
1

1

Exceptions and Processes!

The material for this lecture is drawn from!
Computer Systems: A Programmer’s Perspective (Bryant & O’Hallaron) Chapter 8!

2

Goals of this Lecture!
• Help you learn about:!

• Exceptions!
• The process concept!
… and thereby…!
• How operating systems work!
• How application programs interact with operating

systems and hardware!

The process concept is one of the most
important concepts in systems programming!

2

3

Context of this Lecture!
Second half of the course!

Previously! Starting Now!

C Language!

Assembly Language!

Machine Language!

Application Program!

Operating System!

Hardware!

language!
levels!
tour!

service!
levels!
tour!

Application programs, OS,!
and hardware interact!
via exceptions!

4

Motivation!
Question:!

•  Executing program thinks it has exclusive control of the
CPU!

•  But multiple executing programs must share one CPU
(or a few CPUs)!

•  How is that illusion implemented?!

Question:!
•  Executing program thinks it has exclusive use of all of

memory!
•  But multiple executing programs must share one

memory!
•  How is that illusion implemented?!

Answers: Exceptions…!

3

5

Exceptions!
•  Exception!

•  An abrupt change in control flow in response to a change in
processor state!

•  Examples:!
•  Application program:!

•  Requests I/O!
•  Requests more heap memory!
•  Attempts integer division by 0!
•  Attempts to access privileged memory!
•  Accesses variable that is not 

in real memory (see upcoming  
“Virtual Memory” lecture)!

•  User presses key on keyboard!
•  Disk controller finishes reading data!

Synchronous!

Asynchronous!

6

Exceptions Note!

•  Note:!

! !Exceptions in OS ≠ exceptions in Java!

Implemented using!
try/catch!
and throw statements!

4

7

Exceptional Control Flow!

Application!
program!

Exception handler!
in operating system!

exception!

exception!
processing!

exception!
return!
(optional)!

8

Exceptions vs. Function Calls!
•  Exceptions are similar to function calls!

•  Control transfers from original code to other code!
•  Other code executes!
•  Control returns to original code!

•  Exceptions are different from function calls!
•  Processor pushes additional state onto stack!

•  E.g. values of all registers!
•  Processor pushes data onto OS’s stack, not application pgm’s

stack!
•  Handler runs in privileged mode, not in user mode!

•  Handler can execute all instructions and access all memory!
•  Control might return to next instruction!

•  Control sometimes returns to current instruction!
•  Control sometimes does not return at all!!

5

9

Classes of Exceptions!

•  There are 4 classes of exceptions…!

10

(1) Interrupts!
Application!

program!
Exception!
handler!

Cause: Signal from I/O device!
Examples:!
 User presses key!
 Disk controller finishes reading/writing data!

(1) CPU interrupt!
pin goes high!

(2) After current instr !
finishes, control passes!
to handler!

(3) Handler runs!

(4) Handler returns!
control to next instr!

6

11

(2) Traps!
Application!

program!
Exception!
handler!

Cause: Intentional (application pgm requests OS service)!
Examples:!
 Application pgm requests more heap memory!
 Application pgm requests I/O!
!
Traps provide a function-call-like interface between application pgm and OS!

(1) Application!
pgm traps!

(2) Control passes to!
handler!

(3) Handler runs!

(4) Handler returns!
control to next instr!

12

(3) Faults!
Application!

program!
Exception!
handler!

Cause: Application pgm causes (possibly) recoverable error!
Examples:!
 Application pgm accesses privileged memory (seg fault)!
 Application pgm accesses data that is not in real memory (page fault)!

(1) Current instr!
causes a fault!

(2) Control passes!
to handler!

(3) Handler runs!

(4) Handler returns!
control to current instr,!
or aborts!

7

13

(4) Aborts!
Application!

program!
Exception!
handler!

Cause: Non-recoverable error!
Example:!
 Parity check indicates corruption of memory bit (overheating, cosmic ray!, etc.)!

(1) Fatal hardware!
error occurs!

(2) Control passes!
to handler!

(3) Handler runs!

(4) Handler aborts!
execution!

14

Summary of Exception Classes!

Class! Cause! Asynch/Synch! Return Behavior!
Interrupt! Signal from I/O 

device!
Asynch! Return to next instr!

Trap! Intentional! Sync! Return to next instr!

Fault! (Maybe) recoverable
error!

Sync! (Maybe) return to
current instr!

Abort! Non-recoverable
error!

Sync! Do not return!

8

15

Exceptions in Intel Processors!

Exception #! Exception!

0! Fault: Divide error!

13! Fault: Segmentation fault!

14! Fault: Page fault (see “Virtual Memory” lecture)!

18! Abort: Machine check!

32-127! Interrupt or trap (OS-defined)!

128! Trap!
129-255! Interrupt or trap (OS-defined)!

Each exception has a number!
Some exceptions in Intel processors:!

16

Traps in Intel Processors!
•  To execute a trap, application program should:!

•  Place number in EAX register indicating desired functionality!
•  Place parameters in EBX, ECX, EDX registers!
•  Execute assembly language instruction “int 128”!

•  Example: To request more heap memory…!

movl $45, %eax
movl $1024, %ebx
int $128

In Linux, 45 indicates request!
for more heap memory!

Request is for 1024 bytes!
Causes trap!

9

17

System-Level Functions!
•  For convenience, traps are wrapped in system-level

functions!

•  Example: To request more heap memory…!
/* unistd.h */
void *sbrk(intptr_t increment);
…

/* unistd.s */
Defines sbrk() in assembly lang
Executes int instruction
…

/* client.c */
…
sbrk(1024);
…

A call of a system-level function,!
that is, a system call!

sbrk() is a!
system-level!
function!

See Appendix for list of some Linux system-level functions!

18

Processes!
•  Program!

•  Executable code!

•  Process!
•  An instance of a program in execution!

•  Each program runs in the context of some process!

•  Context consists of:!
•  Process ID!
•  Address space!

•  TEXT, RODATA, DATA, BSS, HEAP, and STACK!
•  Processor state!

•  EIP, EFLAGS, EAX, EBX, etc. registers!
•  Etc.!

10

19

Significance of Processes!

• Process is a profound abstraction in computer
science!

• The process abstraction provides application pgms
with two key illusions:!

•  Private control flow!
•  Private address space!

20

Private Control Flow: Illusion!

Process 1! Process 2!

Hardware and OS give each application process the!
illusion that it is the only process running on the CPU!

Time!

11

21

Private Control Flow: Reality!
Process 1! Process 2!

All application processes -- and the OS process --!
share the same CPU(s)!

OS!

Exception!
Return from exception!

Exception!

Exception!

Return from exception!

Return from exception!

Time!

22

Context Switches!
• Context switch!

•  The activity whereby the OS assigns the CPU to a
different process!

•  Occurs during exception handling, at discretion of OS!

• Exceptions can be caused:!
•  Synchronously, by application pgm (trap, fault, abort)!
•  Asynchronously, by external event (interrupt)!
•  Asynchronously, by hardware timer!

•  So no process can dominate the CPUs!

• Exceptions are the mechanism that enables the
illusion of private control flow!

12

23

Context Switch Details!
•  Context!

•  State the OS needs to
restart a preempted
process!

•  Context switch!
•  Save the context of

current process!
•  Restore the saved

context of some
previously preempted
process!

•  Pass control to this
newly restored process!

Running!

Running!

Save context!

Load context!

Save context!

Load context!

.!.!.!

.!.!.!

Running!Waiting!

Waiting!

Waiting!

Process 1! Process 2!

24

When Should OS Do Context Switch?!

• When a process is stalled waiting for I/O!
•  Better utilize the CPU, e.g., while waiting for disk access!

• When a process has been running for a while!
•  Sharing on a fine time scale to give each process the

illusion of running on its own machine!
•  Trade-off efficiency for a finer granularity of fairness!

CPU CPU CPU I/O I/O I/O 1:
CPU CPU CPU I/O I/O I/O 2:

13

25

Life Cycle of a Process!
•  Running: instructions are being executed!
•  Waiting: waiting for some event (e.g., I/O finish) !

•  Ready: ready to be assigned to a processor!

Create! Ready! Running! Termination!

Waiting!

26

Context Details!
•  What does the OS need to save/restore during a context

switch?!
•  Process state !

•  New, ready, waiting, terminated!
•  CPU registers !

•  EIP, EFLAGS, EAX, EBX, …!
•  I/O status information !

•  Open files, I/O requests, …!
•  Memory management information !

•  Page tables!
•  Accounting information!

•  Time limits, group ID, ...!
•  CPU scheduling information !

•  Priority, queues!

14

27

Private Address Space: Illusion!

Process 1! Process 2!

Memory!
for!

Process!
1!

00000000

FFFFFFFF

Memory!
for!

Process!
2!

00000000

FFFFFFFF

Hardware and OS give each application process!
the illusion that it is the only process using memory!

28

Private Address Space: Reality!
Process 1 VM! Process 2 VM!

00000000

FFFFFFFF

00000000

FFFFFFFF

All processes use the same real memory!
Hardware and OS provide application pgms with!
a virtual view of memory, i.e. virtual memory (VM)!

unused!

unused!

Real Memory!

Disk!Memory is divided!
into pages!

15

29

Private Address Space Details!

•  Exceptions (specifically, page faults) are the mechanism
that enables the illusion of private address spaces!
•  Process tries to access memory address not in memory!
•  Processor generates page fault!
•  Operating system decides if memory address is valid!
•  If so, loads page of memory, enables access!
•  If not, operating system generates protection fault/seg fault!
•  If process does not handle seg fault, default action is terminate!

30

Summary!
• Exception: an abrupt change in control flow!

•  Interrupts: asynchronous; e.g. I/O completion, hardware
timer!

•  Traps: synchronous; e.g. app pgm requests more heap
memory, I/O!

•  Faults: synchronous; e.g. seg fault!
•  Aborts: synchronous; e.g. parity error!

• Process: An instance of a program in execution!
•  Hardware and OS use exceptions to give each process

the illusion of:!
•  Private control flow (reality: context switches)!
•  Private address space (reality: virtual memory)!

16

31

Appendix: System-Level Functions!
Linux system-level functions for I/O management!

Number! Function! Description!
3! read() Read data from file descriptor 

Called by getchar(), scanf(), etc.!
4! write() Write data to file descriptor 

Called by putchar(), printf(), etc.!
5! open() Open file or device  

Called by fopen()
6! close() Close file descriptor 

Called by fclose()
8! creat() Open file or device for writing  

Called by fopen(…, “w”)

Described in I/O Management lecture!

32

Appendix: System-Level Functions!
Linux system-level functions for process management!

Number! Function! Description!
1! exit() Terminate the process!

2! fork() Create a child process!

7! waitpid() Wait for process termination!

7! wait() (Variant of previous)!

11! exec() Execute a program in current process!

20! getpid() Get process id!

Described in Process Management lecture!

17

33

Appendix: System-Level Functions!
Linux system-level functions for I/O redirection and inter-

process communication!

Number! Function! Description!
41! dup() Duplicate an open file descriptor!

42! pipe() Create a channel of communication between
processes!

63! dup2() Close an open file descriptor, and duplicate
an open file descriptor!

Described in Process Management lecture!

34

Appendix: System-Level Functions!
Linux system-level functions for dynamic memory

management!

Number! Function! Description!
45! brk() Move the program break, thus changing the

amount of memory allocated to the HEAP!
45! sbrk() (Variant of previous)!

90! mmap() Map a virtual memory page!

91! munmap() Unmap a virtual memory page!

Described in Dynamic Memory Management lectures!

18

35

Appendix: System-Level Functions!
Linux system-level functions for signal handling!

Number! Function! Description!
27! alarm() Deliver a signal to a process after a

specified amount of wall-clock time!
37! kill() Send signal to a process!

67! sigaction() Install a signal handler!

104! setitimer() Deliver a signal to a process after a
specified amount of CPU time!

126! sigprocmask() Block/unblock signals!

Described in Signals lecture!

