Software components

- software re-use
- libraries, etc.
- inter-language linkage

* the Microsoft way
- COM: the Component Object Model
- Visual Basic: scripting, embedding, viruses
- NET
- CH#

- other approaches to components
- CORBA, Java RMI, JavaBeans, ...

Software re-use

- how do we re-use code written by others?

- "Tf I have seen further than others, it is because I have stood on the
shoulders of giants."

* source code

- e.g., open source
- libraries of compiled code

- e.g., archives of object files on Unix, DLL's on Windows, Java packages, ...
- classes

- C++ Standard Template Library

- Java Collection framework

- objects

* components

- mashups

- application program interfaces (APIs)

Libraries

- linking to previously compiled code
static linking: all called routines are included in executable
dynamic linking
- called routines located and linked in on demand
shared libraries on Unix (.so == "shared object")
dynamic link libraries (DLL's) on Windows
plug-ins in browsers
advantages of dynamic linking
- no cost if a particular routine is not called
- minor startup cost for initialization when called
- minimal cost when running (extra indirection for call)
- library code is shared among all simultaneous uses
- can update libraries without updating entire program

some disadvantages

- DLL hell on Windows: inconsistencies among versions
especially after install then uninstall

COM: Microsoft's component object model

- binary standard for creating & using components

- components can be written in any language

IDL (interface definition language) to describe arguments and return values,
generate necessary code

- components can be in same process,

separate process on same machine, or on some other machine (DCOM)
DCOM transports include TCP/IP and HTTP
- supporting libraries marshal arguments, call functions, retrieve results
all happens transparently to process that uses it

- integral part of Microsoft systems
available on non-MS operating systems (sort of?)

- COM components are objects with interfaces

- interface: functions that provides access to methods
based on C++ virtual function calls, but implementable in any language

- 128-bit GUID (globally unique identifiers)
stored in Windows registry so others can find it

ActiveX

- marketing name for technologies and services based on COM

- ActiveX components are COM objects
- executable code that packages an object as
.EXE (standalone executable)
.DLL (dynamic link library)
.OCX (visual interface control)

- ActiveX controls
- COM components with user-interface aspects
- written in C++, Java, VB, ...
- can be used in web pages (analogous to applets, but less restricted)
- can be controlled with VBScript, WScript and other scripting languages

- ActiveX documents
- lets users view and edit nhon-HTML documents through the browser

- integrates existing documents into browser or any other application
"embedding"

Calling a COM object

- conceptually, what happens when a COM object is called from a
program...
+ first time

- find its code
look up in Windows registry
registered during install or when created or by explicit call

- do any initialization
Windows needs to keep track of what DLLs are in use
- link it into current program (if a DLL)
fill in calls with pointer to real code: vtbl
- each subsequent method call
- collect arguments into proper form ("marshalling")
- call function
- convert return value and output arguments into proper form
- when done
- do any finalization

- release resources
last user tells Windows that DLL is no longer in use

Alternative approaches

- CORBA (Common Object Request Broker Architecture)
- industry consortium (OMG: Object Management Group)
- client-server model, using objects

- object-request broker (ORB)

communicates client requests to target objects, finds object implementation,
activates it if necessary, delivers request, and returns response

IDL (interface definition language) and compiler for specifying and
implementing interfaces

« Java RMI (Remote Method Invocation)
- a remote procedure call mechanism
- call objects located (usually) on other systems
- very loosely equivalent to (D)COM
- can pass objects, not just primitive types
- Java Beans (marketing name for Java components)
- an APT for writing component software in Java
- components expose features (methods & events)

- visual application builder tools determine properties by "introspection" or
"reflection": can query an object about its properties

- loosely analogous to ActiveX components
- attempting to solve same problems as COM and CORBA, but within Java

Visual Basic

* a programming language
- modern dialect of Basic (John Kemeny ('47, *49) and Tom Kurtz (*56), 1964)
- reasonable control flow, data types, arrays, structures

- a toolkit
- standard library for math, file I/0, text manipulation
- user interface components: buttons, text, menus, ...

- extensible: easy access to entire Windows APT and existing objects
can add own C/C++ code and create new controls

- a "glue" language for assembling from pre-built components

- an integrated development environment

- interactive system for building and testing VB programs
draw interface by dragging and dropping components
fill in behaviors in code templates, set properties like size, color, position, ...
manage/edit source code and other resources
run in controlled environment for test and debug, compile and export as .EXE file

- an extension mechanism

- embedded in man?’ other programs, including Word, Excel, Powerpoint,
Outlook; can easily extend their capabilities

- a vehicle for distributing viruses

Component scripting

- component exposes what it can do as an object interface:
methods, properties, events

- can control object from a programming language that can access objects

- VBScript is a scripting version of VB for controlling scriptable
objects

- can use it to control scriptable programs
- also CScript, WScript, PowerShell, ...

» Visual Basic for Applications (VBA) is a version of VB that lives
inside some programs
- notably Word, Excel, other Office programs, Outlook, ...
- can use it to control them and other scriptable programs
- in general, can do anything from a program that is possible from
keyboard and mouse
- macro recorder to create command sequences
- shell escape to run other processes
- network libraries to access other systems

Security issues

- VB embedding and scripting is a mixed blessing
- useful properties: can easily extend capabilities, customize behaviors
- lots of not so nice properties: viruses are very easy
- scripts, plug-ins, applets let others run their code on your machine
* how can this be made safe (enough)?
- code-signing (Microsoft's "Authenticode")
- uses crypto to assure that code comes from who it says it does
- and that it hasn't been tampered with
- but NOT that it works properly
doesn't protect against bugs, invasion of privacy, ...
- sandboxing (Java applets, Javascript)
- isolate code inside virtual machine or similar
- limits capabilities (e.g., no access to local file system)
- doesn't protect against bugs in programs
- or bugs in the security model and implementation
- perfect security is not possible
- see Doug McIlroy's Virology 101 paper

Microsoft .NET (vi: ~2002; v4.5.1 April 2013)

- a framework for supporting standalone and web-based services
- single run-time environment for programs written in a variety of languages
- web forms for interfaces on web pages
- support for web services
- better security than COM

- development platform
- single intermediate language as target for all languages
- just in time compilation to native instructions

- common type system
all languages produce interoperable objects and types

- common language runtime environment
base class libraries accessible to all languages

- control of deployment and versioning
the end of DLL hell?

- uniform development environment for programs in multiple languages
- significant new language, C#
- major revision of Visual Basic

Java model

- Java language
- derivative of C and C++
- strictly object-oriented, strongly typed
- garbage collection
- compiled into infermediate language ("byte code")
- result stored in .class files
- packages and JAR files for larger collections
- interpreted by Java Virtual Machine on host
- local services provided by host system
- enormous set of libraries in JRE
- can be compiled into native instructions ahead of time or "just in time"
- largely portable
- types completely specified
- main problems come from making use of services of host environment
- "write once, run anywhere" is mostly true
- applets for running code in web pages
- Java Server Pages (JSP) for server-based web transactions

NET model

- multiple languages: C#, VB, C++, J#, F#, ..
- C#t is a derivative of C, C++ and Java
- VB.net is a significantly different version of VB

- "managed extensions" for C++ that permit safe computation, garbage
collection, etc.

- all are object-oriented
- all languages compile into common intermediate language (CIL)
- types completely specified by Common Type System (CTS)

- objects can interoperate if they conform to Common Language
Specification (CLS) [a subset of CTS]

- intermediate language compiled into native machine instructions
- just in time compilation, or compilation in advance: no interpretation
- local services provided by host system (Windows)
- enormous set of libraries
* not portable
- tightly integrated into Windows environment

- web forms for GUI components on web pages
- ASP.NET for server-based web transactions

Common Language Runtime (CLR)

- all languages compile into IL that uses CLR
- common services:

- memory management / garbage collection

- exceptions

- security

- debugging, profiling
- access to underlying operating system

*# \ C~#\ VB1 ‘/C--l-

managed code

common language
runtime, JIT compiler

wrappers for existing new features like
OS features ‘ garbage collection

Windows operating system

Deployment, versioning

- prior to .NET, installing an application requires
- copying files to multiple directories
- making entries in registry
- adding shortcuts to desktop and menus
- backing up, moving, or removing an application requires an installer
program
- "DLL Hell”
- shared libraries can get out of sync with apps that need them

- new installation can break existing programs that rely on properties of old
DLLs

- fresh installation can overwrite newer DLL with older one

- assemblies provide strong internal naming/typing
- ensure that the right library is being used

- assembly can specify versions of external references that it needs to
work properly

- CLR loads proper one
- can have old and new versions working side by side

C# programming language

- by Anders Hejlsberg (Turbo Pascal, Delphi, ...)
- based on C, C++ and Java

Microsoft does not stress the Java contribution

- "An evolution of Microsoft C and Microsoft C++" (Visual Studio.NET documentation)

"... sort of Java with reliability, productivity and security deleted." (James Gosling)

+ "C# has a high degree of fidelity to C and C++"

everything is a class object; no global functions, variables, constants (Java)
garbage collection; destructors called implicitly (Java)
arrays are managed types (Java)
updated primitive types (Java)
char is Unicode character; string is a basic type (Java)
single inheritance and interfaces (Java)
ref, out parameter modifiers
try-catch-finally (Java)
delegate type (roughly, function pointers)
unsafe mode (pointers permitted)
some syntax changes:
'."instead of =>and : : (Java), switches don't fall through, foreach statement
no headers or #include (Java)
- /// documentation comments (Java)

ISO standard in 2003, v5 in August 2012 (most recent)

Separated at birth?

public class hello {
public static void main(String[] args)

{
System.out.println("hello, world");

public class hello {
public static void Main(string[] args)

{

System.Console.out.WritelLine("hello, world") ;

Properties & accessors

* class data members can have get/set members
- external syntax looks like public class variables
- semantics defined by implicitly calling get and set methods

class Thing {
bool ok; // private data member

public bool ok { // public property
get { return ok; } // arbitrary computation
set { ok = value; } // value is reserved word

}
}

Thing v;

if (v.ok) { // calls v's ok get
v.ok = false; // calls v's ok set

Indexers (get/set [] members)

- syntax looks like array access (v[i])
- semantics defined by calling get and set members with a subscript
- can overload [] with different types

public class Awkarray ({
public Hashtable ht = new Hashtable() ;
public Awk this[string name] ({
get {
if ('ht.Contains (name))
ht.Add (name, new Awk()) ;
return (Awk) ht[name];
}
set { ht.Add (name, wvalue); }

}

Awkarray aa = new Awkarray() ;
if (aa["whatever"] != null)
aa["whatever"] = "a string";

fmt in Java

import java.io.¥*;
import java.util.¥*;

public class f {
String line = ""; String space = ""; int maxlen = 60;
public static void main(String args[]) {
f t = new £();

t.runf () ;
}
public void runf () ({
String s;
try {
BufferedReader in = new BufferedReader (new InputStreamReader ((System.1i
while ((s = in.readLine()) !'= null) {
String wds[] = s.split("[1+") ;

for (int 1 = 0; i < wds.length; i++) addword(wds[i]) ;

}
} catch (Exception e) {
System.err.println(e); //eof

printline() ;
}
public void addword(String w) ({
if (line.length() + w.length() > maxlen) printline()
line += space + w;
space = " ";
}
public void printline() {
if (line.length() > 0) System.out.println(line)
line = space = "";

}

fmt in C#

using System;
using System.IO;

namespace fmtcs ({
class fmt {
int maxlen = 60; string line = "";

static void Main(string[] args) {
new fmt (args[0]);
}

fmt (string £f) {
string inline;
Stream fin = File.OpenRead(f) ;
StreamReader sr = new StreamReader (fin) ;

for (inline = sr.Readline(); inline '= null; inline = sr.ReadLine())
string[] inwords = inline.Split(null);
for (int i = 0; 1 < inwords.Length; i++)
if (inwords[i] !'= String.Empty) addword(inwords[i]) ;

}
printline() ;
}
void addword(string w) ({
if (line.Length + w.Length > maxlen) printline();
if (line.Length > 0) line += " ";
line += w;
}
void printline() {
if (line.Length > 0) {
Console.WriteLine(line) ;
line = nn :

Conclusions
. C#

- easy to pick up basics if know Java
- easy to convert Java statements to C#
- batch mode compilation is easy

- VB.NET
- each new release has made VB more complicated
- wizard helps upgrade process but doesn’'t handle everything

 Visual Studio.NET

- all languages are handled in a uniform way
- very good integration of visual and textual descriptions

- .NET framework

- not easy to adapt or upgrade most existing programs to .NET?
COM not likely to go away in the near future

