
Life cycle of an object
•  construction: creating a new object

–  implicitly, by entering the scope where it is declared
–  explicitly, by calling new
–  construction includes initialization

•  copying: using existing object to make a new one
–  "copy constructor" makes a new object from existing one of the same kind
–  implicitly invoked in (some) declarations, function arguments, function

return
•  assignment: changing an existing object

–  occurs explicitly with =, +=, etc.
–  meaning of explicit and implicit copying must be part of the representation

default is member-wise assignment and initialization
•  destruction: destroying an existing object

–  implicitly, by leaving the scope where it is declared
–  explicitly, by calling delete on an object created by new
–  includes cleanup and resource recovery

Strings: constructors & assignment
•  another type that C and C++ don't provide
•  implementation of a String class combines

–  constructors, destructors, copy constructor
–  assignment, operator =
–  constant references
–  handles, reference counts, garbage collection

•  Strings should behave like strings in Awk, Python, Java, …
–  can assign to a string, copy a string, etc.
–  can pass them to functions, return as results, …

•  storage managed automatically
–  no explicit allocation or deletion
–  grow and shrink automatically
–  efficient

•  can create String from "..." C char* string
•  can pass String to functions expecting char*

"Copy constructor"

•  when a class object is passed to a function, returned from a
function, or used as an initializer in a declaration, a copy is
made:

 String substr(String s, int start, int len)
•  a "copy constructor" creates an object of class X from an
existing object of class X

•  obvious way to write it causes an infinite loop:
 class String {

 String(String s) {...} // doesn't work
 };

•  copy constructor parameter must be a reference so object can
be accessed without copying
 class String {
 String(const String& s) {...}
 // ...
 };

•  copy constructor is necessary for declarations, function
arguments, function return values

String class
class String {
 private:
 char *sp;
 public:
 String() { sp=strdup(""); } // String s;
 String(const char *t) { sp=strdup(t); } // String s("abc");
 String(const String &t) { sp=strdup(t.sp); } // String s(t);
 ~String() { delete [] sp; }

 String& operator =(const char *);// s="abc"
 String& operator =(const String &);// s1=s2

 const char *s() { return sp; } // as char*
};
•  assignment is not the same as initialization

–  changes the state of an existing object
•  the meaning of assignment defined by a member function
 named operator=!

 x = y means x.operator=(y)

Assignment operators

String& String::operator =(const char *t) { // s = "abc"
 delete [] sp;
 sp = strdup(t);
 return *this;
}
String& String::operator=(const String& t) { // s1 = s2
 if (this != &t) { // avoid s1 = s1
 delete [] sp;
 sp = strdup(t.sp);
 }
 return *this;
}

•  in a member function, this points to current object, so *this
is the object (returned as a reference)

•  assignment operators almost always end with
 return *this

 which returns a reference to the LHS
–  permits multiple assignment s1 = s2 = s3

Handles and reference counts
•  how to avoid unnecessary copying for classes like strings, arrays,
other containers

•  copy constructor may allocate new memory even if unnecessary
–  e.g., in f(const String& s) string value would be copied
 even if it won't be changed by f!

•  a handle class manages a pointer to the real data
•  implementation class manages the real data

–  string data itself
–  counter of how many Strings refer to that data
–  when String is copied, increment the ref count
–  when String is destroyed, decrement the ref count
–  when last reference is gone, free all allocated memory

•  with a handle class, copying only increments reference count
–  "shallow" copy instead of "deep" copy

Reference counts

 s = "abc"

 t = s

 t = "def"

1

2

1 1

abc

abc

abc def

Reference/Use counts
class Srep { // string representation
 char *sp; // data
 int n; // ref count
 Srep(const char *s = "") : n(1), sp(strdup(s)) {}
 ~Srep() { delete [] sp; }
 friend class String;
};

class String {
 Srep *r;
 public:
 String(const char *);
 String(const String &);
 ~String();

 String& operator =(const String &); // s1 = s2;
 String& operator =(const char *); // s = "abc";
 const char *s() { return r->sp; }
};

Reference counts, part 2
// constructors, destructor

String::String(const char *s = "") {
 r = new Srep(s); // String s="abc"; String s1;
}

String::String(const String &t) { // String s=t;
 t.r->n++; // ref count
 r = t.r;
}

String::~String() {
 if (--r->n <= 0) {
 delete r;
 }
}

Reference counts, part 3
String& String::operator =(const char *s) {
 if (r->n > 1) { // disconnect self
 r->n--;
 r = new Srep(s);
 } else {
 delete [] r->sp; // free old String
 r->sp = strdup(s);
 }
 return *this;
}

String& String::operator =(const String &t) {
 t.r->n++; // protect against s = s
 if (--r->n <= 0) { // nobody else using me now
 delete r;
 }
 r = t.r;
 return *this;
}

Rules for constructors and assignment operators

•  all objects have to have a constructor
–  if you don't specify a constructor the default constructor copies members

by their constructors
–  you need a no-argument constructor for arrays
–  constructors should initialize all members

•  if constructor calls new, destructor must call delete
–  use delete [] for an array allocated with new T[n]

•  copy constructor X(const X&) makes an object
–  from another one without making an extra copy

•  if there's a complicated constructor
–  there will have to be an assignment operator
–  make sure that x = x works

•  assignment is NOT the same as construction
–  constructors called in declarations, function arguments and function

returns, to make a new object
–  assignments called only in assignment statements,
 to modify an existing object

Inheritance

•  a way to create or describe one class in terms of another
–  "a D is like a B, with these extra properties..."
–  "a D is a B, plus…"
–  B is the base class or superclass
–  D is the derived class or subclass

C++, Perl, Python, … use base/derived; Java, Ruby, … use super/sub

•  inheritance is used for classes that model strongly related
concepts
–  objects share some common properties, behaviors, ...
–  and have some properties and behaviors that are different

•  base class contains aspects common to all
•  derived classes contain aspects different for different kinds

Inheritance and derived classes

•  consider different kinds of Shapes
–  lines, polylines, rectangles, squares, circles, ellipses, ...

•  base class Shape handles methods and properties common to all
–  color, text, …

•  derived classes contain aspects that are different for different
kinds
–  line: start, end, ...
–  rectangle: origin, corner, ...
–  circle: center, radius

•  sometimes you care about the difference

•  sometimes you don't

Derived classes

class Shape {
 int color;
 Shape& draw();
 // other items common to all Shapes

};
class Rect: public Shape {
 Point origin; double ht, wid;
 // other items specific to Lines
};
class Circle: public Shape {
 Point center; double rad;
 // other items specific to Bonds
};

•  a Rect is a derived class of (a kind of) Shape
–  a Rect "is a" Shape
–  inherits all members of Shape
–  adds its own members

•  a Circle is also a derived class of Shape

 Shape Shape

Circle

Shape

 Rect

More on derived classes
•  derived classes can add their own data members
•  can add their own member functions
•  can override base class functions with
 functions of the same name and argument types

 class Rect: public Shape {
 Point origin; double ht, wid;
 public:
 bool is_square() {...}
 Shape& draw() {...} // overrides Shape::draw()

 };
 class Circle: public Shape {

 Point center; double rad;
 public:
 Shape& draw() {...} // overrides Shape::draw()

 };

 Rect r;
 Circle c;

 r.draw(); // calls Rect::draw()
 c.draw(); // calls Circle::draw()

Virtual Functions
•  a function in a base class that can be overridden by a function
in a derived class (with same name and arguments)

 class Shape {
 public:

 virtual Shape& draw();
 ...

 };

•  "virtual" means that a derived class may provide its own version
of this function, which will be called automatically for
instances of that derived class

•  the base class can provide a default implementation
•  if the base class is "pure", it must be derived from

–  pure base class can't exist on its own; no default implementation

Polymorphism
•  when a pointer or reference to a base-class type points to a
derived-class object

•  and you use that pointer or reference to call a virtual function
•  this calls the derived-class function
•  "polymorphism": proper function to call is determined at run-time
•  e.g., drawing Shapes on a linked list:

 draw_all(Shape *sp) {
 for (; sp != NULL; sp = sp->next)

 sp->draw();
 }

•  virtual function mechanism automatically calls the right draw()
function for each object

•  the loop does not change if more kinds of Shapes are added

Summary of inheritance
•  a way to describe a family of types
•  by collecting similarities (base class)
•  and separating differences (derived classes)

•  polymorphism: proper member functions determined at run time
–  virtual functions are the C++ mechanism

•  not every class needs inheritance
–  may complicate without compensating benefit

•  use composition instead of inheritance?
–  an object contains an (has) an object
 rather than inheriting from it

•  "is-a" versus "has-a"
–  inheritance describes "is-a" relationships
–  composition describes "has-a" relationships

Templates (parameterized types, generics)
•  another approach to polymorphism
•  compile time, not run time
•  a template specifies a class or a function that is the same for
several types
–  except for one or more type parameters

•  e.g., a vector template defines a class of vectors that can be
instantiated for any particular type
vector<int>
vector<String>
vector<vector<int> >

•  templates versus inheritance:
–  use inheritance when behaviors are different for different types

drawing different Shapes is different
–  use template when behaviors are the same, regardless of types

accessing the n-th element of a vector is the same,
 no matter what type the vector is

Vector template class
•  vector class defined as a template, to be instantiated with
different types of elements

template <typename T> class vector {
 T *v; // pointer to array
 int size; // number of elements

 public:
 vector(int n=1) { v = new T[size = n]; }
 T& operator [](int n) {
 assert(n >= 0 && n < size);
 return v[n];
 }

};

vector<int> iv(100); // vector of ints
vector<complex> cv(20); // vector of complex
vector<vector<int> > vvi(10); // vector of vector of int
vector<double> d; // default size

•  compiler instantiates whatever types are used

Template functions
•  can define ordinary functions as templates

–  e.g., max(T, T)

 template <typename T> T max(T x, T y) {
 return x > y ? x : y;

 }

•  requires operator> for type T
 already there for C's arithmetic types

•  don't need a type name to use it
 compiler infers types from arguments
 max(double, double)
 max(int, int)
 max(int, double) doesn't compile: no coercion

•  compiler instantiates code for each different use in a program

Standard Template Library (STL)
Alex Stepanov
 (GE > Bell Labs > HP > SGI > Compaq > Adobe -> A9)

•  general-purpose library of
 containers (vector, list, set, map, …)
 generic algorithms (find, replace, sort, …)
•  algorithms written in terms of iterators performing specified
access patterns on containers
–  rules for how iterators work, how containers have to support them

•  generic: every algorithm works on a variety of containers,
including built-in types
–  e.g., find elements in char array, vector<int>, list<…>

•  iterators: generalization of pointer for uniform access to items in
a container

Containers and algorithms
•  STL container classes contain objects of any type

–  sequences: vector, list, slist, deque
–  sorted associative: set, map, multiset, multimap

hash_set and hash_map are in C++11, as "unordered_set" and "unordered_map"
•  each container class is a template that can be instantiated to
contain any type of object

•  generic algorithms
–  find, find_if, find_first_of, search, ...
–  count, min, max, …
–  copy, replace, fill, remove, reverse, …
–  accumulate, inner_product, partial_sum, …
–  sort
–  binary_search, merge, set_union, …

•  performance guarantees
–  each combination of algorithm and iterator type specifies worst-case

(O(…)) performance bound
e.g., maps are O(log n) access, vectors are O(1) access

Iterators
•  a generalization of C pointers
 for (p = begin; p < end; ++p)
 do something with *p
•  range from begin() to just before end() [begin, end)
•  ++iter advances to the next if there is one
•  *iter dereferences (points to value)
•  uses operator != to test for end of range
 for (iter i = v.begin(); i != v.end(); ++i)
 do something with *i

#include <vector>
#include <iterator>
using namespace ::std;
int main() {
 vector<double> v;
 for (int i = 1; i <= 10; i++)
 v.push_back(i);
 vector<double>::const_iterator it;
 double sum = 0;
 for (it = v.begin(); it != v.end(); ++it)
 sum += *it;
 printf("%g\n", sum);
}

Iterators (2)
•  no change to loop if type or representation changes

 multiset<double> v;
 multiset<double>::const_iterator it;
 for (it = v.begin(); it != v.end(); ++it)
 sum += *it;

•  not all containers support all iterator operations

•  input iterator
–  can only read items in order, can't store into them (e.g., input from file)

•  output iterator
–  can only write items in order, can't read them (output to a file)

•  forward iterator
–  can read/write items in order, can't go backwards (singly-linked list)

•  bidirectional iterator
–  can read/write items in either order (doubly-linked list)

•  random access iterator
–  can access items in any order (array)

Example: STL sort
#include <iostream>
#include <iterator>
#include <vector>
#include <string>
#include <algorithm>
using namespace ::std;

int main() { // sort stdin by lines
 vector<string> vs;
 string tmp;
 while (getline(cin, tmp))
 vs.push_back(tmp);
 sort(vs.begin(), vs.end());
 copy(vs.begin(), vs.end(),
 ostream_iterator<string>(cout, "\n"));
}

•  vs.push_back(s) pushes s onto "back" (end) of vs
•  3rd argument of copy is a "function object" that calls a function
for each iteration
–  uses overloaded operator()

Function objects
•  anything that can be applied to zero or more arguments to get a
value and/or change the state of a computation

•  can be an ordinary function pointer
•  can be an object of a type defined by a class in which the
function call operator operator() is overloaded

 template <typename T> class bigger {
 public:
 bool operator()(T const& x, T const& y) {
 return x > y;
 }
 };

•  to sort strings in decreasing order,
 vector<string> vs;
 sort(vs.begin(), vs.end(), bigger<string>());

•  to sort numbers in decreasing order,
 vector<double> vd;
 sort(vd.begin(), vd.end(), bigger<double>());

Template metaprogramming
•  do computation at compile time to avoid computation at run time

–  evaluating constants, unrolling loops, building data structures

// from Effective C++ 3e, by Scott Meyers

#include <iostream>
using namespace ::std;

template<unsigned n> struct Factorial {
 enum { value = n * Factorial<n-1>::value };
};
template<> struct Factorial<0> {
 enum { value = 1 };
};

int main() {
 std::cout << Factorial<5>::value << "\n";
 std::cout << Factorial<10>::value << "\n";
}

Some C++11 additions
•  nullptr

–  type-safe and unambiguous replacement for NULL and 0 pointer values
•  auto
 auto x = val;!
 replaces
 VeryLongTypeNameLikeWhatYouOftenSeeInJava x = val;!

 infers the type of x from the type of the initializing value
•  range for

 for (v : whatever) ... !
replaces
 for (v = whatever.begin(); v != whatever.end(); ++v) ...!

 for (std::vector<int>::const_iterator it = myvector.begin(); !
 it != myvector.end(); ++it)!
becomes
 for (auto it = myvector.begin(); it != myvector.end(); ++it)!
becomes
 for (auto it : myvector)!

Word frequency count: C++ STL

#include <iostream>
#include <map>
#include <string>

int main() {
 string temp;
 map<string, int> v;
 map<string, int>::const_iterator i;

 while (cin >> temp)
 v[temp]++;
 for (i = v.begin(); i != v.end(); ++i)
 cout << i->first << " " << i->second << "\n";
}

Further reading

•  http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

•  cpplint.py

•  http://isocpp.org/

•  http://cppreference.com

What to use, what not to use?

•  Use
–  classes
–  const
–  const references
–  default constructors
–  C++ -style casts
–  bool
–  new / delete
–  C++ string type
–  range for
–  auto

•  Use sparingly / cautiously
–  overloaded functions
–  inheritance
–  virtual functions
–  exceptions
–  STL

•  Don't use
–  malloc / free
–  multiple inheritance
–  run time type identification
–  references if not const
–  overloaded operators (except

for arithmetic types)
–  default arguments (overload

functions instead)

