
Software components
•  software re-use

–  libraries, etc.
–  inter-language linkage

•  the Microsoft way
–  COM: the Component Object Model
–  Visual Basic: scripting, embedding, viruses
–  .NET
–  C#

•  other approaches to components
–  CORBA, Java RMI, JavaBeans, ...

Software re-use
•  how do we re-use code written by others?

–  "If I have seen further than others, it is because I have stood on the
shoulders of giants."

•  source code
–  e.g., open source

•  libraries of compiled code
–  e.g., archives of object files on Unix, DLL's on Windows, Java packages, ...

•  classes
–  C++ Standard Template Library
–  Java Collection framework
–  ...

•  objects
•  components
•  mashups
•  application program interfaces (APIs)

Libraries
•  linking to previously compiled code
•  static linking: all called routines are included in executable
•  dynamic linking

–  called routines located and linked in on demand
shared libraries on Unix (.so == "shared object")
dynamic link libraries (DLL's) on Windows
plug-ins in browsers

•  advantages of dynamic linking
–  no cost if a particular routine is not called
–  minor startup cost for initialization when called
–  minimal cost when running (extra indirection for call)
–  library code is shared among all simultaneous uses
–  can update libraries without updating entire program

•  some disadvantages
–  DLL hell on Windows: inconsistencies among versions

especially after install then uninstall

COM: Microsoft's component object model
•  binary standard for creating & using components

–  components can be written in any language
IDL (interface definition language) to describe arguments and return values,

generate necessary code
–  components can be in same process,
 separate process on same machine, or on some other machine (DCOM)

 DCOM transports include TCP/IP and HTTP
–  supporting libraries marshal arguments, call functions, retrieve results

all happens transparently to process that uses it
–  integral part of Microsoft systems

available on non-MS operating systems (sort of?)

•  COM components are objects with interfaces
–  interface: functions that provides access to methods

based on C++ virtual function calls, but implementable in any language
–  128-bit GUID (globally unique identifiers)

stored in Windows registry so others can find it

ActiveX
•  marketing name for technologies and services based on COM

•  ActiveX components are COM objects
–  executable code that packages an object as
 .EXE (standalone executable)
 .DLL (dynamic link library)
 .OCX (visual interface control)

•  ActiveX controls

–  COM components with user-interface aspects
–  written in C++, Java, VB, …
–  can be used in web pages (analogous to applets, but less restricted)
–  can be controlled with VBScript, WScript and other scripting languages

•  ActiveX documents
–  lets users view and edit non-HTML documents through the browser
–  integrates existing documents into browser or any other application

"embedding"

Calling a COM object
•  conceptually, what happens when a COM object is called from a
program...

•  first time
–  find its code

look up in Windows registry
registered during install or when created or by explicit call

–  do any initialization
Windows needs to keep track of what DLLs are in use

–  link it into current program (if a DLL)
fill in calls with pointer to real code: vtbl

•  each subsequent method call
–  collect arguments into proper form ("marshalling")
–  call function
–  convert return value and output arguments into proper form

•  when done
–  do any finalization
–  release resources

last user tells Windows that DLL is no longer in use

Alternative approaches
•  CORBA (Common Object Request Broker Architecture)

–  industry consortium (OMG: Object Management Group)
–  client-server model, using objects
–  object-request broker (ORB)

communicates client requests to target objects, finds object implementation,
activates it if necessary, delivers request, and returns response

–  IDL (interface definition language) and compiler for specifying and
implementing interfaces

•  Java RMI (Remote Method Invocation)
–  a remote procedure call mechanism
–  call objects located (usually) on other systems
–  very loosely equivalent to (D)COM
–  can pass objects, not just primitive types

•  Java Beans (marketing name for Java components)
–  an API for writing component software in Java
–  components expose features (methods & events)
–  visual application builder tools determine properties by "introspection" or

"reflection": can query an object about its properties
–  loosely analogous to ActiveX components
–  attempting to solve same problems as COM and CORBA, but within Java

Visual Basic
•  a programming language

–  modern dialect of Basic (John Kemeny ('47, *49) and Tom Kurtz (*56), 1964)
–  reasonable control flow, data types, arrays, structures

•  a toolkit
–  standard library for math, file I/O, text manipulation
–  user interface components: buttons, text, menus, ...
–  extensible: easy access to entire Windows API and existing objects

can add own C/C++ code and create new controls
–  a "glue" language for assembling from pre-built components

•  an integrated development environment
–  interactive system for building and testing VB programs

draw interface by dragging and dropping components
fill in behaviors in code templates, set properties like size, color, position, …
manage/edit source code and other resources
run in controlled environment for test and debug, compile and export as .EXE file

•  an extension mechanism
–  embedded in many other programs, including Word, Excel, Powerpoint,

Outlook; can easily extend their capabilities
–  a vehicle for distributing viruses

Component scripting
•  component exposes what it can do as an object interface:
methods, properties, events
–  can control object from a programming language that can access objects

•  VBScript is a scripting version of VB for controlling scriptable
objects
–  can use it to control scriptable programs
–  also CScript, WScript, PowerShell, ...

•  Visual Basic for Applications (VBA) is a version of VB that lives
inside some programs
–  notably Word, Excel, other Office programs, Outlook, …
–  can use it to control them and other scriptable programs

•  in general, can do anything from a program that is possible from
keyboard and mouse
–  macro recorder to create command sequences
–  shell escape to run other processes
–  network libraries to access other systems

Security issues
•  VB embedding and scripting is a mixed blessing

–  useful properties: can easily extend capabilities, customize behaviors
–  lots of not so nice properties: viruses are very easy

•  scripts, plug-ins, applets let others run their code on your machine
•  how can this be made safe (enough)?
•  code-signing (Microsoft's "Authenticode")

–  uses crypto to assure that code comes from who it says it does
–  and that it hasn't been tampered with
–  but NOT that it works properly

doesn't protect against bugs, invasion of privacy, ...
•  sandboxing (Java applets, Javascript)

–  isolate code inside virtual machine or similar
–  limits capabilities (e.g., no access to local file system)
–  doesn't protect against bugs in programs
–  or bugs in the security model and implementation

•  perfect security is not possible
–  see Doug McIlroy's Virology 101 paper

Microsoft .NET (v1: ~2002; v4.5.1 April 2013)

•  a framework for supporting standalone and web-based services
–  single run-time environment for programs written in a variety of languages
–  web forms for interfaces on web pages
–  support for web services
–  better security than COM

•  development platform
–  single intermediate language as target for all languages
–  just in time compilation to native instructions
–  common type system

all languages produce interoperable objects and types
–  common language runtime environment

base class libraries accessible to all languages
–  control of deployment and versioning

the end of DLL hell?
–  uniform development environment for programs in multiple languages
–  significant new language, C#
–  major revision of Visual Basic

Java model
•  Java language

–  derivative of C and C++
–  strictly object-oriented, strongly typed
–  garbage collection

•  compiled into intermediate language ("byte code")
–  result stored in .class files
–  packages and JAR files for larger collections

•  interpreted by Java Virtual Machine on host
–  local services provided by host system
–  enormous set of libraries in JRE
–  can be compiled into native instructions ahead of time or "just in time"

•  largely portable
–  types completely specified
–  main problems come from making use of services of host environment
–  "write once, run anywhere" is mostly true

•  applets for running code in web pages
•  Java Server Pages (JSP) for server-based web transactions

.NET model
•  multiple languages: C#, VB, C++, J#, F#, …

–  C# is a derivative of C, C++ and Java
–  VB.net is a significantly different version of VB
–  "managed extensions" for C++ that permit safe computation, garbage

collection, etc.
•  all are object-oriented
•  all languages compile into common intermediate language (CIL)

–  types completely specified by Common Type System (CTS)
–  objects can interoperate if they conform to Common Language

Specification (CLS) [a subset of CTS]

•  intermediate language compiled into native machine instructions
–  just in time compilation, or compilation in advance: no interpretation
–  local services provided by host system (Windows)
–  enormous set of libraries

•  not portable
–  tightly integrated into Windows environment

•  web forms for GUI components on web pages
•  ASP.NET for server-based web transactions

Common Language Runtime (CLR)
•  all languages compile into IL that uses CLR
•  common services:

–  memory management / garbage collection
–  exceptions
–  security
–  debugging, profiling

•  access to underlying operating system
VB

managed code

common language
runtime, JIT compiler

wrappers for existing
OS features

new features like
garbage collection

Windows operating system

C# C++ *#

Deployment, versioning
•  prior to .NET, installing an application requires

–  copying files to multiple directories
–  making entries in registry
–  adding shortcuts to desktop and menus

•  backing up, moving, or removing an application requires an installer
program

•  “DLL Hell”
–  shared libraries can get out of sync with apps that need them
–  new installation can break existing programs that rely on properties of old

DLLs
–  fresh installation can overwrite newer DLL with older one

•  assemblies provide strong internal naming/typing
–  ensure that the right library is being used
–  assembly can specify versions of external references that it needs to

work properly
–  CLR loads proper one
–  can have old and new versions working side by side

C# programming language
•  by Anders Hejlsberg (Turbo Pascal, Delphi, ...)
•  based on C, C++ and Java

–  Microsoft does not stress the Java contribution
–  "An evolution of Microsoft C and Microsoft C++" (Visual Studio.NET documentation)
–  "… sort of Java with reliability, productivity and security deleted." (James Gosling)

•  "C# has a high degree of fidelity to C and C++"
–  everything is a class object; no global functions, variables, constants (Java)
–  garbage collection; destructors called implicitly (Java)
–  arrays are managed types (Java)
–  updated primitive types (Java)

char is Unicode character; string is a basic type (Java)
–  single inheritance and interfaces (Java)
–  ref, out parameter modifiers
–  try-catch-finally (Java)
–  delegate type (roughly, function pointers)
–  unsafe mode (pointers permitted)
–  some syntax changes:

‘.’ instead of -> and :: (Java), switches don’t fall through, foreach statement
–  no headers or #include (Java)
–  /// documentation comments (Java)

•  ISO standard in 2003, v5 in August 2012 (most recent)

Separated at birth?

public class hello {
 public static void main(String[] args)
 {
 System.out.println("hello, world");
 }
}

public class hello {
 public static void Main(string[] args)
 {
 System.Console.out.WriteLine("hello, world");
 }
}

Properties & accessors

•  class data members can have get/set members
•  external syntax looks like public class variables
•  semantics defined by implicitly calling get and set methods

class Thing {
 bool _ok; // private data member

 public bool ok { // public property
 get { return _ok; } // arbitrary computation
 set { _ok = value; } // value is reserved word
 }
}

 Thing v;

 if (v.ok) { // calls v's ok get
 v.ok = false; // calls v's ok set
 ...
 }

Indexers (get/set [] members)
•  syntax looks like array access (v[i])
•  semantics defined by calling get and set members with a subscript
•  can overload [] with different types

public class Awkarray {
 public Hashtable ht = new Hashtable();
 public Awk this[string name] {
 get {
 if (!ht.Contains(name))
 ht.Add(name, new Awk());
 return (Awk) ht[name];
 }
 set { ht.Add(name, value); }
 }

 Awkarray aa = new Awkarray();
 if (aa["whatever"] != null)
 aa["whatever"] = "a string";

fmt in Java
import java.io.*;
import java.util.*;

public class f {
 String line = ""; String space = ""; int maxlen = 60;
 public static void main(String args[]) {
 f t = new f();
 t.runf();
 }
 public void runf() {
 String s;
 try {
 BufferedReader in = new BufferedReader(new InputStreamReader((System.in)));
 while ((s = in.readLine()) != null) {
 String wds[] = s.split("[]+");
 for (int i = 0; i < wds.length; i++) addword(wds[i]);
 }
 } catch (Exception e) {
 System.err.println(e); //eof
 }
 printline();
 }
 public void addword(String w) {
 if (line.length() + w.length() > maxlen) printline();
 line += space + w;
 space = " ";
 }
 public void printline() {
 if (line.length() > 0) System.out.println(line);
 line = space = "";
 }

fmt in C#
using System;
using System.IO;

namespace fmtcs {
 class fmt {
 int maxlen = 60; string line = "";

 static void Main(string[] args) {
 new fmt(args[0]);
 }
 fmt(string f) {
 string inline;
 Stream fin = File.OpenRead(f);
 StreamReader sr = new StreamReader(fin);
 for (inline = sr.ReadLine(); inline != null; inline = sr.ReadLine()) {
 string[] inwords = inline.Split(null);
 for (int i = 0; i < inwords.Length; i++)
 if (inwords[i] != String.Empty) addword(inwords[i]);
 }
 printline();
 }
 void addword(string w) {
 if (line.Length + w.Length > maxlen) printline();
 if (line.Length > 0) line += " ";
 line += w;
 }
 void printline() {
 if (line.Length > 0) {
 Console.WriteLine(line);
 line = "";
 }
 }
 }
}

Conclusions
•  C#

–  easy to pick up basics if know Java
–  easy to convert Java statements to C#
–  batch mode compilation is easy

•  VB.NET
–  each new release has made VB more complicated
–  wizard helps upgrade process but doesn't handle everything

•  Visual Studio.NET
–  all languages are handled in a uniform way
–  very good integration of visual and textual descriptions

•  .NET framework
–  not easy to adapt or upgrade most existing programs to .NET?

COM not likely to go away in the near future

