
tween a pair of nodes. The simplest to explain (but not the fastest) is to compute the
powers of the adjacency matrix one by one until the value of af].c) exceeds 0. That’s
because Theorem 5.4.4 and Corollary 5.4.3 imply that the length of the shortest

path between v; and v; will be the smallest value of k for which ag-c) > 0.

Paths in Weighted Graphs

The problem of computing shortest paths in a weighted graph frequently arises in
practice. For example, when you drive home for vacation, you usually would like
to take the shortest route.

Definition 5.4.5. Given a weighted graph, the length of a path in the graph is the
sum of the weights of the edges in the path.

Finding shortest paths in weighted graphs is not a lot harder than finding shortest
paths in unweighted graphs. We won’t show you how to do it here, but you will
study algorithms for finding shortest paths if you take an algorithms course. Not
surprisingly, the proof of correctness will use induction.

5.5 Connectivity

Definition 5.5.1. Two vertices in a graph are said to be connected if there is a path
that begins at one and ends at the other. By convention, every vertex is considered
to be connected to itself by a path of length zero.

Definition 5.5.2. A graph is said to be connected when every pair of vertices are
connected.
5.5.1 Connected Components

Being connected is usually a good property for a graph to have. For example, it
could mean that it is possible to get from any node to any other node, or that it is
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possible to communicate between any pair of nodes, depending on the application.

But not all graphs are connected. For example, the graph where nodes represent
cities and edges represent highways might be connected for North American cities,
but would surely not be connected if you also included cities in Australia. The
same is true for communication networks like the Internet—in order to be protected
from viruses that spread on the Internet, some government networks are completely
isolated from the Internet.

./o

Figure 5.20 One graph with 3 connected components.

For example, the diagram in Figure 5.20 looks like a picture of three graphs,
but is intended to be a picture of one graph. This graph consists of three pieces
(subgraphs). Each piece by itself is connected, but there are no paths between ver-
tices in different pieces. These connected pieces of a graph are called its connected
components.

Definition 5.5.3. A connected component is a subgraph of a graph consisting of
some vertex and every node and edge that is connected to that vertex.

So a graph is connected iff it has exactly one connected component. At the other
extreme, the empty graph on n vertices has n connected components.

5.5.2 k-Connected Graphs

If we think of a graph as modeling cables in a telephone network, or oil pipelines, or
electrical power lines, then we not only want connectivity, but we want connectivity
that survives component failure. A graph is called k-edge connected if it takes at
least k “edge-failures” to disconnect it. More precisely:

Definition 5.5.4. Two vertices in a graph are k-edge connected if they remain con-
nected in every subgraph obtained by deleting k — 1 edges. A graph with at least
two vertices is k-edge connected'* if every two of its vertices are k-edge connected.

14The corresponding definition of connectedness based on deleting vertices rather than edges is
common in Graph Theory texts and is usually simply called “k-connected” rather than “k-vertex
connected.”
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So 1-edge connected is the same as connected for both vertices and graphs. An-
other way to say that a graph is k-edge connected is that every subgraph obtained
from it by deleting at most k — 1 edges is connected. For example, in the graph in
Figure 5.18, vertices ¢ and e are 3-edge connected, b and e are 2-edge connected,
g and e are 1-edge connected, and no vertices are 4-edge connected. The graph
as a whole is only 1-edge connected. The complete graph, K, is (n — 1)-edge
connected.

If two vertices are connected by k edge-disjoint paths (that is, no two paths
traverse the same edge), then they are obviously k-edge connected. A fundamental
fact, whose ingenious proof we omit, is Menger’s theorem which confirms that the
converse is also true: if two vertices are k-edge connected, then there are k edge-
disjoint paths connecting them. It even takes some ingenuity to prove this for the
case k = 2.

5.5.3 The Minimum Number of Edges in a Connected Graph

The following theorem says that a graph with few edges must have many connected
components.

Theorem 5.5.5. Every graph with v vertices and e edges has at least v — e con-
nected components.

Of course for Theorem 5.5.5 to be of any use, there must be fewer edges than
vertices.

Proof. We use induction on the number of edges, e. Let P(e) be the proposition
that

for every v, every graph with v vertices and e edges has at least v — e
connected components.

Base case:(e = 0). In a graph with 0 edges and v vertices, each vertex is itself a
connected component, and so there are exactly v = v — 0 connected components.
So P(e) holds.

Inductive step: Now we assume that the induction hypothesis holds for every e-
edge graph in order to prove that it holds for every (e + 1)-edge graph, where e > 0.
Consider a graph, G, with e + 1 edges and v vertices. We want to prove that G has
at least v — (e + 1) connected components. To do this, remove an arbitrary edge
{a, b} and call the resulting graph G’. By the induction assumption, G’ has at least
v — e connected components. Now add back the edge {a, b} to obtain the original
graph G. If a and b were in the same connected component of G’, then G has the
same connected components as G’, so G has at least v—e > v—(e+ 1) components.
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Figure 5.21 A counterexample graph to the False Claim.

Otherwise, if a and b were in different connected components of G, then these two
components are merged into one component in G, but all other components remain
unchanged, reducing the number of components by 1. Therefore, G has at least
(v—e)—1 = v—(e+ 1) connected components. So in either case, P(e + 1) holds.
This completes the Inductive step. The theorem now follows by induction. |

Corollary 5.5.6. Every connected graph with v vertices has at least v — 1 edges.

A couple of points about the proof of Theorem 5.5.5 are worth noticing. First,
we used induction on the number of edges in the graph. This is very common in
proofs involving graphs, as is induction on the number of vertices. When you’re
presented with a graph problem, these two approaches should be among the first
you consider.

The second point is more subtle. Notice that in the inductive step, we took an
arbitrary (n 4+ 1)-edge graph, threw out an edge so that we could apply the induction
assumption, and then put the edge back. You’ll see this shrink-down, grow-back
process very often in the inductive steps of proofs related to graphs. This might
seem like needless effort; why not start with an n-edge graph and add one more to
get an (n + 1)-edge graph? That would work fine in this case, but opens the door
to a nasty logical error called buildup error.

5.5.4 Build-Up Error

False Claim. If every vertex in a graph has degree at least 1, then the graph is
connected.

There are many counterexamples; for example, see Figure 5.21.

False proof. We use induction. Let P (n) be the proposition that if every vertex in
an n-vertex graph has degree at least 1, then the graph is connected.

Base case: There is only one graph with a single vertex and has degree 0. There-
fore, P(1) is vacuously true, since the if-part is false.
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(«——n-node
connected
graph

Figure 5.22 Adding a vertex x with degree at least 1 to a connected n-node graph.

Inductive step: We must show that P (n) implies P(n 4 1) for all n > 1. Consider
an n-vertex graph in which every vertex has degree at least 1. By the assump-
tion P(n), this graph is connected; that is, there is a path between every pair of
vertices. Now we add one more vertex x to obtain an (n + 1)-vertex graph as
shown in Figure 5.22.

All that remains is to check that there is a path from x to every other vertex z.
Since x has degree at least one, there is an edge from x to some other vertex; call
it y. Thus, we can obtain a path from x to z by adjoining the edge {x, y} to the
path from y to z. This proves P(n + 1).

By the principle of induction, P(n) is true for all n > 1, which proves the
theorem |

Uh-oh. . . this proof looks fine! Where is the bug? It turns out that the faulty as-
sumption underlying this argument is that every (n + 1)-vertex graph with minimum
degree 1 can be obtained from an n-vertex graph with minimum degree 1 by adding
1 more vertex. Instead of starting by considering an arbitrary (n + 1)-node graph,
this proof only considered (n + 1)-node graphs that you can make by starting with
an n-node graph with minimum degree 1.

The counterexample in Figure 5.21 shows that this assumption is false; there
is no way to build the 4-vertex graph in Figure 5.21 from a 3-vertex graph with
minimum degree 1. Thus the first error in the proof is the statement “This proves
Pn+1)"

This kind of flaw is known as “build-up error.” Usually, build-up error arises
from a faulty assumption that every size n + 1 graph with some property can be
“built up” from a size n graph with the same property. (This assumption is cor-
rect for some properties, but incorrect for others—such as the one in the argument
above.)
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One way to avoid an accidental build-up error is to use a “shrink down, grow
back” process in the inductive step; that is, start with a size n + 1 graph, remove
a vertex (or edge), apply the inductive hypothesis P (n) to the smaller graph, and
then add back the vertex (or edge) and argue that P(n + 1) holds. Let’s see what
would have happened if we’d tried to prove the claim above by this method:

Revised inductive step: We must show that P(n) implies P(n + 1) foralln > 1.
Consider an (n + 1)-vertex graph G in which every vertex has degree at least 1.
Remove an arbitrary vertex v, leaving an n-vertex graph G’ in which every vertex
has degree. .. uh oh!

The reduced graph G’ might contain a vertex of degree 0, making the inductive
hypothesis P(n) inapplicable! We are stuck—and properly so, since the claim is
false!

Always use shrink-down, grow-back arguments and you’ll never fall into this
trap.

5.6 Around and Around We Go

5.6.1 Cycles and Closed Walks

Definition 5.6.1. A closed walk" in a graph G is a sequence of vertices
Vo, V1,..., VU

and edges
{vo, vi} {1, va} oo {vk—1, v}

where vg is the same node as vy and {v;, v;+1} is an edge of G for all i where
0 <i < k. The length of the closed walk is k. A closed walk is said to be a cycle
if Kk > 3 and vg, v1, ..., vp_; are all different.

For example, b, ¢, d, e, ¢, b is a closed walk of length 5 in the graph shown in
Figure 5.18. It is not a cycle since it contains node ¢ twice. On the other hand, c,
d, e, ¢ is a cycle of length 3 in this graph since every node appears just once.

There are many ways to represent the same closed walk or cycle. For example,
b, c,d, e, c, b is the same as ¢, d, e, ¢, b, ¢ (just starting at node ¢ instead of
node b) and the same as b, ¢, e, d, ¢, b (just reversing the direction).

15Some texts use the word cycle for our definition of closed walk and simple cycle for our definition
of cycle.
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Cycles are similar to paths, except that the last node is the first node and the
notion of first and last does not matter. Indeed, there are many possible vertex
orders that can be used to describe cycles and closed walks, whereas walks and
paths have a prescribed beginning, end, and ordering.

5.6.2 Odd Cycles and 2-Colorability

We have already seen that determining the chromatic number of a graph is a chal-
lenging problem. There is a special case where this problem is very easy; namely,
the case where every cycle in the graph has even length. In this case, the graph
is 2-colorable! Of course, this is optimal if the graph has any edges at all. More
generally, we will prove

Theorem 5.6.2. The following properties of a graph are equivalent (that is, if the
graph has any one of the properties, then it has all of the properties):

1. The graph is bipartite.

2. The graph is 2-colorable.

3. The graph does not contain any cycles with odd length.

4. The graph does not contain any closed walks with odd length.

Proof. We will show that property 1 IMPLIES property 2, property 2 IMPLIES prop-
erty 3, property 3 IMPLIES property 4, and property 4 IMPLIES property 1. This will
show that all four properties are equivalent by repeated application of Rule 2.1.2 in
Section 2.1.2.

1 IMPLIES 2 Assume that G = (V, E) is a bipartite graph. Then V' can be parti-
tioned into two sets L and R so that no edge connects a pair of nodes in L
nor a pair of nodes in R. Hence, we can use one color for all the nodes in L
and a second color for all the nodes in R. Hence y(G) = 2.

2 IMPLIES 3 Let G = (V, E) be a 2-colorable graph and
C .= Vo, V1,...,Vfk

be any cycle in G. Consider any 2-coloring for the nodes of G. Since
{vi,vi+1} € E, v; and v;4; must be differently colored for 0 < i < k.
Hence vg, v2, vg4, ..., have one color and vy, vs3, vs, ..., have the other
color. Since C is a cycle, v is the same node as vg, which means they must
have the same color, and so k must be an even number. This means that
C has even length.
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3 IMPLIES 4 The proof is by contradiction. Assume for the purposes of contradic-
tion that G is a graph that does not contain any cycles with odd length (that
is, G satisfies Property 3) but that G does contain a closed walk with odd
length (that is, G does not satisfy Property 4).

Let
w i= Vg, V1,V2,...,V

be the shortest closed walk with odd length in G. Since G has no odd-length
cycles, w cannot be a cycle. Hence v; = v; for some 0 <i < j < k. This
means that w is the union of two closed walks:

Vo, V1., Vi, Vj4+1,Vj42,...,Vk

and
Vi, Vidtls...sVj .
Since w has odd length, one of these two closed walks must also have odd

length and be shorter than w. This contradicts the minimality of w. Hence 3
IMPLIES 4.

4 IMPLIES 1 Once again, the proof is by contradiction. Assume for the purposes
of contradictin that G is a graph without any closed walks with odd length
(that is, G satisfies Property 4) but that G is not bipartite (that is, G does not
satisfy Property 1).
Since G is not bipartite, it must contain a connected component G’ = (V'/, E)
that is not bipartite. Let v be some node in V. For every node u € V', define

dist(u) ::= the length of the shortest path from u to v in G’.

If u = v, the distance is zero.
Partition V'’ into sets L and R so that

L = {u | dist(u) is even },
R = {u | dist(u) is odd }.

Since G’ is not bipartite, there must be a pair of adjacent nodes u; and u;
that are both in L or both in R. Let e denote the edge incident to #; and u5.

Let P; denote a shortest path in G’ from u; to v for i = 1,2. Because u
and u, are both in L or both in R, it must be the case that P; and P, both
have even length or they both have odd length. In either case, the union of
P1, P>, and e forms a closed walk with odd length, which is a contradiction.
Hence 4 IMPLIES 1. |
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Figure 5.23 A possible floor plan for a museum. Can you find a walk that tra-
verses every edge exactly once?

Theorem 5.6.2 turns out to be useful since bipartite graphs come up fairly often
in practice. We’ll see examples when we talk about planar graphs in Section 5.8
and when we talk about packet routing in communication networks in Chapter 6.

5.6.3 Euler Tours

Can you walk every hallway in the Museum of Fine Arts exactly once? If we
represent hallways and intersections with edges and vertices, then this reduces to a
question about graphs. For example, could you visit every hallway exactly once in
a museum with the floor plan in Figure 5.23?

The entire field of graph theory began when Euler asked whether the seven
bridges of Konigsberg could all be traversed exactly once—essentially the same
question we asked about the Museum of Fine Arts. In his honor, an Euler walk is
a defined to be a walk that traverses every edge in a graph exactly once. Similarly,
an Euler tour is an Euler walk that starts and finishes at the same vertex. Graphs
with Euler tours and Euler walks both have simple characterizations.

Theorem 5.6.3. A connected graph has an Euler tour if and only if every vertex
has even degree.

Proof. We first show that if a graph has an Euler tour, then every vertex has even
degree. Assume that a graph G = (V, E) has an Euler tour vy, vq, ..., v where
Vg = vg. Since every edge is traversed once in the tour, k = | E| and the degree of
anode u in G is the number of times that node appears in the sequence vg, vy, ...,
V_1 times two. We multiply by two since if u = v; for some i where 0 < i < k,
then both {v;_1, v;} and {v;, v;+1} are edges incident to u in G. If u = vg = vy,
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then both {vi_1, vr} and {vg, v1} are edges incident to u in G. Hence, the degree
of every node is even.

We next show that if the degree of every node is even in a graph G = (V, E),
then there is an Euler tour. Let

W = Vo, V1,..., Uk

be the longest walk in G that traverses no edge more than once'®. W must traverse
every edge incident to vg; otherwise the walk could be extended and W would not
be the longest walk that traverses all edges at most once. Moreover, it must be that
v = vg and that W is a closed walk, since otherwise vy would have odd degree
in W (and hence in G), which is not possible by assumption.

We conclude the argument with a proof by contradiction. Suppose that W' is not
an Euler tour. Because G is a connected graph, we can find an edge not in W but
incident to some vertex in W. Call this edge {u, v; }. But then we can construct a
walk W’ that is longer than W but that still uses no edge more than once:

W' = u,vi,Vit1,..., Vg, U1, V2, ..., V.
This contradicts the definition of W, so W must be an Euler tour after all. [ |

It is not difficult to extend Theorem 5.6.3 to prove that a connected graph G has
an Euler walk if and only if precisely O or 2 nodes in G have odd degree. Hence,
we can conclude that the graph shown in Figure 5.23 has an Euler walk but not an
Euler tour since the graph has precisely two nodes with odd degree.

Although the proof of Theorem 5.6.3 does not explicitly define a method for
finding an Euler tour when one exists, it is not hard to modify the proof to produce
such a method. The idea is to grow a tour by continually splicing in closed walks
until all the edges are consumed.

5.6.4 Hamiltonian Cycles
Hamiltonian cycles are the unruly cousins of Euler tours.
Definition 5.6.4. A Hamiltonian cycle in a graph G is a cycle that visits every node

in G exactly once. Similarly, a Hamiltonian path is a path in G that visits every
node exactly once.

16Did you notice that we are using a variation of the Well Ordering Principle here when we im-
plicitly assume that a longest walk exists? This is ok since the length of a walk where no edge is used
more than once is at most | E|.
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Figure 5.24 A weighted graph. Can you find a cycle with weight 15 that visits
every node exactly once?

Although Hamiltonian cycles sound similar to Euler tours—one visits every node
once while the other visits every edge once—finding a Hamiltonian cycle can be
a lot harder than finding an Euler tour. The same is true for Hamiltonian paths.
This is because no one has discovered a simple characterization of all graphs with a
Hamiltonian cycle. In fact, determining whether a graph has a Hamiltonian cycle is
the same category of problem as the SAT problem of Section 1.5 and the coloring
problem in Section 5.3; you get a million dollars for finding an efficient way to
determine when a graph has a Hamiltonian cycle—or proving that no procedure
works efficiently on all graphs.

5.6.5 The Traveling Salesperson Problem

As if the problem of finding a Hamiltonian cycle is not hard enough, when the
graph is weighted, we often want to find a Hamiltonian cycle that has least pos-
sible weight. This is a very famous optimization problem known as the Traveling
Salesperson Problem.

Definition 5.6.5. Given a weighted graph G, the weight of a cycle in G is defined
as the sum of the weights of the edges in the cycle.

For example, consider the graph shown in Figure 5.24 and suppose that you
would like to visit every node once and finish at the node where you started. Can
you find way to do this by traversing a cycle with weight 15?

Needless to say, if you can figure out a fast procedure that finds the optimal cycle
for the traveling salesperson, let us know so that we can win a million dollars.
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Figure 5.25 A 9-node tree.

Figure 5.26 A 6-node forest consisting of 2 component trees. Note that this 6-
node graph is not itself a tree since it is not connected.

5.7 Trees

As we have just seen, finding good cycles in a graph can be trickier than you might
first think. But what if a graph has no cycles at all? Sounds pretty dull. But graphs
without cycles (called acyclic graphs) are probably the most important graphs of
all when it comes to computer science.

5.7.1 Definitions
Definition 5.7.1. A connected acyclic graph is called a tree.

For example, Figure 5.25 shows an example of a 9-node tree.
The graph shown in Figure 5.26 is not a tree since it is not connected, but it is a
forest. That’s because, of course, it consists of a collection of trees.

Definition 5.7.2. If every connected component of a graph G is a tree, then G is a
forest.

One of the first things you will notice about trees is that they tend to have a lot
of nodes with degree one. Such nodes are called leaves.

Definition 5.7.3. A leaf is a node with degree 1 in a tree (or forest).

For example, the tree in Figure 5.25 has 5 leaves and the forest in Figure 5.26
has 4 leaves.
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a

Figure 5.27 The tree from Figure 5.25 redrawn in a leveled fashion, with node E
as the root.

Trees are a fundamental data structure in computer science. For example, in-
formation is often stored in tree-like data structures and the execution of many
recursive programs can be modeled as the traversal of a tree. In such cases, it is
often useful to draw the tree in a leveled fashion where the node in the top level is
identified as the root, and where every edge joins a parent to a child. For example,
we have redrawn the tree from Figure 5.25 in this fashion in Figure 5.27. In this
example, node d is a child of node e and a parent of nodes b and c.

In the special case of ordered binary trees, every node is the parent of at most 2
children and the children are labeled as being a left-child or a right-child.

5.7.2 Properties

Trees have many unique properties. We have listed some of them in the following
theorem.

Theorem 5.7.4. Every tree has the following properties:

1. Any connected subgraph is a tree.
2. There is a unique simple path between every pair of vertices.

3. Adding an edge between nonadjacent nodes in a tree creates a graph with a
cycle.

4. Removing any edge disconnects the graph.
5. If the tree has at least two vertices, then it has at least two leaves.

6. The number of vertices in a tree is one larger than the number of edges.
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Figure 5.28 If there are two paths between u and v, the graph must contain a
cycle.

Proof. 1. A cycle in a subgraph is also a cycle in the whole graph, so any sub-
graph of an acyclic graph must also be acyclic. If the subgraph is also con-
nected, then by definition, it is a tree.

2. Since a tree is connected, there is at least one path between every pair of ver-
tices. Suppose for the purposes of contradiction, that there are two different
paths between some pair of vertices ¥ and v. Beginning at u, let x be the
first vertex where the paths diverge, and let y be the next vertex they share.
(For example, see Figure 5.28.) Then there are two paths from x to y with no
common edges, which defines a cycle. This is a contradiction, since trees are
acyclic. Therefore, there is exactly one path between every pair of vertices.

3. An additional edge {u, v} together with the unique path between u and v
forms a cycle.

4. Suppose that we remove edge {u, v}. Since the tree contained a unique path
between u and v, that path must have been {u, v}. Therefore, when that edge
is removed, no path remains, and so the graph is not connected.

5. Letvy,..., vy, be the sequence of vertices on a longest path in the tree. Then
m > 2, since a tree with two vertices must contain at least one edge. There
cannot be an edge {vi,v;} for 2 < i < m; otherwise, vertices vy, ..., V;

would from a cycle. Furthermore, there cannot be an edge {u, v} where u
is not on the path; otherwise, we could make the path longer. Therefore, the
only edge incident to vy is {v1, v}, which means that v; is a leaf. By a
symmetric argument, vy, is a second leaf.

6. We use induction on the proposition P(n) ::= there are n — 1 edges in any
n-vertex tree.

Base Case (n = 1): P(1) is true since a tree with 1 node has 0 edges and
I-1=0.




“mes-ftI” — 2010/9/8 — 0:40 — page 165 — #171

5.7. Trees 165

Figure 5.29 A graph where the edges of a spanning tree have been thickened.

Inductive step: Now suppose that P(n) is true and consider an (n + 1)-
vertex tree, 7. Let v be a leaf of the tree. You can verify that deleting a
vertex of degree 1 (and its incident edge) from any connected graph leaves
a connected subgraph. So by part 1 of Theorem 5.7.4, deleting v and its
incident edge gives a smaller tree, and this smaller tree has n — 1 edges by
induction. If we re-attach the vertex v and its incident edge, then we find that
T hasn = (n + 1) — 1 edges. Hence, P(n + 1) is true, and the induction
proof is complete. u

Various subsets of properties in Theorem 5.7.4 provide alternative characteriza-
tions of trees, though we won’t prove this. For example, a connected graph with a
number of vertices one larger than the number of edges is necessarily a tree. Also,
a graph with unique paths between every pair of vertices is necessarily a tree.

5.7.3 Spanning Trees

Trees are everywhere. In fact, every connected graph contains a subgraph that is
a tree with the same vertices as the graph. This is a called a spanning tree for
the graph. For example, Figure 5.29 is a connected graph with a spanning tree
highlighted.

Theorem 5.7.5. Every connected graph contains a spanning tree.

Proof. By contradiction. Assume there is some connected graph G that has no
spanning tree and let 7' be a connected subgraph of G, with the same vertices as
G, and with the smallest number of edges possible for such a subgraph. By the
assumption, 7" is not a spanning tree and so it contains some cycle:

{vo, v1}, {vi, v}, ..., {vk, vo}

Suppose that we remove the last edge, {vg, vo}. If a pair of vertices x and y was
joined by a path not containing {vg, vo}, then they remain joined by that path. On
the other hand, if x and y were joined by a path containing {vg, vo}, then they
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(b)

Figure 5.30 A spanning tree (a) with weight 19 for a graph (b).

remain joined by a walk containing the remainder of the cycle. By Lemma 5.4.2,
they must also then be joined by a path. So all the vertices of G are still connected
after we remove an edge from 7'. This is a contradiction, since 7" was defined to
be a minimum size connected subgraph with all the vertices of G. So the theorem
must be true. |

5.7.4 Minimum Weight Spanning Trees

Spanning trees are interesting because they connect all the nodes of a graph using
the smallest possible number of edges. For example the spanning tree for the 6-
node graph shown in Figure 5.29 has 5 edges.

Spanning trees are very useful in practice, but in the real world, not all span-
ning trees are equally desirable. That’s because, in practice, there are often costs
associated with the edges of the graph.

For example, suppose the nodes of a graph represent buildings or towns and
edges represent connections between buildings or towns. The cost to actually make
a connection may vary a lot from one pair of buildings or towns to another. The
cost might depend on distance or topography. For example, the cost to connect LA
to NY might be much higher than that to connect NY to Boston. Or the cost of a
pipe through Manhattan might be more than the cost of a pipe through a cornfield.

In any case, we typically represent the cost to connect pairs of nodes with a
weighted edge, where the weight of the edge is its cost. The weight of a spanning
tree is then just the sum of the weights of the edges in the tree. For example, the
weight of the spanning tree shown in Figure 5.30 is 19.

The goal, of course, is to find the spanning tree with minimum weight, called the
min-weight spanning tree (MST for short).
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Figure 5.31 An MST with weight 17 for the graph in Figure 5.30(b).

Definition 5.7.6. The min-weight spanning tree (MST) of an edge-weighted graph G
is the spanning tree of G with the smallest possible sum of edge weights.

Is the spanning tree shown in Figure 5.30(a) an MST of the weighted graph
shown in Figure 5.30(b)? Actually, it is not, since the tree shown in Figure 5.31 is
also a spanning tree of the graph shown in Figure 5.30(b), and this spanning tree
has weight 17.

What about the tree shown in Figure 5.317 Is it an MST? It seems to be, but
how do we prove it? In general, how do we find an MST? We could, of course,
enumerate all trees, but this could take forever for very large graphs.

Here are two possible algorithms:

Algorithm 1. Grow a tree one edge at a time by adding the minimum weight edge
possible to the tree, making sure that you have a tree at each step.

Algorithm 2. Grow a subgraph one edge at a time by adding the minimum-weight
edge possible to the subgraph, making sure that you have an acyclic subgraph at
each step.

For example, in the weighted graph we have been considering, we might run
Algorithm 1 as follows. We would start by choosing one of the weight 1 edges,
since this is the smallest weight in the graph. Suppose we chose the weight 1 edge
on the bottom of the triangle of weight 1 edges in our graph. This edge is incident
to two weight 1 edges, a weight 4 edge, a weight 7 edge, and a weight 3 edge. We
would then choose the incident edge of minimum weight. In this case, one of the
two weight 1 edges. At this point, we cannot choose the third weight 1 edge since
this would form a cycle, but we can continue by choosing a weight 2 edge. We
might end up with the spanning tree shown in Figure 5.32, which has weight 17,
the smallest we’ve seen so far.
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Figure 5.32 A spanning tree found by Algorithm 1.

Now suppose we instead ran Algorithm 2 on our graph. We might again choose
the weight 1 edge on the bottom of the triangle of weight 1 edges in our graph.
Now, instead of choosing one of the weight 1 edges it touches, we might choose
the weight 1 edge on the top of the graph. Note that this edge still has minimum
weight, and does not cause us to form a cycle, so Algorithm 2 can choose it. We
would then choose one of the remaining weight 1 edges. Note that neither causes us
to form a cycle. Continuing the algorithm, we may end up with the same spanning
tree in Figure 5.32, though this need not always be the case.

It turns out that both algorithms work, but they might end up with different
MSTs. The MST is not necessarily unique—indeed, if all edges of an n-node graph
have the same weight ( = 1), then all spanning trees have weight n — 1.

These are examples of greedy approaches to optimization. Sometimes it works
and sometimes it doesn’t. The good news is that it works to find the MST. In fact,
both variations work. It’s a little easier to prove it for Algorithm 2, so we’ll do that
one here.

Theorem 5.7.7. For any connected, weighted graph G, Algorithm 2 produces an
MST for G.

Proof. The proof is a bit tricky. We need to show the algorithm terminates, that is,
that if we have selected fewer than n — 1 edges, then we can always find an edge to
add that does not create a cycle. We also need to show the algorithm creates a tree
of minimum weight.

The key to doing all of this is to show that the algorithm never gets stuck or goes
in a bad direction by adding an edge that will keep us from ultimately producing
an MST. The natural way to prove this is to show that the set of edges selected at
any point is contained in some MST—that is, we can always get to where we need
to be. We’ll state this as a lemma.
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Lemma 5.7.8. For any m > 0, let S consist of the first m edges selected by Algo-
rithm 2. Then there exists some MST T = (V, E) for G such that S C E, that is,
the set of edges that we are growing is always contained in some MST.

We’ll prove this momentarily, but first let’s see why it helps to prove the theorem.
Assume the lemma is true. Then how do we know Algorithm 2 can always find an
edge to add without creating a cycle? Well, as long as there are fewer than n — 1
edges picked, there exists some edge in £ — S and so there is an edge that we can
add to S without forming a cycle. Next, how do we know that we get an MST at
the end? Well, once m = n — 1, we know that S is an MST.

Ok, so the theorem is an easy corollary of the lemma. To prove the lemma, we’ll
use induction on the number of edges chosen by the algorithm so far. This is very
typical in proving that an algorithm preserves some kind of invariant condition—
induct on the number of steps taken, that is, the number of edges added.

Our inductive hypothesis P (m) is the following: for any G and any set S of m
edges initially selected by Algorithm 2, there exists an MST T = (V, E) of G such
that S C E.

For the base case, we need to show P (0). In this case, S = @, so S C E trivially
holds for any MST T = (V, E).

For the inductive step, we assume P (1) holds and show that it implies P (m+1).
Let e denote the (1m 4+ 1)st edge selected by Algorithm 2, and let S’ denote the first m
edges selected by Algorithm 2. Let T* = (V*, E*) be the MST such that S C E*,
which exists by the inductive hypothesis. There are now two cases:

Case 1: ¢ € E*, in which case S U {e} C E*, and thus P(m + 1) holds.

Case2: ¢ ¢ E™, as illustrated in Figure 5.33. Now we need to find a different
MST that contains S and e.

What happens when we add e to T*? Since T* is a tree, we get a cycle. (Here
we used part 3 of Theorem 5.7.4.) Moreover, the cycle cannot only contains edges
in S, since e was chosen so that together with the edges in S, it does not form
a cycle. This implies that {e} U T* contains a cycle that contains an edge ¢’ of
E* — S. For example, such an ¢’ is shown in Figure 5.33.

Note that the weight of e is at most that of ¢’. This is because Algorithm 2 picks
the minimum weight edge that does not make a cycle with S. Since ¢’ € T*, ¢’
cannot make a cycle with S and if the weight of e were greater than the weight
of ¢/, Algorithm 2 would not have selected e ahead of e’.

Okay, we’re almost done. Now we’ll make an MST that contains S U {e}. Let
T** = (V, E**) where E** = (E* —{e’}) U {e}, that is, we swap e and ¢’ in T*.

Claim 5.7.9. T** is an MST.
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Figure 5.33 The graph formed by adding e to 7*. Edges of S are denoted with
solid lines and edges of E* — S are denoted with dashed lines.

Proof of claim. We first show that T** is a spanning tree. T** is acyclic because
it was produced by removing an edge from the only cycle in T* U {e}. T** is
connected since the edge we deleted from 7* U {e} was on a cycle. Since T**
contains all the nodes of G, it must be a spanning tree for G.

Now let’s look at the weight of 7**. Well, since the weight of e was at most that
of ¢/, the weight of T** is at most that of 7*, and thus 7** is an MST for G. M

Since S U {e} € E**, P(m + 1) holds. Thus, Algorithm 2 must eventually
produce an MST. This will happens when it adds n — 1 edges to the subgraph it
builds. |

So now we know for sure that the MST for our example graph has weight 17
since it was produced by Algorithm 2. And we have a fast algorithm for finding a
minimum-weight spanning tree for any graph.

5.8 Planar Graphs

5.8.1 Drawing Graphs in the Plane

Suppose there are three dog houses and three human houses, as shown in Fig-
ure 5.34. Can you find a route from each dog house to each human house such that
no route crosses any other route?

A quadrapus is a little-known animal similar to an octopus, but with four arms.
Suppose there are five quadrapi resting on the sea floor, as shown in Figure 5.35.
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Figure 5.34 Three dog houses and and three human houses. Is there a route from
each dog house to each human house so that no pair of routes cross each other?
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Figure 5.35 Five quadrapi (4-armed creatures).

Can each quadrapus simultaneously shake hands with every other in such a way
that no arms cross?

Definition 5.8.1. A drawing of a graph in the plane consists of an assignment of
vertices to distinct points in the plane and an assignment of edges to smooth, non-
self-intersecting curves in the plane (whose endpoints are the nodes incident to the
edge). The drawing is planar (that is, it is a planar drawing) if none of the curves
“cross”’—that is, if the only points that appear on more than one curve are the vertex
points. A planar graph is a graph that has a planar drawing.

Thus, these two puzzles are asking whether the graphs in Figure 5.36 are planar;
that is, whether they can be redrawn so that no edges cross. The first graph is called
the complete bipartite graph, K3 3, and the second is Ks.

In each case, the answer is, “No—but almost!” In fact, if you remove an edge
from either of them, then the resulting graphs can be redrawn in the plane so that no
edges cross. For example, we have illustrated the planar drawings for each resulting
graph in Figure 5.37.
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(a) (b)

Figure 5.36 K33 (a) and K5 (b). Can you redraw these graphs so that no pairs
of edges cross?

u
v
(a) (b)

Figure 5.37 Planar drawings of K33 — {u, v} (a) and K5 — {u, v} (b).
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Planar drawings have applications in circuit layout and are helpful in displaying
graphical data such as program flow charts, organizational charts, and scheduling
conflicts. For these applications, the goal is to draw the graph in the plane with as
few edge crossings as possible. (See the box on the following page for one such
example.)

5.8.2 A Recursive Definition for Planar Graphs

Definition 5.8.1 is perfectly precise but has the challenge that it requires us to work
with concepts such as a “smooth curve” when trying to prove results about planar
graphs. The trouble is that we have not really laid the groundwork from geometry
and topology to be able to reason carefully about such concepts. For example, we
haven’t really defined what it means for a curve to be smooth—we just drew a
simple picture (for example, Figure 5.37) and hoped you would get the idea.

Relying on pictures to convey new concepts is generally not a good idea and
can sometimes lead to disaster (or, at least, false proofs). Indeed, it is because of
this issue that there have been so many false proofs relating to planar graphs over
time.'® Such proofs usually rely way too heavily on pictures and have way too
many statements like,

As you can see from Figure ABC, it must be that property XYZ holds
for all planar graphs.

The good news is that there is another way to define planar graphs that uses only
discrete mathematics. In particular, we can define the class of planar graphs as a
recursive data type. In order to understand how it works, we first need to understand
the concept of a face in a planar drawing.

Faces

In a planar drawing of a graph. the curves corresponding to the edges divide up
the plane into connected regions. These regions are called the continuous faces"
of the drawing. For example, the drawing in Figure 5.38 has four continuous faces.
Face IV, which extends off to infinity in all directions, is called the outside face.

Notice that the vertices along the boundary of each of the faces in Figure 5.38
form a cycle. For example, labeling the vertices as in Figure 5.39, the cycles for
the face boundaries are

abca abda bedb acda. 5.4)

18The false proof of the 4-Color Theorem for planar graphs is not the only example.

19Most texts drop the word continuous from the definition of a face. We need it to differentiate the
connected region in the plane from the closed walk in the graph that bounds the region, which we
will call a discrete face.
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When wires are arranged on a surface, like a circuit board or microchip, crossings
require troublesome three-dimensional structures. When Steve Wozniak designed
the disk drive for the early Apple II computer, he struggled mightily to achieve a

nearly planar design:

For two weeks, he worked late each night to make a satisfactory de-
sign. When he was finished, he found that if he moved a connector
he could cut down on feedthroughs, making the board more reliable.
To make that move, however, he had to start over in his design. This
time it only took twenty hours. He then saw another feedthrough
that could be eliminated, and again started over on his design. “The
final design was generally recognized by computer engineers as bril-
liant and was by engineering aesthetics beautiful. Woz later said, ’It’s
something you can only do if you’re the engineer and the PC board
layout person yourself. That was an artistic layout. The board has
virtually no feedthroughs.

s 9917

v

Figure 5.38 A planar drawing with four faces.
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Figure 5.39 The drawing with labeled vertices.

f

Figure 5.40 A planar drawing with a bridge, namely the edge {c, e}.

These four cycles correspond nicely to the four continuous faces in Figure 5.39. So
nicely, in fact, that we can identify each of the faces in Figure 5.39 by its cycle.
For example, the cycle abca identifies face III. Hence, we say that the cycles in
Equation 5.4 are the discrete faces of the graph in Figure 5.39. We use the term
“discrete” since cycles in a graph are a discrete data type (as opposed to a region in
the plane, which is a continuous data type).

Unfortunately, continuous faces in planar drawings are not always bounded by
cycles in the graph—things can get a little more complicated. For example, con-
sider the planar drawing in Figure 5.40. This graph has what we will call a bridge
(namely, the edge {c, e}) and the outer face is

abcefgecda.

This is not a cycle, since it has to traverse the bridge {c, e} twice, but it is a closed
walk.

As another example, consider the planar drawing in Figure 5.41. This graph has
what we will call a dongle (namely, the nodes v, x, y, and w, and the edges incident
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u

Figure 5.41 A planar drawing with a dongle, namely the subgraph with nodes v,
w, X, Y.

to them) and the inner face is
FStUXYXVWVUIUT.

This is not a cycle because it has to traverse every edge of the dongle twice—once
“coming” and once “going,” but once again, it is a closed walk.

It turns out that bridges and dongles are the only complications, at least for con-
nected graphs. In particular, every continuous face in a planar drawing corresponds
to a closed walk in the graph. We refer to such closed walks as the discrete faces
of the drawing.

A Recursive Definition for Planar Embeddings

The association between the continuous faces of a planar drawing and closed walks
will allow us to characterize a planar drawing in terms of the closed walks that
bound the continuous faces. In particular, it leads us to the discrete data type of pla-
nar embeddings that we can use in place of continuous planar drawings. Namely,
we’ll define a planar embedding recursively to be the set of boundary-tracing closed
walks that we could get by drawing one edge after another.

Definition 5.8.2. A planar embedding of a connected graph consists of a nonempty
set of closed walks of the graph called the discrete faces of the embedding. Planar
embeddings are defined recursively as follows:

Base case: If G is a graph consisting of a single vertex v, then a planar embedding
of G has one discrete face, namely the length zero closed walk v.
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y b

Figure 5.42 The “split a face” case.

Constructor Case (split a face): Suppose G is a connected graph with a planar
embedding, and suppose a and b are distinct, nonadjacent vertices of G that appear
on some discrete face y of the planar embedding. That is, y is a closed walk of the
form

a...b...a.

Then the graph obtained by adding the edge {a, b} to the edges of G has a planar
embedding with the same discrete faces as G, except that face y is replaced by the
two discrete faces>’

a...ba and ab...a,

as illustrated in Figure 5.42.

Constructor Case (add a bridge): Suppose G and H are connected graphs with
planar embeddings and disjoint sets of vertices. Let a be a vertex on a discrete face,
y, in the embedding of G. That is, y is of the form

a...da.

Similarly, let » be a vertex on a discrete face, §, in the embedding of H. So § is of

the form
b---b.

Then the graph obtained by connecting G and H with a new edge, {a, b}, has a
planar embedding whose discrete faces are the union of the discrete faces of G and

20 There is a special case of this rule. If G is a line graph beginning with @ and ending with b,
then the cycles into which y splits are actually the same. That’s because adding edge {a, b} creates
a simple cycle graph, Cy, that divides the plane into an “inner” and an “outer” region with the same
border. In order to maintain the correspondence between continuous faces and discrete faces, we
have to allow two “copies” of this same cycle to count as discrete faces.
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Figure 5.43 The “add a bridge” case.

H , except that faces y and ¢ are replaced by one new face
a...ab---ba.
This is illustrated in Figure 5.43, where the faces of G and H are:
G :{axyza, axya, ayza} H : {btuvwb, btvwb, tuvt},
and after adding the bridge {a, b}, there is a single connected graph with faces

{axyzabtuvwba, axya, ayza, btvwb, tuvt}.

Does It Work?

Yes! In general, a graph is planar if and only if each of its connected components
has a planar embedding as defined in Definition 5.8.2. Unfortunately, proving this
fact requires a bunch of mathematics that we don’t cover in this text—stuff like
geometry and topology. Of course, that is why we went to the trouble of including
Definition 5.8.2—we don’t want to deal with that stuff in this text and now that we
have a recursive definition for planar graphs, we won’t need to. That’s the good
news.

The bad news is that Definition 5.8.2 looks a lot more complicated than the
intuitively simple notion of a drawing where edges don’t cross. It seems like it
would be easier to stick to the simple notion and give proofs using pictures. Perhaps
s0, but your proofs are more likely to be complete and correct if you work from the
discrete Definition 5.8.2 instead of the continuous Definition 5.8.1.

Where Did the Outer Face Go?

Every planar drawing has an immediately-recognizable outer face—its the one that
goes to infinity in all directions. But where is the outer face in a planar embedding?
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Figure 5.44 Two illustrations of the same embedding.

There isn’t one! That’s because there really isn’t any need to distinguish one.
In fact, a planar embedding could be drawn with any given face on the outside.
An intuitive explanation of this is to think of drawing the embedding on a sphere
instead of the plane. Then any face can be made the outside face by “puncturing”
that face of the sphere, stretching the puncture hole to a circle around the rest of the
faces, and flattening the circular drawing onto the plane.

So pictures that show different “outside” boundaries may actually be illustra-
tions of the same planar embedding. For example, the two embeddings shown in
Figure 5.44 are really the same.

This is what justifies the “add a bridge” case in Definition 5.8.2: whatever face
is chosen in the embeddings of each of the disjoint planar graphs, we can draw
a bridge between them without needing to cross any other edges in the drawing,
because we can assume the bridge connects two “outer” faces.

5.8.3 Euler’s Formula

The value of the recursive definition is that it provides a powerful technique for
proving properties of planar graphs, namely, structural induction. For example, we
will now use Definition 5.8.2 and structural induction to establish one of the most
basic properties of a connected planar graph; namely, the number of vertices and
edges completely determines the number of faces in every possible planar embed-
ding of the graph.

Theorem 5.8.3 (Euler’s Formula). If a connected graph has a planar embedding,
then

v—e+ f=2
where v is the number of vertices, e is the number of edges, and f is the number of
faces.

For example, in Figure 5.38, |V| = 4, |E| = 6, and f = 4. Sure enough,
4 — 6 + 4 = 2, as Euler’s Formula claims.
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Proof. The proof is by structural induction on the definition of planar embeddings.
Let P(&) be the proposition that v — e 4+ f = 2 for an embedding, £.

Base case: (£ is the one-vertex planar embedding). By definition, v = 1, e = 0,
and f = 1, so P(€) indeed holds.

Constructor case (split a face): Suppose G is a connected graph with a planar
embedding, and suppose a and b are distinct, nonadjacent vertices of G that appear
on some discrete face, y = a...b---a, of the planar embedding.

Then the graph obtained by adding the edge {a, b} to the edges of G has a planar
embedding with one more face and one more edge than G. So the quantity v—e+ f
will remain the same for both graphs, and since by structural induction this quantity
is 2 for G’s embedding, it’s also 2 for the embedding of G with the added edge. So
P holds for the constructed embedding.

Constructor case (add bridge): Suppose G and H are connected graphs with pla-
nar embeddings and disjoint sets of vertices. Then connecting these two graphs
with a bridge merges the two bridged faces into a single face, and leaves all other
faces unchanged. So the bridge operation yields a planar embedding of a connected
graph with vg + vy vertices, eg + e + 1 edges, and fg + fg — 1 faces. Since

(vg +vH)—(eg +eg + 1)+ (fo + fu—1)
=(vg —ec + f6) + (vg —en + fH) =2

=2)+2)—2 (by structural induction hypothesis)

=2,

v — e + f remains equal to 2 for the constructed embedding. That is, P(E) also
holds in this case.

This completes the proof of the constructor cases, and the theorem follows by
structural induction. n

5.8.4 Bounding the Number of Edges in a Planar Graph

Like Euler’s formula, the following lemmas follow by structural induction from
Definition 5.8.2.

Lemma 5.8.4. In a planar embedding of a connected graph, each edge is traversed
once by each of two different faces, or is traversed exactly twice by one face.

Lemma 5.8.5. In a planar embedding of a connected graph with at least three
vertices, each face is of length at least three.

Combining Lemmas 5.8.4 and 5.8.5 with Euler’s Formula, we can now prove
that planar graphs have a limited number of edges:
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Theorem 5.8.6. Suppose a connected planar graph has v > 3 vertices and e edges.
Then
e <3v—6.

Proof. By definition, a connected graph is planar iff it has a planar embedding. So
suppose a connected graph with v vertices and e edges has a planar embedding
with f faces. By Lemma 5.8.4, every edge is traversed exactly twice by the face
boundaries. So the sum of the lengths of the face boundaries is exactly 2e. Also by
Lemma 5.8.5, when v > 3, each face boundary is of length at least three, so this
sum is at least 3 /. This implies that

3f <2e. (5.5)
But f = e — v 4 2 by Euler’s formula, and substituting into (5.5) gives

3(e—v+2)<2e
e—3v+6<0
e<3v—6 |

5.8.5 Returning to K5 and K3 3

Theorem 5.8.6 lets us prove that the quadrapi can’t all shake hands without cross-
ing. Representing quadrapi by vertices and the necessary handshakes by edges, we
get the complete graph, K5. Shaking hands without crossing amounts to show-
ing that K5 is planar. But K5 is connected, has 5 vertices and 10 edges, and
10 > 3.5 — 6. This violates the condition of Theorem 5.8.6 required for K5
to be planar, which proves

Corollary 5.8.7. K5 is not planar.

We can also use Euler’s Formula to show that K3 3 is not planar. The proof is
similar to that of Theorem 5.8.6 except that we use the additional fact that K3 3 is
a bipartite graph.

Theorem 5.8.8. K3 3 is not planar.

Proof. By contradiction. Assume K3 3 is planar and consider any planar embed-
ding of K3 3 with f faces. Since K3 3 is bipartite, we know by Theorem 5.6.2 that
K33 does not contain any closed walks of odd length. By Lemma 5.8.5, every face
has length at least 3. This means that every face in any embedding of K3 3 must
have length at least 4. Plugging this fact into the proof of Theorem 5.8.6, we find
that the sum of the lengths of the face boundaries is exactly 2e and at least 4f.
Hence,
4f <2e
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for any bipartite graph.
Plugging in ¢ = 9 and v = 6 for K3 3 in Euler’s Formula, we find that

f=24e—v=>5.

But
4.54£2.9,

and so we have a contradiction. Hence K3 3 must not be planar. [ |

5.8.6 Another Characterization for Planar Graphs

We did not choose to pick on Ks and K3 3 because of their application to dog
houses or quadrapi shaking hands. Rather, we selected these graphs as examples
because they provide another way to characterize the set of planar graphs.

Theorem 5.8.9 (Kuratowski). A graph is not planar if and only if it contains K5
or K3 3 as a minor.

Definition 5.8.10. A minor of a graph G is a graph that can be obtained by re-
peatedly?! deleting vertices, deleting edges, and merging adjacent vertices of G.
Merging two adjacent vertices, n; and n, of a graph means deleting the two ver-
tices and then replacing them by a new “merged” vertex, m, adjacent to all the
vertices that were adjacent to either of n; or ny, as illustrated in Figure 5.45.

For example, Figure 5.46 illustrates why Cs is a minor of the graph in Fig-
ure 5.46(a). In fact C3 is a minor of a connected graph G if and only if G is not a
tree.

We will not prove Theorem 5.8.9 here, nor will we prove the following handy
facts, which are obvious given the continuous Definition 5.8.1, and which can be
proved using the recursive Definition 5.8.2.

Lemma 5.8.11. Deleting an edge from a planar graph leaves another planar graph.

Corollary 5.8.12. Deleting a vertex from a planar graph, along with all its incident
edges, leaves another planar graph.

Theorem 5.8.13. Any subgraph of a planar graph is planar.

Theorem 5.8.14. Merging two adjacent vertices of a planar graph leaves another
planar graph.

21The three operations can be performed in any order and in any quantities, or not at all.
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ny

n,

Figure 5.45 Merging adjacent vertices n1 and n5 into new vertex, m.

5.8.7 Coloring Planar Graphs

We’ve covered a lot of ground with planar graphs, but not nearly enough to prove
the famous 4-color theorem. But we can get awfully close. Indeed, we have done
almost enough work to prove that every planar graph can be colored using only 5
colors. We need only one more lemma:

Lemma 5.8.15. Every planar graph has a vertex of degree at most five.

Proof. By contradiction. If every vertex had degree at least 6, then the sum of the
vertex degrees is at least 6v, but since the sum of the vertex degrees equals 2e, by
the Handshake Lemma (Lemma 5.2.1), we have e > 3v contradicting the fact that
e < 3v — 6 < 3v by Theorem 5.8.6. |

Theorem 5.8.16. Every planar graph is five-colorable.

Proof. The proof will be by strong induction on the number, v, of vertices, with
induction hypothesis:

Every planar graph with v vertices is five-colorable.

Base cases (v < 5): immediate.

Inductive case: Suppose G is a planar graph with v + 1 vertices. We will describe
a five-coloring of G.
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Figure 5.46 One method by which the graph in (a) can be reduced to C3 (f),
thereby showing that C3 is a minor of the graph. The steps are: merging the nodes
incident to e; (b), deleting v, and all edges incident to it (c), deleting v, (d), delet-
ing ez, and deleting v3 (f).
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First, choose a vertex, g, of G with degree at most 5; Lemma 5.8.15 guarantees
there will be such a vertex.

Case 1: (deg(g) < 5): Deleting g from G leaves a graph, H, that is planar by
Corollary 5.8.12, and, since H has v vertices, it is five-colorable by induction
hypothesis. Now define a five coloring of G as follows: use the five-coloring
of H for all the vertices besides g, and assign one of the five colors to g that
is not the same as the color assigned to any of its neighbors. Since there are
fewer than 5 neighbors, there will always be such a color available for g.

Case 2: (deg(g) = 5): If the five neighbors of g in G were all adjacent to each
other, then these five vertices would form a nonplanar subgraph isomorphic
to K5, contradicting Theorem 5.8.13 (since K5 is not planar). So there must
be two neighbors, n; and n,, of g that are not adjacent. Now merge n; and
g into a new vertex, m. In this new graph, n, is adjacent to m, and the graph
is planar by Theorem 5.8.14. So we can then merge m and n, into a another
new vertex, m’, resulting in a new graph, G’, which by Theorem 5.8.14 is
also planar. Since G’ has v — 1 vertices, it is five-colorable by the induction
hypothesis.

Define a five coloring of G as follows: use the five-coloring of G’ for all the
vertices besides g, ny and np. Next assign the color of m’ in G’ to be the color
of the neighbors n1 and n5. Since 71 and n, are not adjacent in G, this defines a
proper five-coloring of G except for vertex g. But since these two neighbors of g
have the same color, the neighbors of g have been colored using fewer than five
colors altogether. So complete the five-coloring of G by assigning one of the five
colors to g that is not the same as any of the colors assigned to its neighbors.

|

5.8.8 Classifying Polyhedra

The Pythagoreans had two great mathematical secrets, the irrationality of +/2 and
a geometric construct that we’re about to rediscover!

A polyhedron is a convex, three-dimensional region bounded by a finite number
of polygonal faces. If the faces are identical regular polygons and an equal number
of polygons meet at each corner, then the polyhedron is regular. Three examples
of regular polyhedra are shown in Figure 5.34: the tetrahedron, the cube, and the
octahedron.

We can determine how many more regular polyhedra there are by thinking about
planarity. Suppose we took any polyhedron and placed a sphere inside it. Then we
could project the polyhedron face boundaries onto the sphere, which would give
an image that was a planar graph embedded on the sphere, with the images of the
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(b) (©)
Figure 5.47 The tetrahedron (a), cube (b), and octahedron (c).

(a) (b) (©

Figure 5.48 Planar embeddings of the tetrahedron (a), cube (b, and octahe-
dron (c).

corners of the polyhedron corresponding to vertices of the graph. We’ve already
observed that embeddings on a sphere are the same as embeddings on the plane, so
Euler’s formula for planar graphs can help guide our search for regular polyhedra.

For example, planar embeddings of the three polyhedra in Figure 5.34 are shown
in Figure 5.48.

Let m be the number of faces that meet at each corner of a polyhedron, and let
n be the number of edges on each face. In the corresponding planar graph, there
are m edges incident to each of the v vertices. By the Handshake Lemma 5.2.1, we
know:

mv = 2e.

Also, each face is bounded by n edges. Since each edge is on the boundary of two
faces, we have:
nf =2e

Solving for v and f in these equations and then substituting into Euler’s formula
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n m|v e f |polyhedron

3 3|4 6 4 |tetrahedron

4 3|8 12 6 |cube

3 4|6 12 8 |octahedron

3 5112 30 20 |icosahedron

5 3|20 30 12 | dodecahedron

Figure 5.49 The only possible regular polyhedra.

gives:
2 2
1t
n
which simplifies to
1 1 1 1

_— - =4 = (5.6)
m n e 2

Equation 5.6 places strong restrictions on the structure of a polyhedron. Every
nondegenerate polygon has at least 3 sides, so n > 3. And at least 3 polygons must
meet to form a corner, so m > 3. On the other hand, if either » or m were 6 or more,
then the left side of the equation could be at most 1/3 + 1/6 = 1/2, which is less
than the right side. Checking the finitely-many cases that remain turns up only five
solutions, as shown in Figure 5.49. For each valid combination of n and m, we can
compute the associated number of vertices v, edges e, and faces f. And polyhedra
with these properties do actually exist. The largest polyhedron, the dodecahedron,
was the other great mathematical secret of the Pythagorean sect.

The 5 polyhedra in Figure 5.49 are the only possible regular polyhedra. So if
you want to put more than 20 geocentric satellites in orbit so that they uniformly
blanket the globe—tough luck!
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6.1 Definitions

So far, we have been working with graphs with undirected edges. A directed edge
is an edge where the endpoints are distinguished—one is the head and one is the
tail. In particular, a directed edge is specified as an ordered pair of vertices u, v
and is denoted by (u, v) or u — v. In this case, u is the tail of the edge and v is the
head. For example, see Figure 6.1.

A graph with directed edges is called a directed graph or digraph.

Definition 6.1.1. A directed graph G = (V, E) consists of a nonempty set of
nodes V and a set of directed edges E. Each edge e of E is specified by an ordered
pair of vertices u, v € V. A directed graph is simple if it has no loops (that is, edges
of the form ¥ — u) and no multiple edges.

Since we will focus on the case of simple directed graphs in this chapter, we will
generally omit the word simple when referring to them. Note that such a graph can
contain an edge u — v as well as the edge v — u since these are different edges
(for example, they have a different tail).

Directed graphs arise in applications where the relationship represented by an
edge is 1-way or asymmetric. Examples include: a 1-way street, one person likes
another but the feeling is not necessarily reciprocated, a communication channel
such as a cable modem that has more capacity for downloading than uploading,
one entity is larger than another, and one job needs to be completed before another
job can begin. We’ll see several such examples in this chapter and also in Chapter 7.

Most all of the definitions for undirected graphs from Chapter 5 carry over in a
natural way for directed graphs. For example, two directed graphs G; = (V1, E1)
and Gp = (Va, E») are isomorphic if there exists a bijection f : V3 — V5 such
that for every pair of vertices u, v € V1,

u—vekE; IFF fu) —» f(v) € Es.

tail e head
u v

Figure 6.1 A directed edge e = (u, v). u is the tail of e and v is the head of e.
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d

Figure 6.2 A 4-node directed graph with 6 edges.

Directed graphs have adjacency matrices just like undirected graphs. In the case
of a directed graph G = (V, E), the adjacency matrix Ag = {a;;} is defined so
that

1 ifi > j€E
ajj = .
0 otherwise.
The only difference is that the adjacency matrix for a directed graph is not neces-
sarily symmetric (that is, it may be that Ag # Ag).

6.1.1 Degrees

With directed graphs, the notion of degree splits into indegree and outdegree. For
example, indegree(c) = 2 and outdegree(c) = 1 for the graph in Figure 6.2. If a
node has outdegree 0, it is called a sink; if it has indegree 0, it is called a source.
The graph in Figure 6.2 has one source (node @) and no sinks.

6.1.2 Directed Walks, Paths, and Cycles

The definitions for (directed) walks, paths, and cycles in a directed graph are similar
to those for undirected graphs except that the direction of the edges need to be
consistent with the order in which the walk is traversed.

Definition 6.1.2. A directed walk (or more simply, a walk) in a directed graph G
is a sequence of vertices vg, V1, ..., U and edges

Vg —> V1,V] —> V2,...,Vk_1 —> Vg

such that v;_; — v; is an edge of G for all i where 0 < i < k. A directed
path (or path) in a directed graph is a walk where the nodes in the walk are all
different. A directed closed walk (or closed walk) in a directed graph is a walk
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where vg = vg. A directed cycle (or cycle) in a directed graph is a closed walk
where all the vertices v; are different for 0 <i < k.

As with undirected graphs, we will typically refer to a walk in a directed graph
by a sequence of vertices. For example, for the graph in Figure 6.2,

e a,b,c,b,disawalk,

e a,b,d is apath,

e d,c,b,c,b,d isaclosed walk, and
e b,d,c,bisacycle.

Note that b, ¢, b is also a cycle for the graph in Figure 6.2. This is a cycle of
length 2. Such cycles are not possible with undirected graphs.
Also note that
c,b,a,d

is not a walk in the graph shown in Figure 6.2, since » — a is not an edge in this
graph. (You are not allowed to traverse edges in the wrong direction as part of a
walk.)

A path or cycle in a directed graph is said to be Hamiltonian if it visits every
node in the graph. For example, a, b, d, c is the only Hamiltonian path for the
graph in Figure 6.2. The graph in Figure 6.2 does not have a Hamiltonian cycle.

A walk in a directed graph is said to be Eulerian if it contains every edge. The
graph shown in Figure 6.2 does not have an Eulerian walk. Can you see why not?
(Hint: Look at node a.)

6.1.3 Strong Connectivity

The notion of being connected is a little more complicated for a directed graph
than it is for an undirected graph. For example, should we consider the graph in
Figure 6.2 to be connected? There is a path from node a to every other node so on
that basis, we might answer “Yes.” But there is no path from nodes b, c, or d to
node a, and so on that basis, we might answer “No.” For this reason, graph theorists
have come up with the notion of strong connectivity for directed graphs.

Definition 6.1.3. A directed graph G = (V, E) is said to be strongly connected if
for every pair of nodes u,v € V, there is a directed path from u to v (and vice-
versa) in G.

For example, the graph in Figure 6.2 is not strongly connected since there is no
directed path from node b to node a. But if node a is removed, the resulting graph
would be strongly connected.
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Figure 6.3 A 4-node directed acyclic graph (DAG).

A directed graph is said to be weakly connected (or, more simply, connected) if
the corresponding undirected graph (where directed edges ¥ — v and/or v — u
are replaced with a single undirected edge {u, v} is connected. For example, the
graph in Figure 6.2 is weakly connected.

6.1.4 DAGs

If an undirected graph does not have any cycles, then it is a tree or a forest. But
what does a directed graph look like if it has no cycles? For example, consider the
graph in Figure 6.3. This graph is weakly connected and has no directed cycles but
it certainly does not look like a tree.

Definition 6.1.4. A directed graph is called a directed acyclic graph (or, DAG) if it
does not contain any directed cycles.

A first glance, DAGs don’t appear to be particularly interesting. But first im-
pressions are not always accurate. In fact, DAGs arise in many scheduling and
optimization problems and they have several interesting properties. We will study
them extensively in Chapter 7.

6.2 Tournament Graphs

Suppose that n players compete in a round-robin tournament and that for every pair
of players u and v, either u beats v or v beats u. Interpreting the results of a round-
robin tournament can be problematic—there might be all sorts of cycles where x
beats y and y beats z, yet z beats x. Who is the best player? Graph theory does not
solve this problem but it can provide some interesting perspectives.
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d

Figure 6.4 A 5-node tournament graph.

The results of a round-robin tournament can be represented with a tournament
graph. This is a directed graph in which the vertices represent players and the edges
indicate the outcomes of games. In particular, an edge from u to v indicates that
player u defeated player v. In a round-robin tournament, every pair of players has
a match. Thus, in a tournament graph there is either an edge from u to v or an edge
from v to u (but not both) for every pair of distinct vertices ¥ and v. An example
of a tournament graph is shown in Figure 6.4.

6.2.1 Finding a Hamiltonian Path in a Tournament Graph

We’re going to prove that in every round-robin tournament, there exists a ranking
of the players such that each player lost to the player one position higher. For
example, in the tournament corresponding to Figure 6.4, the ranking

a>b>d>e>c

satisfies this criterion, because b lost to a, d lostto b, e lostto d, and ¢ lost to e.
In graph terms, proving the existence of such a ranking amounts to proving that
every tournament graph has a Hamiltonian path.

Theorem 6.2.1. Every tournament graph contains a directed Hamiltonian path.

Proof. We use strong induction. Let P (n) be the proposition that every tournament
graph with n vertices contains a directed Hamiltonian path.

Base case: P (1) is trivially true; every graph with a single vertex has a Hamiltonian
path consisting of only that vertex.
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Figure 6.5 The sets 7" and F in a tournament graph.

Inductive step: For n > 1, we assume that P(1), ..., P(n) are all true and prove
P(n + 1). Consider a tournament graph G = (V, E) with n 4+ 1 players. Select
one vertex v arbitrarily. Every other vertex in the tournament either has an edge fo
vertex v or an edge from vertex v. Thus, we can partition the remaining vertices
into two corresponding sets, 7" and F, each containing at most n vertices, where
T={u|u—>veE}and F ={u|v—uc E} Forexample, see Figure 6.5.

The vertices in T together with the edges that join them form a smaller tourna-
ment. Thus, by strong induction, there is a Hamiltonian path within 7. Similarly,
there is a Hamiltonian path within the tournament on the vertices in F. Joining
the path in T to the vertex v followed by the path in F gives a Hamiltonian path
through the whole tournament. As special cases, if T or F' is empty, then so is the
corresponding portion of the path. |

The ranking defined by a Hamiltonian path is not entirely satisfactory. For ex-
ample, in the tournament associated with Figure 6.4, notice that the lowest-ranked
player, ¢, actually defeated the highest-ranked player, a.

In practice, players are typically ranked according to how many victories they
achieve. This makes sense for several reasons. One not-so-obvious reason is that if
the player with the most victories does not beat some other player v, he is guaran-
teed to have at least beaten a third player who beat v. We’ll prove this fact shortly.
But first, let’s talk about chickens.
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king K 4 king

king not a king
d c

Figure 6.6 A 4-chicken tournament in which chickens a, b, and d are kings.

6.2.2 The King Chicken Theorem

Suppose that there are n chickens in a farmyard. Chickens are rather aggressive
birds that tend to establish dominance in relationships by pecking. (Hence the term
“pecking order.”) In particular, for each pair of distinct chickens, either the first
pecks the second or the second pecks the first, but not both. We say that chicken u
virtually pecks chicken v if either:

e Chicken u directly pecks chicken v, or

e Chicken u pecks some other chicken w who in turn pecks chicken v.

A chicken that virtually pecks every other chicken is called a king chicken.

We can model this situation with a tournament digraph. The vertices are chick-
ens, and an edge ¥ — v indicates that chicken u pecks chicken v. In the tournament
shown in Figure 6.6, three of the four chickens are kings. Chicken c is not a king in
this example since it does not peck chicken b and it does not peck any chicken that
pecks chicken b. Chicken a is a king since it pecks chicken ¢, who in turn pecks
chickens b and c.

Theorem 6.2.2 (King Chicken Theorem). The chicken with the largest outdegree
in an n-chicken tournament is a king.

Proof. By contradiction. Let u be a node in a tournament graph G = (V, E) with
maximum outdegree and suppose that ¥ isnotaking. LetY ={v |u > v e E}
be the set of chickens that chicken u pecks. Then outdegree(u) = |Y|.

Since u is not a king, there is a chicken x ¢ Y (that is, x is not pecked by
chicken u) and that is not pecked by any chicken in Y. Since for any pair of
chickens, one pecks the other, this means that x pecks u as well as every chicken
in Y. This means that

outdegree(x) = |Y| + 1 > outdegree(u).
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Figure 6.7 A 5-chicken tournament in which every chicken is a king.

But u was assumed to be the node with the largest degree in the tournament, so
we have a contradiction. Hence, ¥ must be a king. |

Theorem 6.2.2 means that if the player with the most victories is defeated by
another player x, then at least he/she defeats some third player that defeats x. In
this sense, the player with the most victories has some sort of bragging rights over
every other player. Unfortunately, as Figure 6.6 illustrates, there can be many other
players with such bragging rights, even some with fewer victories. Indeed, for some
tournaments, it is possible that every player is a “king.” For example, consider the
tournament illustrated in Figure 6.7.

6.3 Communication Networks

While reasoning about chickens pecking each other may be amusing (to mathe-
maticians, at least), the use of directed graphs to model communication networks
is very serious business. In the context of communication problems, vertices repre-
sent computers, processors, or switches, and edges represent wires, fiber, or other
transmission lines through which data flows. For some communication networks,
like the Internet, the corresponding graph is enormous and largely chaotic. Highly
structured networks, such as an array or butterfly, by contrast, find application in
telephone switching systems and the communication hardware inside parallel com-
puters.
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6.3.1 Packet Routing

Whatever architecture is chosen, the goal of a communication network is to get
data from inputs to outputs. In this text, we will focus on a model in which the data
to be communicated is in the form of a packet. In practice, a packet would consist
of a fixed amount of data, and a message (such as a web page or a movie) would
consist of many packets.

For simplicity, we will restrict our attention to the scenario where there is just one
packet at every input and where there is just one packet destined for each output.
We will denote the number of inputs and output by N and we will often assume
that N is a power of two.

We will specify the desired destinations of the packets by a permutation' of 0,
1, ..., N — 1. So a permutation, m, defines a routing problem: get a packet that
starts at input i to output (i) for 0 < i < N. A routing P that solves a routing
problem 7 is a set of paths from each input to its specified output. That is, P is a
set of paths, P;,fori =0,..., N — 1, where P; goes from input i to output 7z (i).

Of course, the goal is to get all the packets to their destinations as quickly as
possible using as little hardware as possible. The time needed to get the packages
to their destinations depends on several factors, such as how many switches they
need to go through and how many packets will need to cross the same wire. We
will assume that only one packet can cross a wire at a time. The complexity of the
hardware depends on factors such as the number of switches needed and the size of
the switches.

Let’s see how all this works with an example—routing packets on a complete
binary tree.

6.3.2 The Complete Binary Tree

One of the simplest structured communications networks is a complete binary tree.
A complete binary tree with 4 inputs and 4 outputs is shown in Figure 6.8.

In this diagram and many that follow, the squares represent terminals (that is, the
inputs and outputs), and the circles represent switches, which direct packets through
the network. A switch receives packets on incoming edges and relays them forward
along the outgoing edges. Thus, you can imagine a data packet hopping through the
network from an input terminal, through a sequence of switches joined by directed
edges, to an output terminal.

Recall that there is a unique simple path between every pair of vertices in a tree.
So the natural way to route a packet of data from an input terminal to an output
terminal in the complete binary tree is along the corresponding directed path. For

I A permutation of a sequence is a reordering of the sequence.
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m, out, 1m; out; m, out, 1n; outy

Figure 6.8 A 4-input, 4-output complete binary tree. The squares represent termi-
nals (input and output registers) and the circles represent switches. Directed edges
represent communication channels in the network through which data packets can
move. The unique path from input 1 to output 3 is shown in bold.

example, the route of a packet traveling from input 1 to output 3 is shown in bold
in Figure 6.8.

6.3.3 Network Diameter

The delay between the time that a packet arrives at an input and the time that it
reaches its designated output is referred to as latency and it is a critical issue in
communication networks. If congestion is not a factor, then this delay is generally
proportional to the length of the path a packet follows. Assuming it takes one time
unit to travel across a wire, and that there are no additional delays at switches, the
delay of a packet will be the number of wires it crosses going from input to output.”

Generally a packet is routed from input to output using the shortest path possible.
The length of this shortest path is the distance between the input and output. With
a shortest path routing, the worst possible delay is the distance between the input
and output that are farthest apart. This is called the diameter of the network. In
other words, the diameter of a network® is the maximum length of any shortest

ZLatency can also be measured as the number of switches that a packet must pass through when
traveling between the most distant input and output, since switches usually have the biggest impact
on network speed. For example, in the complete binary tree example, the packet traveling from input
1 to output 3 crosses 5 switches, which is 1 less than the number of edges traversed.

3The usual definition of diameter for a general graph (simple or directed) is the largest distance
between any two vertices, but in the context of a communication network, we’re only interested in
the distance between inputs and outputs, not between arbitrary pairs of vertices.
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in; D—»Q O out,
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Figure 6.9 A monster N x N switch.

path between an input and an output. For example, in the complete binary tree
shown in Figure 6.8, the distance from input 1 to output 3 is six. No input and
output are farther apart than this, so the diameter of this tree is also six.

More generally, the diameter of a complete binary tree with N inputs and outputs
is 2log N + 2. (All logarithms in this lecture—and in most of computer science—
are base 2.) This is quite good, because the logarithm function grows very slowly.
We could connect 220 = 1,048,576 inputs and outputs using a complete binary tree
and the worst input-output delay for any packet would be this diameter, namely,
210g(22%) +2 = 42.

6.3.4 Switch Size

One way to reduce the diameter of a network (and hence the latency needed to
route packets) is to use larger switches. For example, in the complete binary tree,
most of the switches have three incoming edges and three outgoing edges, which
makes them 3 x 3 switches. If we had 4 x 4 switches, then we could construct a
complete ternary tree with an even smaller diameter. In principle, we could even
connect up all the inputs and outputs via a single monster N x N switch, as shown
in Figure 6.9. In this case, the “network™ would consist of a single switch and the
latency would be 2.

This isn’t very productive, however, since we’ve just concealed the original net-
work design problem inside this abstract monster switch. Eventually, we’ll have
to design the internals of the monster switch using simpler components, and then
we’re right back where we started. So the challenge in designing a communication
network is figuring out how to get the functionality of an N x N switch using fixed
size, elementary devices, like 3 x 3 switches.

6.3.5 Switch Count

Another goal in designing a communication network is to use as few switches as
possible. The number of switches in a complete binary tree is 1 + 2 + 4 4+ 8 +
-+« 4+ N = 2N — 1, since there is 1 switch at the top (the “root switch”), 2 below
it, 4 below those, and so forth. This is nearly the best possible with 3 x 3 switches,
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since at least one switch will be needed for each pair of inputs and outputs.

6.3.6 Congestion

The complete binary tree has a fatal drawback: the root switch is a bottleneck. At
best, this switch must handle an enormous amount of traffic: every packet traveling
from the left side of the network to the right or vice-versa. Passing all these packets
through a single switch could take a long time. At worst, if this switch fails, the
network is broken into two equal-sized pieces.

The traffic through the root depends on the routing problem. For example, if the
routing problem is given by the identity permutation, 7 (i) ::= i, then there is an
easy routing P that solves the problem: let P; be the path from input i up through
one switch and back down to output i. On the other hand, if the problem was given
by m(i) ::= (N — 1) — i, then in any solution P for m, each path P; beginning at
input i must eventually loop all the way up through the root switch and then travel
back down to output (N — 1) —1i.

We can distinguish between a “good” set of paths and a “bad” set based on
congestion. The congestion of a routing, P, is equal to the largest number of paths
in P that pass through a single switch. Generally, lower congestion is better since
packets can be delayed at an overloaded switch.

By extending the notion of congestion to networks, we can also distinguish be-
tween “good” and “bad” networks with respect to bottleneck problems. For each
routing problem, 7, for the network, we assume a routing is chosen that optimizes
congestion, that is, that has the minimum congestion among all routings that solve
. Then the largest congestion that will ever be suffered by a switch will be the
maximum congestion among these optimal routings. This “maxi-min” congestion
is called the congestion of the network.

You may find it helpful to think about max congestion in terms of a value game.
You design your spiffy, new communication network; this defines the game. Your
opponent makes the first move in the game: she inspects your network and specifies
a permutation routing problem that will strain your network. You move second:
given her specification, you choose the precise paths that the packets should take
through your network; you’re trying to avoid overloading any one switch. Then her
next move is to pick a switch with as large as possible a number of packets passing
through it; this number is her score in the competition. The max congestion of
your network is the largest score she can ensure; in other words, it is precisely the
max-value of this game.

For example, if your enemy were trying to defeat the complete binary tree, she
would choose a permutation like 7 (i) = (N — 1) —i. Then for every packet i, you
would be forced to select a path P; ;) passing through the root switch. Then, your
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network ‘ diameter ‘ switch size ‘ # switches ‘ congestion
complete binary tree ‘ 2logN +2 ‘ 3x3 ‘ 2N —1 ‘ N

Table 6.1 A summary of the attributes of the complete binary tree.

in, O 0 0 0 O
in; O O O @ @
in, O o o O O
in; O 0 O o o

O m O O

out, out; out, outy

Figure 6.10 A 4 x 4 2-dimensional array.

enemy would choose the root switch and achieve a score of N. In other words, the
max congestion of the complete binary tree is N—which is horrible!

We have summarized the results of our analysis of the complete binary tree in
Table 6.1. Overall, the complete binary tree does well in every category except the
last—congestion, and that is a killer in practice. Next, we will look at a network
that solves the congestion problem, but at a very high cost.

6.3.7 The 2-d Array

An illustration of the N x N 2-d array (also known as the grid or crossbar) is
shown in Figure 6.10 for the case when N = 4.

The diameter of the 4 x 4 2-d array is 8, which is the number of edges between
input 0 and output 3. More generally, the diameter of a 2-d array with N inputs and
outputs is 2N, which is much worse than the diameter of the complete binary tree
(2log N + 2). On the other hand, replacing a complete binary tree with a 2-d array
almost eliminates congestion.

Theorem 6.3.1. The congestion of an N -input 2-d array is 2.

Proof. First, we show that the congestion is at most 2. Let 7 be any permutation.
Define a solution, P, for & to be the set of paths, P;, where P; goes to the right
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network ‘ diameter ‘ switch size ‘ # switches ‘ congestion
complete binary tree | 2log N + 2 3x3 2N —1 N
2-D array 2N 2x2 N? 2

Table 6.2 Comparing the N-input 2-d array to the N -input complete binary tree.

from input i to column 7 (i) and then goes down to output 77 (i). In this solution,
the switch in row 7 and column j encounters at most two packets: the packet
originating at input i and the packet destined for output ;.

Next, we show that the congestion is at least 2. This follows because in any
routing problem, 7, where 7(0) = 0 and (N — 1) = N — 1, two packets must
pass through the lower left switch. |

The characteristics of the 2-d array are recorded in Table 6.2. The crucial entry
in this table is the number of switches, which is N2. This is a major defect of the
2-d array; a network with N = 1000 inputs would require a million 2 x 2 switches!
Still, for applications where N is small, the simplicity and low congestion of the
array make it an attractive choice.

6.3.8 The Butterfly

The Holy Grail of switching networks would combine the best properties of the
complete binary tree (low diameter, few switches) and the array (low congestion).
The butterfly is a widely-used compromise between the two. A butterfly network
with N = 8 inputs is shown in Figure 6.11.

The structure of the butterfly is certainly more complicated than that of the com-
plete binary or 2-d array. Let’s see how it is constructed.

All the terminals and switches in the network are in N rows. In particular, input i
is at the left end of row i, and output i is at the right end of row i. Now let’s label
the rows in binary so that the label on row i is the binary number b1b> ... bjog N
that represents the integer i.

Between the inputs and outputs, there are log(N) 4 1 levels of switches, num-
bered from O to log N. Each level consists of a column of N switches, one per row.
Thus, each switch in the network is uniquely identified by a sequence (b1, b, ...,
biog N, 1), where b1b3 ... biog n is the switch’s row in binary and / is the switch’s
level.

All that remains is to describe how the switches are connected up. The basic
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Figure 6.11 An 8-input/output butterfly.
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connection pattern is expressed below in a compact notation:

(b1.b2,...bj41,...biggn. [ + 1)
(b1.b2. . Big1. - bogn. D)
(b1.b2,...bj41,...biggn. [ + 1)

This says that there are directed edges from switch (b1, bz, ..., bz N.1) tO two
switches in the next level. One edges leads to the switch in the same row, and the
other edge leads to the switch in the row obtained by inverting the (I 4+ 1)st bit by ;.
For example, referring back to the illustration of the size N = 8 butterfly, there is
an edge from switch (0, 0, 0, 0) to switch (0, 0, 0, 1), which is in the same row, and
to switch (1,0, 0, 1), which is in the row obtained by inverting bit / + 1 = 1.

The butterfly network has a recursive structure; specifically, a butterfly of size 2N
consists of two butterflies of size N and one additional level of switches. Each
switch in the additional level has directed edges to a corresponding switch in each
of the smaller butterflies. For example, see Figure 6.12.

Despite the relatively complicated structure of the butterfly, there is a simple way
to route packets through its switches. In particular, suppose that we want to send a
packet from input x1x2 . .. Xjog ; tO OUtPUL Y1 Y2 ... Viog N - (Here we are specifying
the input and output numbers in binary.) Roughly, the plan is to “correct” the first
bit on the first level, correct the second bit on the second level, and so forth. Thus,
the sequence of switches visited by the packet is:

(X1,X2,X3, ..., Xiog N, 0) = (V1,X2,X3,..., Xlog N» 1)
— (yl,yz,X3,...,X10gN,2)
— (¥1,Y2: Y3+ Xlog N » 3)
—

— (y17y27y3aalegN’logN)

In fact, this is the only path from the input to the output!

The congestion of the butterfly network is about ~/N. More precisely, the con-
gestion is ~/N if N is an even power of 2 and /N/2 if N is an odd power of 2.
The task of proving this fact has been left to the problem section.*

A comparison of the butterfly with the complete binary tree and the 2-d array is
provided in Table 6.3. As you can see, the butterfly has lower congestion than the
complete binary tree. And it uses fewer switches and has lower diameter than the

4The routing problems that result in +/N congestion do arise in practice, but for most routing
problems, the congestion is much lower (around log N), which is one reason why the butterfly is
useful in practice.
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Figure 6.12 An N-input butterfly contains two N/2-input butterflies (shown in
the dashed boxes). Each switch on the first level is adjacent to a corresponding
switch in each of the sub-butterflies. For example, we have used dashed lines to
show these edges for the node (0, 1, 1, 0).
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network | diameter | switch size ‘ # switches ‘ congestion
complete binary tree | 2log N + 2 3x3 2N —1 N
2-D array 2N 2x2 N? 2
butterfly | log N + 2 2x2 N(og(N) +1) | v/N or \/N/2

Table 6.3 A comparison of the N-input butterfly with the N -input complete bi-

nary tree and the N -input 2-d array.

in) 0 —=0 O O ) O O —0 out,
iy 0—=—0 O\/O ><O\/O O —0O out,
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in; 0 —0O O\/O ><Ov0 O —0O outs
ing 0 ——0O O%O O%O O —0 out,
in, 0—=—0 O O><O O O —0O out,

Figure 6.13 The 8-input Bene$ network.

array. However, the butterfly does not capture the best qualities of each network,
but rather is a compromise somewhere between the two. So our quest for the Holy

Grail of routing networks goes on.

6.3.9 BenesS Network

In the 1960’s, a researcher at Bell Labs named Vaclav Benes had a remarkable idea.
He obtained a marvelous communication network with congestion 1 by placing
two butterflies back-to-back. For example, the 8-input Benes network is shown in

Figure 6.13.

Putting two butterflies back-to-back roughly doubles the number of switches and
the diameter of a single butterfly, but it completely eliminates congestion problems!
The proof of this fact relies on a clever induction argument that we’ll come to in a
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network | diameter | switch size ‘ # switches ‘ congestion
complete binary tree | 2log N + 2 3x3 2N —1 N
2-D array 2N 2x2 N? 2
butterfly | log N + 2 2x2 N(og(N) +1) | v/N or \/N/2
Benes | 2log N + 1 2x2 2N log N 1

Table 6.4 A comparison of the N-input Bene§ network with the N -input com-
plete binary tree, 2-d array, and butterfly.

in, O O><O out,
in, O o) o) out,

Figure 6.14 The 2-input Benes$ network.

moment. Let’s first see how the Bene§ network stacks up against the other networks
we have been studying. As you can see in Table 6.4, the BeneS network has small
size and diameter, and completely eliminates congestion. The Holy Grail of routing
networks is in hand!

Theorem 6.3.2. The congestion of the N -input Benes network is I for any N that
is a power of 2.

Proof. We use induction. Let P(a) be the proposition that the congestion of the
2%-input Bene$ network is 1.

Base case (¢ = 1): We must show that the congestion of the 2!-input Bene§ net-
work is 1. The network is shown in Figure 6.14.

There are only two possible permutation routing problems for a 2-input network.
If 7(0) = 0 and (1) = 1, then we can route both packets along the straight edges.
On the other hand, if 7(0) = 1 and 7 (1) = 0, then we can route both packets along
the diagonal edges. In both cases, a single packet passes through each switch.

Inductive step: We must show that P(a) implies P(a 4+ 1) where a > 1. Thus, we
assume that the congestion of a 2¢-input Bene§ network is 1 in order to prove that
the congestion of a 2¢*1-input Benes network is also 1.

Digression

Time out! Let’s work through an example, develop some intuition, and then com-
plete the proof. Notice that inside a Bene§ network of size 2N lurk two Benes
subnetworks of size N. This follows from our earlier observation that a butterfly
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inygO0—0 out,
in,J—=—0 out;
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in, 0——0 out,
in, 0—0 out,
ing 0 ——0O outs
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Figure 6.15 A 2N -input Benes network contains two N -input Benes networks—
shown here for N = 4.

of size 2N contains two butterflies of size N. In the Bene$ network shown in Fig-
ure 6.15 with N = 8 inputs and outputs, the two 4-input/output subnetworks are
shown in dashed boxes.

By the inductive assumption, the subnetworks can each route an arbitrary per-
mutation with congestion 1. So if we can guide packets safely through just the first
and last levels, then we can rely on induction for the rest! Let’s see how this works
in an example. Consider the following permutation routing problem:

m(0) =1 w(4) =3
m(l)=5 w(5) =6
n(2) =4 7(6) =0
r(3) =17 7(7) =2

We can route each packet to its destination through either the upper subnetwork
or the lower subnetwork. However, the choice for one packet may constrain the
choice for another. For example, we can not route the packets at inputs 0 and 4 both
through the same network since that would cause two packets to collide at a single
switch, resulting in congestion. So one packet must go through the upper network
and the other through the lower network. Similarly, the packets at inputs 1 and 5,
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le—e5

To——e3

Figure 6.16 The beginnings of a constraint graph for our packet routing problem.
Adjacent packets cannot be routed using the same sub-Bene§ network.

1 5

7 3

Figure 6.17 The updated constraint graph.

2 and 6, and 3 and 7 must be routed through different networks. Let’s record these
constraints in a graph. The vertices are the 8 packets (labeled according to their
input position). If two packets must pass through different networks, then there is
an edge between them. The resulting constraint graph is illustrated in Figure 6.16.
Notice that at most one edge is incident to each vertex.

The output side of the network imposes some further constraints. For example,
the packet destined for output O (which is packet 6) and the packet destined for
output 4 (which is packet 2) can not both pass through the same network since that
would require both packets to arrive from the same switch. Similarly, the packets
destined for outputs 1 and 5, 2 and 6, and 3 and 7 must also pass through different
switches. We can record these additional constraints in our constraint graph with
gray edges, as is illustrated in Figure 6.17.

Notice that at most one new edge is incident to each vertex. The two lines drawn
between vertices 2 and 6 reflect the two different reasons why these packets must
be routed through different networks. However, we intend this to be a simple graph;
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the two lines still signify a single edge.

Now here’s the key insight: a 2-coloring of the graph corresponds to a solution
to the routing problem. In particular, suppose that we could color each vertex either
red or blue so that adjacent vertices are colored differently. Then all constraints are
satisfied if we send the red packets through the upper network and the blue packets
through the lower network.

The only remaining question is whether the constraint graph is 2-colorable. For-
tunately, this is easy to verify:

Lemma 6.3.3. [f the edges of an undirected graph G can be grouped into two sets
such that every vertex is incident to at most 1 edge from each set, then the graph is
2-colorable.

Proof. Since the two sets of edges may overlap, let’s call an edge that is in both sets
a doubled edge. Note that no other edge can be incident to either of the endpoints
of a doubled edge, since that endpoint would then be incident to two edges from
the same set. This means that doubled edges form connected components with 2
nodes. Such connected components are easily colored with 2 colors and so we can
henceforth ignore them and focus on the remaining nodes and edges, which form a
simple graph.

By Theorem 5.6.2, we know that if a simple graph has no odd cycles, then it is
2-colorable. So all we need to do is show that every cycle in G has even length.
This is easy since any cycle in G must traverse successive edges that alternate from
one set to the other. In particular, a closed walk must traverse a path of alternating
edges that begins and ends with edges from different sets. This means that the cycle
has to be of even length. |

For example, a 2-coloring of the constraint graph in Figure 6.17 is shown in
Figure 6.18. The solution to this graph-coloring problem provides a start on the
packet routing problem. We can complete the routing in the two smaller Bene$
networks by induction. With this insight in hand, the digression is over and we can
now complete the proof of Theorem 6.3.2.

Proof of Theorem 6.3.2 (continued). Let m be an arbitrary permutation of 0, 1, .. .,
N — 1. Let G be the graph whose vertices are packet numbers 0,1,..., N — 1 and
whose edges come from the union of these two sets:

Ei:={{u,v}||lu—v|=N/2}, and
Epi={{u, w} | |7r(u) —7(w)| = N/2}.

Now any vertex, u, is incident to at most two edges: a unique edge {u, v} € E; and
aunique edge {u, w} € E;. So according to Lemma 6.3.3, there is a 2-coloring for
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blue red
1 5
red O 2 red
blue 4 6 blue
7 3
blue red

Figure 6.18 A 2-coloring of the constraint graph in Figure 6.17.

the vertices of G. Now route packets of one color through the upper subnetwork
and packets of the other color through the lower subnetwork. Since for each edge in
E1, one vertex goes to the upper subnetwork and the other to the lower subnetwork,
there will not be any conflicts in the first level. Since for each edge in E, one vertex
comes from the upper subnetwork and the other from the lower subnetwork, there
will not be any conflicts in the last level. We can complete the routing within each
subnetwork by the induction hypothesis P (n). |
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A relation is a mathematical tool for describing associations between elements of
sets. Relations are widely used in computer science, especially in databases and
scheduling applications. A relation can be defined across many items in many sets,
but in this text, we will focus on binary relations, which represent an association
between two items in one or two sets.

7.1 Binary Relations

7.1.1 Definitions and Examples

Definition 7.1.1. Given sets A and B, a binary relation R : A — B from' A
to B is a subset of A x B. The sets A and B are called the domain and codomain
of R, respectively. We commonly use the notation aRb or a ~g b to denote that

(a,b) € R.

A relation is similar to a function. In fact, every function f : A — B is a rela-
tion. In general, the difference between a function and a relation is that a relation
might associate multiple elements of B with a single element of A, whereas a func-
tion can only associate at most one element of B (namely, f(a)) with each element
aeA.

We have already encountered examples of relations in earlier chapters. For ex-
ample, in Section 5.2, we talked about a relation between the set of men and the
set of women where mRw if man m likes woman w. In Section 5.3, we talked
about a relation on the set of MIT courses where ¢; Rc; if the exams for ¢; and ¢;
cannot be given at the same time. In Section 6.3, we talked about a relation on the
set of switches in a network where s1 Rs, if s1 and s, are directly connected by a
wire that can send a packet from s; to s2. We did not use the formal definition of a
relation in any of these cases, but they are all examples of relations.

As another example, we can define an “in-charge-of” relation 7' from the set of
MIT faculty F to the set of subjects in the 2010 MIT course catalog. This relation
contains pairs of the form

((instructor-name), (subject-num))

'We also say that the relationship is between A and B, or on A if B = A.
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(Meyer, 6.042),
(Meyer, 18.062),
(Meyer, 6.844),
(Leighton, 6.042),
(Leighton, 18.062),
(Freeman, 6.011),
(Freeman, 6.881)
(Freeman, 6.882)
(Freeman, 6.UAT)
(Eng, 6.UAT)
(Guttag, 6.00)

Figure 7.1 Some items in the “in-charge-of” relation T between faculty and sub-
ject numbers.

where the faculty member named (instructor-name) is in charge of the subject with
number (subject-num). So T contains pairs like those shown in Figure 7.1.

This is a surprisingly complicated relation: Meyer is in charge of subjects with
three numbers. Leighton is also in charge of subjects with two of these three
numbers—because the same subject, Mathematics for Computer Science, has two
numbers (6.042 and 18.062) and Meyer and Leighton are jointly in-charge-of the
subject. Freeman is in-charge-of even more subjects numbers (around 20), since
as Department Education Officer, he is in charge of whole blocks of special sub-
ject numbers. Some subjects, like 6.844 and 6.00 have only one person in-charge.
Some faculty, like Guttag, are in-charge-of only one subject number, and no one
else is jointly in-charge-of his subject, 6.00.

Some subjects in the codomain, N, do not appear in the list—that is, they are
not an element of any of the pairs in the graph of T'; these are the Fall term only
subjects. Similarly, there are faculty in the domain, F', who do not appear in the
list because all their in-charge-of subjects are Fall term only.

7.1.2 Representation as a Bipartite Graph

Every relation R : A — B can be easily represented as a bipartite graph G =
(V, E) by creating a “left” node for each element of A and a “right” node for each
element of B. We then create an edge between a left node u and a right node v
whenever aRb. Similarly, every bipartite graph (and every partition of the nodes
into a “left” and “right” set for which no edge connects a pair of left nodes or a pair
of right nodes) determines a relation between the nodes on the left and the nodes
on the right.
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6.042
18.062
Meyer
6.844
Leighton
6.011
Freeman
6.881
Eng
6.882
Guttag
6.UAT
6.00

Figure 7.2 Part of the bipartite graph for the “in charge of” relation 7" from Fig-
ure 7.1.

For example, we have shown part of the bipartite graph for the in-charge-of
relation from Figure 7.1 in Figure 7.2. In this case, there is an edge between
(instructor-name) and (subject-number) if (instructor-name) is in charge of (subject-number).
A relation R : A — B between finite sets can also be represented as a matrix
A = {a;; } where

1 if the ith element of A is related to the jth element of B

ajj = .
0 otherwise

for1 <i < |Aland 1 < j < |B|. For example, the matrix for the relation in
Figure 7.2 (but restricted to the five faculty and eight subject numbers shown in
Figure 7.2, ordering them as they appear top-to-bottom in Figure 7.2) is shown in
Figure 7.3.

7.1.3 Relational Images

The idea of the image of a set under a function extends directly to relations.




“mes-ftI” — 2010/9/8 — 0:40 — page 216 — #222

216 Chapter 7 Relations and Partial Orders

11 10000O00O0
11000000
00011110
000O0O0OO0OT1@PO0
000 0O0O0OO 01

Figure 7.3 The matrix for the “in charge of” relation 7" restricted to the five
faculty and eight subject numbers shown in Figure 7.2. The (3, 4) entry of this
matrix is 1 since the third professor (Freeman) is in charge of the fourth subject
number (6.011).

Definition 7.1.2. The image of a set Y under a relation R : A — B, written R(Y),
is the set of elements that are related to some element in Y, namely,

R(Y):={be B| yRbforsomey Y}
The image of the domain, R(A), is called the range of R.

For example, to find the subject numbers that Meyer is in charge of, we can look
for all the pairs of the form

(Meyer, (subject-number))

in the graph of the teaching relation 7', and then just list the right-hand sides of these
pairs. These right-hand sides are exactly the image 7' (Meyer), which happens to
be {6.042, 18.062, 6.844}. Similarly, since the domain F is the set of all in-charge
faculty, T (F), the range of T, is exactly the set of all subjects being taught.

7.1.4 Inverse Relations and Images

Definition 7.1.3. The inverse R~! of a relation R : A — B is the relation from B
to A defined by the rule

bR 'q if and only if aRb.

The image of a set under the relation R™! is called the inverse image of the set.
That is, the inverse image of a set X under the relation R is R~!(X).

Continuing with the in-charge-of example above, we can find the faculty in
charge of 6.UAT by taking the pairs of the form

((instructor-name), 6.UAT)
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for the teaching relation 7', and then just listing the left-hand sides of these pairs;
these turn out to be just Eng and Freeman. These left-hand sides are exactly the
inverse image of {6.UAT} under 7T .

7.1.5 Combining Relations

There are at least two natural ways to combine relations to form new relations. For
example, given relations R : B — C and S : A — B, the composition of R with S
is the relation (R o §) : A — C defined by the rule

a(Ro S)c 1FF 3b € B. (bRc) AND (aSh)

wherea € Aandc € C.
As a special case, the composition of two functions f : B> Candg: A — B
is the function f o g : A — C defined by

(f cg)a) = f(g(a))

foralla € A. For example,if A = B = C =R, g(x) = x + 1 and f(x) = x2,
then

(fog)(x) = (x+ 1)
=x2+2x + 1.

One can also define the product of two relations Ry : Ay — By and Ry : A, —
B> to be the relation S = R; x R, where

S:A;x Ay, - B1 x By

and
(al,az)S(bl,bz) iff a1R1b1 andaszbz.

7.2 Relations and Cardinality

7.2.1 Surjective and Injective Relations

There are some properties of relations that will be useful when we take up the topic
of counting in Part III because they imply certain relations between the sizes of
domains and codomains. In particular, we say that a binary relation R : A — B is

e surjective if every element of B is assigned to at least one element of A.
More concisely, R is surjective iff R(A) = B (that is, if the range of R is the
codomain of R),
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e fotal when every element of A is assigned to some element of B. More
concisely, R is total iff A = R™1(B),

e injective if every element of B is mapped at most once, and
e bijective if R is total, surjective, injective, and a function’.

We can illustrate these properties of a relation R : A — B in terms of the cor-
responding bipartite graph G for the relation, where nodes on the left side of G
correspond to elements of A and nodes on the right side of G correspond to ele-
ments of B. For example:

e “Ris afunction” means that every node on the left is incident to at most one
edge.

e “Ris total” means that every node on the left is incident to at least one edge.
So if R is a function, being total means that every node on the left is incident
to exactly one edge.

e “Ris surjective” means that every node on the right is incident to at least one
edge.

e “R is injective” means that every node on the right is incident to at most one
edge.

e “R is bijective” means that every node on both sides is incident to precisely
one edge (that is, there is a perfect matching between A and B).

For example, consider the relations R; and R, shown in Figure 7.4. R; is a total
surjective function (every node in the left column is incident to exactly one edge,
and every node in the right column is incident to at least one edge), but not injective
(node 3 is incident to 2 edges). R» is a total injective function (every node in the
left column is incident to exactly one edge, and every node in the right column
is incident to at most one edge), but not surjective (node 4 is not incident to any
edges).

Notice that we need to know what the domain is to determine whether a relation
is total, and we need to know the codomain to determine whether it’s surjective.
For example, the function defined by the formula 1/x? is total if its domain is R™
but partial if its domain is some set of real numbers that includes 0. It is bijective
if its domain and codomain are both R, but neither injective nor surjective it is
domain and codomain are both R.

2These words surjective, injective, and bijective are not very memorable. Some authors use the
possibly more memorable phrases onto for surjective, one-to-one for injective, and exact correspon-
dence for bijective.
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Figure 7.4 Relation Ry : A — Bj is shown in (a) and relation R, : A — B
is shown in (b).

7.2.2 Cardinality

The relational properties in Section 7.2.1 are useful in figuring out the relative sizes
of domains and codomains.

If A is a finite set, we use |A| to denote the number of elements in A. This is
called the cardinality of A. In general, a finite set may have no elements (the empty
set), or one element, or two elements, ..., or any nonnegative integer number of
elements, so for any finite set, | 4| € N.

Now suppose R : A — B is a function. Then every edge in the bipartite
graph G = (V, E) for R is incident to exactly one element of A, so the num-
ber of edges is at most the number of elements of A. That is, if R is a function,
then

|E| < |A].

Similarly, if R is surjective, then every element of B is incident to an edge, so there
must be at least as many edges in the graph as the size of B. That is

|E| > |B|.

Combining these inequalities implies that R : A — B is a surjective function, then
|A| = |B|. This fact and two similar rules relating domain and codomain size to
relational properties are captured in the following theorem.
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Theorem 7.2.1 (Mapping Rules). Let A and B be finite sets.
1. Ifthere is a surjection from A to B, then |A| > |B|.
2. If there is an injection from A to B, then |A| < |B]|.
3. If there is a bijection between A and B, then |A| = |B|.

Mapping rule 2 can be explained by the same kind of reasoning we used for
rule 1. Rule 3 is an immediate consequence of the first two mapping rules.

We will see many examples where Theorem 7.2.1 is used to determine the car-
dinality of a finite set. Later, in Chapter 13, we will consider the case when the
sets are infinite and we’ll use surjective and injective relations to prove that some
infinite sets are “bigger” than other infinite sets.

7.3 Relations on One Set

For the rest of this chapter, we are going to focus on relationships between elements
of a single set; that is, relations from a set A to a set B where A = B. Thus, a
relation on a set A4 is a subset R C A x A. Here are some examples:

e Let A be a set of people and the relation R describe who likes whom: that is,
(x,y) € Rif and only if x likes y.

Let A be a set of cities. Then we can define a relation R such that xRy if and
only if there is a nonstop flight from city x to city y.

o Let A =Z and let xRy hold if and only if x = y (mod 5).
e Let A =Nandlet xRy if and only if x | y.
e et A =Nandlet xRy if and only if x < y.

The last examples clarify the reason for using xRy or x ~g y to indicate that the
relation R holds between x and y: many common relations (<, <, =, |, =) are
expressed with the relational symbol in the middle.

7.3.1 Representation as a Digraph

Every relation on a single set A can be modeled as a directed graph (albeit one
that may contain loops). For example, the graph in Figure 7.5 describes the “likes”
relation for a particular set of 3 people.

In this case, we see that:
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Julie « <=>Bill

Bob

Figure 7.5 The directed graph for the “likes” relation on the set {Bill, Bob, Julie}.

3 9 11

Figure 7.6 The digraph for divisibility on {1,2,...,12}.

e Julie likes Bill and Bob, but not herself.
o Bill likes only himself.
e Bob likes Julie, but not Bill nor himself.

Everything about the relationship is conveyed by the directed graph and nothing
more. This is no coincidence; a set A together with a relation R is precisely the
same thing as directed graph G = (V, E) with vertex set V' = A and edge set
E = R (where E may have loops).

As another example, we have illustrated the directed graph for the divisibility
relationship on the set {1,2,...,12} in Figure 7.6. In this graph, every node has
a loop (since every positive number divides itself) and the composite numbers are
the nodes with indegree more than 1 (not counting the loop).

Relations on a single set can also be represented as a 0, 1-matrix. In this case,
the matrix is identical to the adjacency matrix for the corresponding digraph. For
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example, the matrix for the relation shown in Figure 7.5 is simply
011
010
1 00

where v; = Julie, v, = Bill, and vz = Bob.

7.3.2 Symmetry, Transitivity, and Other Special Properties

Many relations on a single set that arise in practice possess one or more noteworthy
properties. These properties are summarized in the box on the following page. In
each case, we provide the formal of the definition of the property, explain what the
property looks like in a digraph G for the relation, and give an example of what the
property means for the “likes” relation.

For example, the congruence relation modulo 5 on Z is reflexive symmetric, and
transitive, but not irreflexive, antisymmetric, or asymmetric. The same is true for
the “connected” relation R : V' — V on an undirected graph G = (V, E) where
uRv if u and v are in the same connected component of graph G. In fact, relations
that have these three properties are so common that we give them a special name:
equivalence relations. We will discuss them in greater detail in just a moment.

As another example, the “divides” relation on 771 is reflexive, antisymmetric,
and transitive, but not irreflexive, symmetric, or asymmetric. The same is true for
the “<” relation on R. Relations that have these three properties are also very
common and they fall into a special case of relations called a partial order. We will
discuss partial orders at length in Sections 7.5-7.9.

As a final example, consider the “likes” relation on the set {Julie, Bill, Bob} il-
lustrated in Figure 7.5. This relation has none of the six properties described in the
box.

7.4 Equivalence Relations

A relation is an equivalence relation if it is reflexive, symmetric, and transitive.
Congruence modulo 7 is an excellent example of an equivalence relation:

e Itis reflexive because x = x (mod n).
e It is symmetric because x = y (mod n) implies y = x (mod n).

e Itistransitive because x = y (mod n) and y = z (mod n) imply that x = z
(mod n).
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Properties of a Relation R : A — A
Reflexivity R is reflexive if

Vx € A. xRX.

“Everyone likes themselves.”

Every node in G has a loop.

Irreflexivity R is irreflexive if
—3dx € A. xRx.
“No one likes themselves.”

There are no loops in G.

Symmetry R is symmetric if
Vx,y € A. xRy IMPLIES yRx.
“If x likes y, then y likes x.”
If there is an edge from x to y in G, then there is an edge from y to x in G
as well.
Antisymmetry R is antisymmetric if
Vx,y € A (xRy AND yRx) IMPLIES x = y.
“No pair of distinct people like each other.”

There is at most one directed edge between any pair of distinct nodes.

Asymmetry R is asymmetric if
—3dx,y € A. xRy AND yRx.
“No one likes themselves and no pair of people like each other.”
There are no loops and there is at most one directed edge between any pair
of nodes.
Transitivity R is transitive if
Vx,y,z € A. (xRy AND yRz) IMPLIES xRz.
“If x likes y and y likes z, then x likes z too.”

For any walk vg, v1,..., vt in G where k > 2, vg — v isin G (and, hence,
v; — vjisalsoin G foralli < j.
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There is an even more well-known example of an equivalence relation: equality
itself. Thus, an equivalence relation is a relation that shares some key properties
with “="".

7.4.1 Partitions

There is another way to think about equivalence relations, but we’ll need a couple
of definitions to understand this alternative perspective.

Definition 7.4.1. Given an equivalence relation R : A — A, the equivalence class
of an element x € A is the set of all elements of A related to x by R. The equiva-
lence class of x is denoted [x]. Thus, in symbols:

[x] ={y xRy}
For example, suppose that A = Z and xRy means that x = y (mod 5). Then
[71=4{...,-3,2,7,12,22,...}.

Notice that 7, 12, 17, etc., all have the same equivalence class; that is, [7] = [12] =
[17] =---.

Definition 7.4.2. A partition of a finite set A is a collection of disjoint, nonempty
subsets A1, A2, ..., Ay whose union is all of A. The subsets are usually called the
blocks of the partition.3 For example, one possible partition of A = {a,b,c,d, e}
is

Ay ={a,c} Ay =1{b,e} Az ={d}.

Here’s the connection between all this stuff: there is an exact correspondence
between equivalence relations on A and partitions of A. We can state this as a
theorem:

Theorem 7.4.3. The equivalence classes of an equivalence relation on a set A form
a partition of A.

We won'’t prove this theorem (too dull even for us!), but let’s look at an example.

3We think they should be called the parts of the partition. Don’t you think that makes a lot more
sense?
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The congruent-mod-5 relation partitions the integers into five equivalence classes:

{...,=5,0,5,10,15,20, ...
{...—4,1,6,11,16,21, ...
{..,=3,2,7,12,17,22, ...
{...—2,3,8,13,18,23,...
{....—1,4,9,14,19,24, ...

In these terms, x = y (mod 5) is equivalent to the assertion that x and y are both
in the same block of this partition. For example, 6 = 16 (mod 5), because they’re
both in the second block, but 2 £ 9 (mod 5) because 2 is in the third block while
9 is in the last block.

In social terms, if “likes” were an equivalence relation, then everyone would be
partitioned into cliques of friends who all like each other and no one else.

7.5 Partial Orders

7.5.1 Strong and Weak Partial Orders

Definition 7.5.1. A relation R on a set A is a weak partial order if it is transitive,
antisymmetric, and reflexive. The relation is said to be a strong partial order if it
is transitive, antisymmetric, and irreflexive.*

Some authors defined partial orders to be what we call weak partial orders, but
we’ll use the phrase partial order to mean either a weak or a strong partial order.
The difference between a weak partial order and a strong one has to do with the
reflexivity property: in a weak partial order, every element is related to itself, but in
a strong partial order, no element is related to itself. Otherwise, they are the same
in that they are both transitive and antisymmetric.

Examples of weak partial orders include “<” on R, “C” on the set of subsets
of (say) Z, and the “divides” relation on NT. Examples of strict partial orders
include “<” on R, and “C” on the set of subsets of Z.

4Equivalently, the relation is transitive and asymmetric, but stating it this way might have obscured
the irreflexivity property.

SIf you are not feeling comfortable with all the definitions that we’ve been throwing at you, it’s
probably a good idea to verify that each of these relations are indeed partial orders by checking that
they have the transitivity and antisymmetry properties.
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We often denote a weak partial order with a symbol such as < or C instead of a
letter such as R. This makes sense from one perspective since the symbols call to
mind < and C, which define common partial orders. On the other hand, a partial
order is really a set of related pairs of items, and so a letter like R would be more
normal.

Likewise, we will often use a symbol like < or [_ to denote a strong partial order.

7.5.2 Total Orders

A partial order is “partial” because there can be two elements with no relation
between them. For example, in the “divides” partial order on {1,2,..., 12}, there
is no relation between 3 and 5 (since neither divides the other).

In general, we say that two elements a and b are incomparable if neither a < b
nor b < a. Otherwise, if a < b or b < a, then we say that a and b are comparable.

Definition 7.5.2. A total order is a partial order in which every pair of distinct
elements is comparable.

For example, the “<” partial order on R is a total order because for any pair of
real numbers x and y, either x < y or y < x. The “divides” partial order on
{1,2,...,12} is not a total order because 3 } 5and 5 } 3.

7.6 Posets and DAGs

7.6.1 Partially Ordered Sets

Definition 7.6.1. Given a partial order < on a set A, the pair (A4, <) is called a
partially ordered set or poset.

In terms of graph theory, a poset is simply the directed graph G = (A4, <X) with
vertex set A and edge set <. For example, Figure 7.6 shows the graph form of the
poset for the “divides” relation on {1,2,...,12}. We have shown the graph form
of the poset for the “<”-relation on {1, 2, 3, 4} in Figure 7.7.

7.6.2 Posets Are Acyclic

Did you notice anything that is common to Figures 7.6 and 7.7? Of course, they
both exhibit the transitivity and antisymmetry properties. And, except for the loops
in Figure 7.6, they both do not contain any cycles. This is not a coincidence. In fact,
the combination of the transitivity and asymmetry properties imply that the digraph
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4
Figure 7.7 Representing the poset for the “<”-relation on {1, 2, 3, 4} as a digraph.
for any poset is an acyclic graph (that is, a DAG), at least if you don’t count loops
as cycles. We prove this fact in the following theorem.

Theorem 7.6.2. A poset has no directed cycles other than self-loops.

Proof. We use proof by contradiction. Let (A, <) be a poset. Suppose that there
exist n > 2 distinct elements a1, az, ..., a, such that

ay Xaxaz =+ Xdy—1 X an 2 ax.

Since a; <X aj and ap =< a3, transitivity implies a; < as. Another application
of transitivity shows that a; < a4 and a routine induction argument establishes

that a; < ay. Since we know that a, =< a;, antisymmetry implies a; = ay,
contradicting the supposition that ay, ..., a, are distinct and n > 2. Thus, there is
no such directed cycle. |

Thus, deleting the self-loops from a poset leaves a directed graph without cycles,
which makes it a directed acyclic graph or DAG.

7.6.3 Transitive Closure

Theorem 7.6.2 tells us that every poset corresponds to a DAG. Is the reverse true?
That is, does every DAG correspond to a poset? The answer is “Yes,” but we
need to modify the DAG to make sure that it satisfies the transitivity property. For
example, consider the DAG shown in Figure 7.8. As any DAG must, this graph
satisfies the antisymmetry property® but it does not satisfy the transitivity property
because v; — v and v, — v3 are in the graph but vy — v3 is not in the graph.

If u — v and v — u are in a digraph G, then G would have a cycle of length 2 and it could not
be a DAG.
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Us Vjole—oUs
oUs

Figure 7.8 A 6-node digraph that does not satisfy the transitivity property.

Figure 7.9 The transitive closure for the digraph in Figure 7.8. The edges that
were added to form the transitive closure are shown in bold.

Definition 7.6.3. Given a digraph G = (V, E), the transitive closure of G is the
digraph Gt = (V, E™) where

Et = {u — v | there is a directed path of positive length from u to v in G }.

Similarly, if R is the relation corresponding to G, the transitive closure of R (de-
noted R™) is the relation corresponding to G .

For example, the transitive closure for the graph in Figure 7.8 is shown in Fig-
ure 7.9.

If G is a DAG, then the transitive closure of G is a strong partial order. The proof
of this fact is left as an exercise in the problem section.

7.6.4 The Hasse Diagram

One problem with viewing a poset as a digraph is that there tend to be lots of edges
due to the transitivity property. Fortunately, we do not necessarily have to draw
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> 12 3
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(a) (b)
Figure 7.10 The Hasse diagrams for the posets in Figure 7.6 and 7.7.

all the edges if we know that the digraph corresponds to a poset. For example,
we could choose not to draw any edge which would be implied by the transitivity
property, knowing that it is really there by implication. In general, a Hasse diagram
for a poset (A, <) is a digraph with vertex set A and edge set < minus all self-loops
and edges implied by transitivity. For example, the Hasse diagrams of the posets
shown in Figures 7.6 and 7.7 are shown in Figure 7.10.

7.7 Topological Sort

A total order that is consistent with a partial order is called a topological sort. More
precisely,

Definition 7.7.1. A fopological sort of a poset (A, <) is a total order (A4, <) such
that
X X y IMPLIES x =1 ).

For example, consider the poset that describes how a guy might get dressed for
a formal occasion. The Hasse diagram for such a poset is shown in Figure 7.11.
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left sock right sock underwear shirt
® ® ® p

¥ pants ¢ tie

left shoe right shoe  belt

o
jacket

Figure 7.11 The Hasse diagram for a poset that describes which items much pre-
cede others when getting dressed.

In this poset, the set is all the garments and the partial order specifies which items
much precede others when getting dressed.

There are several total orders that are consistent with the partial order shown in
Figure 7.11. We have shown two of them in list form in Figure 7.12. Each such
list is a topological sort for the partial order in Figure 7.11. In what follows, we
will prove that every finite poset has a topological sort. You can think of this as a
mathematical proof that you can get dressed in the morning (and then show up for
math lecture).

Theorem 7.7.2. Every finite poset has a topological sort.

We’ll prove the theorem constructively. The basic idea is to pull the “smallest”
element a out of the poset, find a topological sort of the remainder recursively, and
then add a back into the topological sort as an element smaller than all the others.

The first hurdle is that “smallest” is not such a simple concept in a set that is only
partially ordered. In a poset (4, <), an element x € A is minimal if there is no other
element y € A such that y < x. For example, there are four minimal elements in
the getting-dressed poset: left sock, right sock, underwear, and shirt. (It may seem
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underwear left sock
pants shirt
belt tie

shirt underwear
tie right sock
jacket pants
left sock right shoe
right sock belt
left shoe jacket
right shoe left shoe
(a) (b)

Figure 7.12 Two possible topological sorts of the poset shown in Figure 7.11. In
each case, the elements are listed so that x < y iff x is above y in the list.

odd that the minimal elements are at the top of the Hasse diagram rather than the
bottom. Some people adopt the opposite convention. If you’re not sure whether
minimal elements are on the top or bottom in a particular context, ask.) Similarly,
an element x € A is maximal if there is no other element y € A such that x < y.

Proving that every poset has a minimal element is extremely difficult, because it
is not true. For example, the poset (Z, <) has no minimal element. However, there
is at least one minimal element in every finite poset.

Lemma 7.7.3. Every finite poset has a minimal element.

Proof. Let (A, <) be an arbitrary poset. Let ay, az, .
sequence of distinct elements in A such that

.., an be a maximum-length

ay Xaz =X --- =X day.

The existence of such a maximum-length sequence follows from the Well Ordering
Principle and the fact that A is finite. Now a¢ < a; cannot hold for any element
agp € A notin the chain, since the chain already has maximum length. And a; < a;
cannot hold for any i > 2, since that would imply a cycle

ai =ay=az=---=4aj

and no cycles exist in a poset by Theorem 7.6.2. Therefore a; is a minimal element.
|

Now we’re ready to prove Theorem 7.7.2, which says that every finite poset has a
topological sort. The proof is rather intricate; understanding the argument requires
a clear grasp of all the mathematical machinery related to posets and relations!
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Proof of Theorem 7.7.2. We use induction. Let P(n) be the proposition that every
n-element poset has a topological sort.

Base case: Every 1-element poset is already a total order and thus is its own topo-
logical sort. So P(1) is true.

Inductive step: Now we assume P (n) in order to prove P(n + 1) where n > 1.
Let (A4, <) be an (n + 1)-element poset. By Lemma 7.7.3, there exists a minimal
element in @ € A. Remove a and all pairs in < involving a to obtain an n-element
poset (A