Princeton University COS 217: Introduction to Programming Systems IA-32 Condition Codes

Condition Codes

Bits in the EFLAGS register

cmpl src, dest

Performs the subtraction *dest* - *src*, and sets the condition codes depending upon the difference:

Condition Code	Set to 1 when:		
ZF (zero flag)	Mathematically : Set ZF to 1 iff the difference was 0.		
	Physically : Set ZF to 1 iff all bits of the difference are 0.		
SF (sign flag)	Mathematically: Set SF to 1 iff the difference was negative.		
	Physically : Set SF to 1 iff the most significant bit of the		
	difference is 1.		
CF (carry flag)	Mathematically : Set CF to 1 iff the difference is incorrect when		
	we view the operands and difference as unsigned integers.		
	Physically : Complement src. Compute dest+src. Set CF to 1 iff		
	a carry occurs out of the most significant bit.		
OF (overflow flag)	Mathematically: Set to OF to 1 iff the difference is incorrect		
	when we view the operands and difference as signed integers.		
	Physically : Complement src. Compute dest+src. Set OF to 1 iff		
	the signs of dest and src are the same and differ from the sign of		
	the result.		

Conditional Control Transfer Instructions (Used After Comparing Unsigned Numbers)

Instruction			Jump if and only if:
je	(jump iff	f equal)	ZF
jne	(jump iff	f not equal)	~ZF
jb	(jump iff	f below)	CF
jae	(jump iff	f above or equal)	~CF
jbe	(jump iff	f below or equal)	CF ZF
ja	(jump iff	f above)	~(CF ZF)

Why does jump if and only if CF? Informal explanation:

(1) largenum - smallnum => correct result => CF=0 => don't jump (not below)

(2) smallnum - largenum => incorrect result => CF=1 => jump (below)

So jump if and only if CF.

Conditional Control Transfer Instructions (Used After Comparing Signed Numbers)

Instruction			Jump if and only if:
je	(jump if	f equal)	ZF
jne	(jump if	f not equal)	~ZF
jl	(jump if	f less than)	OF ^ SF
jge	(jump if	f greater than or equal)	~(OF ^ SF)
jle	(jump if	f less than or equal)	(OF ^ SF) ZF
jg	(jump if	f greater than)	~((OF ^ SF) ZF)

Why does jl jump if and only if (OF ^ SF)? Informal explanation:

```
(1) largeposnum - smallposnum
   correct result => OF=0, SF=0 => (OF^SF)==0 => don't jump (not <)
(2) smallposnum - largeposnum
   correct result => OF=0, SF=1 => (OF^SF) == 1 => jump (<)
(3) largenegnum - smallnegnum
   correct result => OF=0, SF=1 => (OF^SF)== 1 => jump (<)
(4) smallnegnum - largenegnum
   correct result => OF=0, SF=0 \Rightarrow (OF^SF) == 0 \Rightarrow don't jump (not <)
(5) posnum - negnum
   correct result => OF=0, SF=0 => (OF^SF) == 0 => don't jump (not <)
(6) posnum - negnum
    incorrect result => OF=1, SF=1 => (OF^SF)==0 => don't jump (not <)</pre>
(7) negnum - posnum
   correct result => OF=0, SF=1 => (OF^SF) == 1 => jump (<)
(8) negnum - posnum
   incorrect result => OF=1, SF=0 => (OF^SF)== 1 => jump (<)</pre>
```

So jump if and only if (OF ^ SF).

Copyright © 2013 by Robert M. Dondero, Jr.