A 1 g O I‘ 1 th m S ROBERT SEDGEWICK | KEVIN WAYNE

5.3 SUBSTRING SEARCH 5.3 SUBSTRING SEARCH

» introduction » introduction
» brute force

» Knuth-Morris-Pratt
» Boyer-Moore

Algorithms

OURTH EDITION

Algorithms

» Rabin-Karp

ROBERT SEDGEWICK | KEVIN WAYNE

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu http://algs4.cs.princeton.edu
Substring search Substring search applications
Goal. Find pattern of length M in a text of length N. Goal. Find pattern of length M in a text of length N.
typically N >> M typically N >> M
patteen— N E E D L E patten— N E E D L E
text —T1 N A H A Y S T A C K N E E D L E I N A text—>=1 N A H A Y S T A C K N E E D L E I N A
match match
8.00 Find & Replace
gﬂ!!! Advanced |
Find: search
Replace:

| Replace All | | Replace | | Replace & Find | | Previous | [Next]

Substring search applications

Goal. Find pattern of length M in a text of length N.

typically N >> M

pattem—N E E D L E

textx——T1 N A H A Y S T A C K N E E D L E I N A

T

match

Computer forensics. Search memory or disk for signatures,
e.g., all URLs or RSA keys that the user has entered.

http:/ /citp.princeton.edu/memory

Substring search applications

Electronic surveillance.

Need to monitor all
internet traffic.

(security)
No way!
(privacy))
— ™
Well, we’re mainly
interested in
“ATTACK AT DAWN”
OK. Build a

machine that just
looks for that.

) X
o
1

“ATTACK AT DAWN”
substring search
machine

found O

Substring search applications

Goal. Find pattern of length M in a text of length N.

typically N >> M

patteenm—N E E D L E

textx——T1 N A H A Y S T A C K N E E D L E I N A

T

match

Identify patterns indicative of spam.
e PROFITS
e LOSE WEIGHT

5) X
SpamAssassin
e herbal Viagra

e There is no catch.

e This is a one-time mailing.

e This message is sent in compliance with spam regulations.

Substring search applications

Screen scraping. Extract relevant data from web page.
Ex. Find string delimited by and after first occurrence of

pattern Last Trade:.

<tr>
<td class= "yfnc_tableheadl"

Google Inc. (NasdaqGs: GOOG) 4 Add to Portfolio @ .
After Hours: 0.00 N/A (N/A) 10:00PM EST width= "48%">
Google Inc.
Last Trade 58293 Days Range NA-NA BG0OG . Last Trade:
Trade Time: Nov29 52wk Range: 473.02 - 642.96 .)
Change: 0.00 (0.00%) Volume: o 585 </ td>
. n n
Prev Close: 56293 Avg Vol (3m) 3,100,480 e <td class= yfnc_tab'l edatal">
Open: NA Market Cap: 188.808 582 o .
Bid 579.70x 100 PIE () 1087 ©Yahoo! =0 <bi g>452 B 92</b'| g>
. 10am 12pm 2pm 4pm
Ask 565.33x 100 EPS (ttm) 20.34 Previous Close </td></t r>
1y Target Est 73110 Div & Yield NIA (NIA) 14 54 3m 6m 1y 2y Sy max

<td class= "yfnc_tableheadl"
width= "48%">

Trade Time:

</td>

<td class= "yfnc_tabledatal">

http://finance.yahoo.com/g?s=goog

Screen scraping: Java implementation

Java library. The index0f() method in Java's string library returns the index

of the first occurrence of a given string, starting at a given offset.

pubTlic class StockQuote

{
public static void main(String[] args)
{
String name = "http://finance.yahoo.com/q?s=";
In in = new In(name + args[0]);
String text = in.readAl1Q);
int start = text.indexOf("Last Trade:", 0);
int from = text.indexOf("", start);
int to = text.indexOf("", from);
String price = text.substring(from + 3, to);
StdOut.println(price);
}
}

% java StockQuote goog

582.93

% java StockQuote msft
24.84

Brute-force substring search

Check for pattern starting at each text position.

2 3 4 5 6 7 8 910

1
txt—A B A C A D A B R A C

0 2 2 A B R <~ pat

1 0 1 A entries in red are

2 1 3 A B / mismatches

3 0 3 A entries in gray are
for reference only

4 1 g entries in black AL /

5 0 5 match the text A

6 4 10 A B R A

\return i when j isM I

match

5.3 SUBSTRING SEARCH

» brute force

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Brute-force substring search: Java implementation

Check for pattern starting at each text position.

1 J i+7 01 2 3 456 7 8 9 10
A B A CADABRALC
4 3 7 A DA C
0 A

public static int search(String pat, String txt)

{

int M = pat.length(Q);
int N = txt.lengthQ;
for (int i = 0; i <= N - M; i++)

{
int j;
for (3 =0; j < M; j++)
if (txt.charAt(i+j) !'= pat.charAt(j))
break; T
g g -, Index in text wnere
) if (G == M return i; pattern starts
return N; <«— not found

Brute-force substring search: worst case Backup

Brute-force algorithm can be slow if text and pattern are repetitive. In many applications, we want to avoid backup in text stream.
» Treat input as stream of data.

“ATTACK AT DAWN”"

» Abstract model: standard input. e
found (@)
i j i+j 0 1 2 3 4 5 6 7 8 9
txt— A A A A A A A A A B . .
Brute-force algorithm needs backup for every mismatch.
0 4 4 A A A A B <~—npat
matched chars)
1 4 5 A A A A B l mismatch
/
2 4 6 A A A A B A A A A A A
4 7 A A A A B
3 A AAAAB
5 5 10 A A A A B
4 A
match A
shift pattern right one position
Approach 1. Maintain buffer of last M characters.
Worst case. ~M N char compares. Approach 2. Stay tuned.
13
Brute-force substring search: alternate implementation Algorithmic challenges in substring search
Same sequence of char compares as previous implementation. Brute-force is not always good enough.
» 1 points to end of sequence of already-matched chars in text.
» j stores # of already-matched chars (end of sequence in pattern). Theoretical challenge. Linear-time guarantee. <«<— fundamental algorithmic problem
. Practical challenge. Avoid backup in text stream. «— often no room or time to save text
1 J 0 1 2 3 45 6 7 8 9 10
A B ACADAIBTR RASC
7 3 A DA C
0 Now is the time for all people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for many good people to come to the aid of their party.
Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good
pe0|?1e to come to.the aid.of their party. Now is the time for a'l'l_of the gt.)od people to come to 1.:he aid of
public static int search(String pat, String txt) Sach Gosd berson 1o come 10 the a1d of therr barty. Now s the tine for a1l good peoble iy cone 1o the aid
{ of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the
. . . ti f 11 d le t to th id of thei ty. N is the ti f 11 d le t
int 1, N = tXt'1ength() ’ cgmz tgrt:e a?goofpizZii pgrgr.neNO\?v isetﬁ; t?me fz:'raq‘largz)/od gvevo;)?e tg c;m: tgrtﬁzniigro: thg'l?lcj pgizs.eNO\?v

int j, M = pat.lengthQ); is the time for all good Democrats to come to the aid of their party. Now is the time for all people to
£ (_ 1@ - N && i M: i) come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
or (1 =0, J =0; 1< J <M T4+ is the time for many good people to come to the aid of their party. Now is the time for all good people to
{ come to the aid of their party. Now is the time for a lot of good people to come to the aid of their
. . __ . . . party. Now is the time for all of the good people to come to the aid of their party. Now is the time for
if (tXt'CharAt(1) — pat'CharAt(J)) JEh; all good people to come to the aid of their attack at dawn party. Now is the time for each person to come

else { i -=3j; j=0; } <«—— explicit backup to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is

} the time for all good Republicans to come to the aid of their party. Now is the time for all good people
to come to the aid of their party. Now is the time for many or all good people to come to the aid of their
if (J == M) return i - M; party. Now is the time for all good people to come to the aid of their party. Now is the time for all good

Di he aid of thei .
else return N; emocrats to come to the aid of their party

Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern BAAAAAAAAA.
» Suppose we match 5 chars in pattern, with mismatch on 6 char.
» We know previous 6 chars in text are BAAAAB.
« Don't need to back up text pointer! N assuming { A, B } alphabet

5.3 SUBSTRING SEARCH

5
text l
_'\ABAAAABAAAAAAAAA
after mismatch
onsixthchar—>B A A A A A ~— pattern
. brute-force backs B
Al ith » Knuth-Morris-Pratt o b i .
gorlt ms andthis/ B
and this /B
and this B AAAAAAAAA
ROBERT SEDGEWICK | KEVIN WAYNE and this
. : A A A A A A A A A
http://algs4.cs.princeton.edu but no backup
is needed —

Knuth-Morris-Pratt algorithm. Clever method to always avoid backup. (!)

Deterministic finite state automaton (DFA) Knuth-Morris-Pratt demo: DFA simulation

DFA is abstract string-searching machine.

 Finite number of states (including start and halt). I

» Exactly one transition for each char in alphabet.

« Accept if sequence of transitions leads to halt state. @

0 1 2 3 4 5
. . A B A B A C
internal representation A 1 1 3 1 5 1
i 0 1 2 3 4 5 _ o B 0 2 0 4 0 4
pat.charAt(j) A B A B A C If in state J reading char c: C 0 0 0 0 0 6

A1l 1 3 1 5 1 if j is 6 halt and accept

dfafJfjJjp 0 2 0 4 0 4 else move to state dfafc][j]
c 0 0 0 0 0 6

graphical representation
B, C A
B,C A A 'W A 8
? A] e
A —
C

oo Zp—po P e R

Knuth-Morris-Pratt demo: DFA simulation

A BABACAA

!

A
B, C A A
B
QA 2= =D r>)— ()= 2—()— c—0
C
B, C .
substring found
C
B, C

Knuth-Morris-Pratt substring search: Java implementation

Key differences from brute-force implementation.
» Need to precompute dfa[][] from pattern.
« Text pointer i never decrements.

public int search(String txt)

{
int i, j, N = txt.length(Q);
for (i =0, j=0; i <N& j <M; i++)
j = dfaltxt.charAt(i)]1[j]; <«——— no backup
if (j == M) return i - M;
else return N;
}

Running time.
« Simulate DFA on text: at most N character accesses.
« Build DFA: how to do efficiently? [warning: tricky algorithm ahead]

21

28]

Interpretation of Knuth-Morris-Pratt DFA

Q. What is interpretation of DFA state after reading in txt[i]?

A. State = number of characters in pattern that have been matched.

Ex. DFA is in state 3 after reading in txt[0..6].

4 5

:
6

™t —

0
B

1 2 3
C B A
suffix of txt[0..6]

A B

A

length of longest prefix of pat[]
that is a suffix of txt[0..1]

0 1 2 3

4
pat —> A B A B A

prefix of pat[]

Knuth-Morris-Pratt substring search: Java implementation

5
C

Key differences from brute-force implementation.

» Need to precompute dfa[]1[] from pattern.

« Text pointer i never decrements.

e Could use input stream.

public int search(In 1in)

{

int i, j;

for (i =0, j = 0;

j = dfa[in.readChar()]1[j];

if (j == M) return i - M;

else

return NOT_FOUND;

lin.isEmpty() && j < M; i++)

—

no backup

22

24

Knuth-Morris-Pratt demo: DFA construction

Include one state for each character in pattern (plus accept state).

@ 0 1 2 3 4 5
C

Constructing the DFA for KMP substring search for ABABAC

© ® ©) ® ® ® ®

25

How to build DFA from pattern?

Include one state for each character in pattern (plus accept state).

27

Knuth-Morris-Pratt demo: DFA construction

0 1 2 3 4 5
A B A B A C
1 1 3 1 5 1
0 2 0O 4 0 4
0 0 0O 0 O 6
Constructing the DFA for KMP substring search for ABABAC
A
B, C A A
—A—»@—B—»@—A—» — B — A—> C—»@
~C—

How to build DFA from pattern?

Match transition. If in state j and next char c == pat.charAt(j), go to j+1.

f f !

first j characters of pattern
have already been matched

next char matches now first j +1 characters of

pattern have been matched

@O 2> 15@— 4> D= 15O A>E >

26

28

How to build DFA from pattern?

Mismatch transition. If in state j and next char c != pat.charAt(j),
then the last j-1 characters of input are pat[1..j-1], followed by c.

To compute dfa[c][j]: Simulate pat[1..j-1] on DFA and take transition c.
Running time. Seems to require j steps. ™ still under construction ()

Ex. dfa['A'][5] = 1; dfa['B'][5] = 4

simulate -B-ABA; simulate -B,-ABA; 0 1 2 3 4 5
take transition 'A take transition 'B A B A B A C
= dfa['A'][3] = dfa['B'][3]

simulation
of BABA

T

— B—>

29

Knuth-Morris-Pratt demo: DFA construction in linear time

Include one state for each character in pattern (plus accept state).

@ 0 1 2 3 4 5
A

Constructing the DFA for KMP substring search for ABABAC

© ® ©) ® ® ® ®

31

How to build DFA from paitern?

Mismatch transition. If in state j and next char c !'= pat.charAt(j),
then the last j-1 characters of input are pat[1..j-1], followed by c.

P

state X

To compute dfa[c][j]: Simulate pat[1..j-1] on DFA and take transition c.

Running time. Takes only constant time if we maintain state X.

Ex. dfa['A'][5] =1, dfa['B'][5] = 4 X'"=0

from state X, from state X, from state X, 0 1 2 3 4
take transition 'A take transition 'B take transition 'C A B A B A
= dfa['A"][X] = dfa['B'][X] = dfa['C'][X]
A

X
4 i

— B—>

T
\//

Knuth-Morris-Pratt demo: DFA construction in linear time

[@BE%,

oS O — >» O
O N — W -
o o w >N
O h»h = WW
oo v > i~
A A = N Wi

Constructing the DFA for KMP substring search for ABABAC

30

22

Constructing the DFA for KMP substring search: Java implementation

For each state j:
o Copy dfa[]1[X] to dfa[][j] for mismatch case.
o Set dfa[pat.charAt(j)]1[j] to j+1 for match case.

« Update x.
public KMP(String pat)
{
this.pat = pat;
M = pat.lengthQ;
dfa = new int[R][M];
dfa[pat.charAt(0)][0] = 1;
for (int X =0, j =1; j <M; j++)
{
for (int ¢ = 0; ¢ < R; c++)
dfalc][j] = dfa[c][X]; <«——— copy mismatch cases
dfa[pat.charAt(j)1[j] = j+l; <«<———— setmatch case
X = dfa[pat.charAt(j)]1[X]; <«——— update restart state
}
}

Running time. M character accesses (but space/time proportional to R M).

33

Knuth-Morris-Pratt: brief history

« Independently discovered by two theoreticians and a hacker.
— Knuth: inspired by esoteric theorem, discovered linear algorithm
— Pratt: made running time independent of alphabet size
— Morris: built a text editor for the CDC 6400 computer

» Theory meets practice.

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

FAST PATTERN MATCHING IN STRINGS*

DONALD E. KNUTH#, JAMES H. MORRIS, JR.f AND VAUGHAN R. PRATT{

Abstract. An algorithm is presented which finds all occurrences of one given string within
another, in running time proportional to the sum of the lengths of the strings. The constant of
proportionality is low enough to make this algorithm of practical use, and the procedure can also be
extended to deal with some more general pattern-matching problems. A theoretical application of the
algorithm shows that the set of concatenations of even palindromes, i.e., the language {aa®}*, canbe
recognized in linear time. Other algorithms which run even faster on the average are also considered.

. a4
Don Knuth Jim Morris Vaughan Pratt
35

KMP substring search analysis

Proposition. KMP substring search accesses no more than M + N chars
to search for a pattern of length M in a text of length N.

Pf. Each pattern char accessed once when constructing the DFA;
each text char accessed once (in the worst case) when simulating the DFA.

Proposition. KMP constructs dfa[][] in time and space proportional to R M.

Larger alphabets. Improved version of KMP constructs nfa[] in time and
space proportional to M.

S
@w;@@&cﬁ

KMP NFA for ABABAC

5.3 SUBSTRING SEARCH

Algorithms

» Boyer-Moore

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Robert Boyer). Strother Moore

34

Boyer-Moore: mismatched character heuristic

Intuition.
« Scan characters in pattern from right to left.

« Can skip as many as M text chars when finding one not in the pattern.

i j 0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23
txt— F I N D I N A H A Y S T A CK N E E D L E

0 5 E <— pattern

5 5 E

11 4 L E

15 0

N E E D L E

return i = 15

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 2a. Mismatch character in pattern.

before l
txt N
pat
[
after l
txt N
pat N D L E

mismatch character 'N' in pattern: align text 'N' with rightmost pattern 'N'

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 1. Mismatch character not in pattern.

before l
txt
pat D
i
after l
txt T L E
pat N E E D L E

mismatch character 'T' not in pattern: increment i one character beyond 'T'

37 38

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 2b. Mismatch character in pattern (but heuristic no help).

before l
txt
pat
[
aligned with rightmost E? l
txt E L E
pat N E E D L E

mismatch character 'E' in pattern: align text 'E' with rightmost pattern 'E' ?

39 40

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 2b. Mismatch character in pattern (but heuristic no help).

before l
txt E
pat
i
after l
txt E L E
pat N E E D E

mismatch character 'E' in pattern: incrementi by 1

41

Boyer-Moore: Java implementation

public int search(String txt)

{
int N = txt.length(Q;
int M = pat.length(Q;
int skip;
for (int i = 0; i <= N-M; i += skip)
{
skip = 0;
for (int j = M-1; j >= 0; j--)
{ s?(?m\’j:ltje

if (pat.charAt(j) !'= txt.charAt(i+j)) .

{ /
skip = Math.max(1, j - right[txt.charAt(i+j)]1);
break;

} in case other term is nonpositive

}
if (skip == 0) return i; <—— match
}
return N;
3

43

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

A. Precompute index of rightmost occurrence of character c in pattern.
(-1 if character not in pattern)

N E L
c 0 1 2 3 4 5 |right[c]
A -1 -1
right = new int[R]; : -5 =L
for (int c = 0; c < R; c++) ¢ -1 -1
right[c] = -1; D -1 ©
for (int j = 0; j < M; j++) E -1 () () (:
right[pat.charAt(3)] = j; .. =1l
L -1 O 4
-1 -1
N -1 0 0
-1

Boyer-Moore skip table computation

Boyer-Moore: analysis

Property. Substring search with the Boyer-Moore mismatched character
heuristic takes about ~ N/ M character compares to search for a pattern of
length M in a text of length 1\‘/\ sublinear!

Worst-case. Can be as bad as ~M N.

i skip 01 2 3 4 5 6 7
txt—B B B B B B B B

0 O A B B B B <«—pat

1 1 A B B B B

2 1 A B B B B

3 1 A B B B B

4 1 A B B B B

5 1 A B B B B

Boyer-Moore variant. Can improve worst case to ~3 N character compares
by adding a KMP-like rule to guard against repetitive patterns.

42

44

5.3 SUBSTRING SEARCH

Algorithms

» Rabin-Karp

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Michael Rabin
Dick Karp

Modular arithmetic

Math trick. To keep numbers small, take intermediate results modulo Q.

Ex. (10000 + 535) * 1000 (mod 997)
= (30+535)*3 (mod 997)
= 1695 (mod 997)

= 698 (mod 997)

(a + b) mod Q

((a@a mod Q) + (b mod Q)) mod QO

(a * b) mod O

((a mod Q) * (b mod Q)) mod Q

two useful modular arithmetic identities
47

Rabin-Karp fingerprint search

Basic idea = modular hashing.

o Compute a hash of pat[0..M-1].

» For each i, compute a hash of txt[i..M+i-1].

« If pattern hash = text substring hash, check for a match.

pat.charAt(i)

i 012 3 4
2 6 5 3 5 %997 = 613
txt.charAt(i)
i 0 1 2 3 4 5 6 7 8 91011 12 13 14 15
314159 265352897 9 3
0 3 1 4 1 5 %997 = 508
1 1 4 1 5 9 %997 = 201
2 4 1 5 9 2 %997 = 715
3 1 5 9 2 6 %997 = 971
4 5 9 2 6 5 %997 = 442
5 9 2 6 5 3 %997 — 929 ™March
6 <— returni = 6 2 6 5 3 5 %997 = 613

modular hashing with R = 10 and hash(s) = s (mod 997)

Efficiently computing the hash function

Modular hash function. Using the notation # for txt.charAt(i),

.charAt()

2

3

4

A wWw N R O

N NN NN N[O

5

997 = 2

3

5

we wish to compute

Xi = RM + ;. RM2 + + tizy1 RO (mod Q)

R

Q
s

% 997 = (2%10 + 6) % 997 = 26

5
5
5

% 997 = (26%10 + 5) % 997
% 997 = (265*10 + 3) % 997 = 659
% 997 = (659*%10 + 5) % 997 = 613

3
3

5

265

Intuition. M-digit, base-R integer, modulo Q.

Horner's method. Linear-time method to evaluate degree-M polynomial.

// Compute hash for M-digit key
private long hash(String key, int M)

{

long h = 0;
for (int j =0; j < M; j++)

h = (h * R + key.charAt(j)) % Q;
return h;

26535 = 2%¥10000 + 61000 + 5*100 + 3*10 + 5
=((((2)*10 +6) *10 +5) *10 + 3) *10 + 5

46

48

Efficiently computing the hash function

Challenge. How to efficiently compute x;.1 given that we know x..
xXi =tRM 1V + 4 RM2 4+ + tizpm RO

Xiel= Lyl RMU+ i o RM2 + + 1 RO

Key property. Can update "rolling" hash function in constant time!

Xiv1 = (xi — tiRM1')Y R+ tivm

et f

current subtract multiply add new
value leading digit by radix trailing digit

i ... 2 3 4 5 6 7
current value 4 1 5 2
text
new value 1 5 9 2 6 e
4 1 5 9 2 currentvalue
- 4 0 0 0 O
1 5 9 2 subtractleading digit
* 1 0 multiply by radix
15 9 2 0
+ 6 addnew trailing digit
1 5 9 2 6 newvalue

Rabin-Karp: Java implementation

(can precompute RMT)

pubTlic class RabinKarp

{
private long patHash; // pattern hash value
private int M; // pattern Tlength
private long Q; // moduTlus
private int R; // radix
private long RM1; // RA(M-1) % Q

pubTlic RabinKarp(String pat) {
M = pat.lengthQ;
R = 256; . a large prime
Q = TongRandomPrime();
RML = 1;
for (int i =1; i <= M-1; i++)

RM1 = (R * RM1) % Q;

patHash = hash(pat, M);

}

private long hash(String key, int M)
{ /* as before */ }

public int search(String txt)
{ /* see next slide */ }

(but avoid overflow)

<«——+— precompute RM-1 (mod Q)

49

51

Rabin-Karp substring search example

First R entries: Use Horner's rule.

Remaining entries: Use rolling hash (and % to avoid overflow).

match

i 0 1 2 3 4 5 6 7 8 91011 12 13 14 15
314159 26535829 7 9 3
0 3 %997 =3 /O I
1 3 1 %997 = (3*10 + 1) % 997 = 31
2 3 1 4 %997 = (31%10 + 4) % 997 = 314 H°rru"|2r'5
3 3 1 4 1 %997 = (314*10 + 1) % 997 = 150
4 3 1 4 1 5 %997 = (150%10 + 5) % 997 = 508 M R l
5 1 4 1 5 9 %997 = ((508 + 3%*(997 - 30))*10 + 9) % 997 = 201 I
6 4 1 5 9 2 %997 = ((201 + 1%(997 - 30))*10 + 2) % 997 = 715 rolling
7 15 9 6 % 997 = ((715 + 4%*(997 - 30))*10 + 6) % 997 = 971 hash
8 5 9 5 % 997 = ((971 + 1%¥(997 - 30))*10 + 5) % 997 = 442
9 9
0

~— return i-M+1 = 6

2
2 6

2 6 5 3 %997 = ((442 + 5*%(997 - 30))*10 + 3) % 997 = 929 l
2 6 5 3 5 %997 = ((929 + 9*(997 - 30))*10 + 5) % 997 = 613

/ A\

-30 (mod 997) = 997 - 30 10000 (mod 997) = 30

Rabin-Karp: Java implementation (continued)

Monte Carlo version. Return match if hash match.

public int search(String txt)

{

check for hash collision

. using rolling hash function
int N = txt.lengthQ; K 9

int txtHash = hash(txt, M);
if (patHash == txtHash) return 0;
for (int i = M; i < N; i++)

{
txtHash = (txtHash + Q - RM*txt.charAt(i-M) % Q) % Q;
txtHash = (txtHash*R + txt.charAt(i)) % Q;
if (patHash == txtHash) return i - M + 1;

}

return N;

Las Vegas version. Check for substring match if hash match;

continue search if false collision.

50

52

Rabin-Karp analysis

Theory. If Qis a sufficiently large random prime (about M N?2),

then the probability of a false collision is about 1/AN.

Practice. Choose Q to be a large prime (but not so large to cause overflow).
Under reasonable assumptions, probability of a collision is about 1/ Q.

Monte Carlo version.
« Always runs in linear time.

« Extremely likely to return correct answer (but not always!).

Las Vegas version.
« Always returns correct answetr.

* Extremely likely to run in linear time (but worst case is M N).

Substring search cost summary

RANDOMIZED
ALGORITHMS

Cost of searching for an M-character pattern in an N-character text.

. . operation count backup extra
algorithm version L correct?
guarantee typical ininput? Space
brute force — MN I.IN yes yes 1
full DFA
(Algorithm 5.6) 2N 1.1N no yes MR
Knuth-Morris-Pratt _
mz§@atch 3N 1.IN no yes M
transitions only
ull algorithm 3N N/ M es es R
g Y Y
Boyer-Moore mismatched char
heuristic only MN N/M yes yes R
(Algorithm 5.7)
Monte Carlo
;
(Algorithm 5.8) 7N 7N no yes !
Rabin-Karp'
Las Vegas 7NT 7N yes yes 1

1 probabilisitic guarantee, with uniform hash function

53

55

Rabin-Karp fingerprint search

Advantages.
« Extends to 2d patterns.
« Extends to finding multiple patterns.

Disadvantages.
» Arithmetic ops slower than char compares.
« Las Vegas version requires backup.
« Poor worst-case guarantee.

Q. How would you extend Rabin-Karp to efficiently search for any
one of P possible patterns in a text of length N ?

54

