5&"-’
o

Programming and
Program Style

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike) Chapter 1

gmﬂ

Goals of this Lecture

* Help you learn about:
+ Good programming (verb) style
+ Good program (noun) style

* Why?
+ A well-styled program is easier to maintain and more
likely to be correct than a poorly-styled program
+ A power programmer knows the qualities of a well-styled
program, and how to develop one

Lecture Overview

* Programming style: how to create a good
program
+ Top-down design
+ Successive refinement
+ Example: left and right justifying text

* Program style: qualities of a good program
+ Well structured
+ Uses common idioms
+ Uses descriptive names
+ Contains proper comments
* Modular

5&"-’
o

Part 1: Programming Style

5\1#

Bottom-Up Design is Bad

* Bottom-up design ®
+ Design one part in detail
+ Design another part in detail
+ Repeat until finished

+ Bottom-up design in painting
+ Paint upper left part of painting in complete detalil

+ Paint next part of painting in complete detail
+ Repeat until finished

+ Unlikely to produce a good painting

+ Bottom-up design in programming
+ Write first part of program in complete detail

+ Write next part of program in complete detalil
+ Repeat until finished

« Unlikely to produce a good program

5&"-’
o

Al

Top-Down Design is Good
* Top-down design ©

+ Design entire product with minimal detail
+ Successively refine until finished

+ Top-down design in painting
+ Sketch the entire painting with minimal detail
+ Successively refine the entire painting

* Top-down design in programming

+ Define main() function in pseudocode with minimal detail

+ Refine each pseudocode statement

+ Small job => replace with real code

+ Large job => replace with function call
+ Recurse in (mostly) breadth-first order
+ Bonus: Product is naturally modular

gmﬂ

5&"-’
o

Top-Down Design in Reality

+ Top-down design in programming in reality
+ Define main() function in pseudocode
+ Refine each pseudocode statement
+ Oops! Details reveal design error, so...
+ Backtrack to refine existing (pseudo)code, and proceed
+ Recurse in (mostly) breadth-first order, until all functions are defined

[2 | [Oops| lI2'II3I lI2'II3I

Example: Text Formatting

+ Goals of the example
+ lllustrate good programming style
+ Especially function-level modularity and top-down design
+ lllustrate how to go from problem statement to code
+ Review and illustrate C constructs

+ Text formatting (derived from King Section 15.3)

+ Input: ASCII text, with arbitrary spaces and newlines

+ Output: the same text, left and right justified
+ Fit as many words as possible on each 50-character line
+ Add even spacing between words to right justify the text
* No need to right justify the very last line

+ Simplifying assumptions
+ Word ends at white space or end-of-file
* No word is longer than 20 characters

Example Input and Output

S CcC ez~

Hcvd9cCcO

(Ceerp

2

B

s

Tune every heart and every voice.
Bid every bank withdrawal.
Let's all with our accounts rejoice.

In funding Old Nassau.

In funding Old Nassau we spend more money every year.

Our banks shall give, while we shall
We're funding 0ld Nassau.

live.

Tune every heart and every voice. Bid every bank
withdrawal. Let's all with our accounts rejoice.
In funding Old Nassau. In funding Old Nassau we
spend more money every year. Our banks shall give,
while we shall live. We're funding Old Nassau.

Thinking About the Problem

+ | need a notion of “word”

+ Sequence of characters with no white space
+ All characters in a word must be printed on the same line

* | need to be able to read and print words

* Read characters from stdin till white space or EOF
+ Print characters to stdout followed by space(s) or newline

* | need to deal with poorly-formatted input

* | need to remove extra white space in input

5\“3

|

+ Unfortunately, | can’t print the words as they are read

+ But, how much space should | add between words?
* Need at least one space between adjacent words on a line
« Can add extra spaces evenly to fill up an entire line

+ | don’t know # of spaces needed till | read the future words
* Need to buffer the words until | can safely print an entire line

B
A ':2 %

Writing the Program A0
* Key constructs
+ Word
* Line

* Next steps
+ Write pseudocode for main ()
+ Successively refine

+ Caveats concerning the following presentation
+ Function comments and some blank lines are omitted
because of space constraints
+ Don’t do that!!!
+ Design sequence is idealized
* In reality, much backtracking would occur .

5\1#

The Top Level

* First, let’s sketch main () ...

int main(void) {
<Clear line>
for (;;) {
<Read a word>
if (<No more words>) {
<Print line with no justification>
return O;
}
if (<Word doesn't fit on this line>) {
<Print line with justification>
<Clear line>
}
<Add word to line>
}

return O0;

Reading a Word

* Now let’s successively

enum (MAX WORD_LEN = 20}; refine. What does <Read
int main(void) { .
char word[MAX WORD LEN + 1]; a word> mean? The job
12: "’°r‘1”_~e“" seems complicated
< > .
s Uogh [enough that it should be
wordLen = ReadWord (word) ; delegated to a distinct

if (<No more words>) {
<Print line with no justification>
return 0;

function...

}

if (<Word doesn’t fit on this line>) {
<Print line with justification>
<Clear line>

}
<Add word to line>

int ReadWord(char *word) {

! <Skip over whitespace>
return 0; q
<Store chars up to MAX WORD_LEN in word>
} <Return length of word>

5\1

Reading a Word (cont.)

- ReadWord () seems easy enough to design. So let’s flesh it out...

int ReadWord (char *word) {
int ch, pos = 0;

/* Skip over white space. */

ch = getchar() ;

while ((ch !'= EOF) && isspace(ch))
ch = getchar() ;

/* Store chars up to MAX WORD_LEN in word. */

while ((ch != EOF) && (! isspace(ch))) {
if (pos < MAX WORD_LEN) {
word[pos] = (char)ch;
pos++;

}
ch = getchar () ;

}
word[pos] = '\0';

/* Return length of word. */
return pos;

Saving a Word

}

enum {MAX WORD_ LEN
enum {MAX LINE LEN
int main(void) {

char word[MAX WORD_LEN + 1];

int wordLen;

char line[MAX LINE LEN + 1];

int linelLen = 0;

<Clear line>

for (;;) {

wordLen = ReadWord (word) ;

20} ;
50};

if (<No more words>) {

}

return 0;

iy

2

* Now, back tomain ().
What does <Add word to
line> mean? The job
seems complicated
enough to demand a
distinct function...

<Prin

. void AddWord (const char *word, char *line, int *lineLen) {
} <if line already contains some words, append a space>
if (<Word strcat(line, word) ;

<Prinf] (*linelen) += strlen (word) ;

<Cleay }

AddWord (word, line, &linelen) ;

Saving a Word (cont.)

5\“3

|

» AddWord () is almost complete already, so let’s get that out of the
way...

void AddWord (const char *word, char *line, int *lineLen) ({

/* If line already contains some words, append a space. */

if (*lineLen > 0) {

}

line[*lineLen] = ' ';
line[*linelLen + 1] = '\0';
(*lineLen) ++;

strcat(line, word) ;
(*linelLen) += strlen(word) ;

Printing the Last Line

int main(void) {
char word[MAX WORD_LEN + 1];
int wordLen;
char line[MAX LINE LEN + 1];
int linelen = 0;
<Clear line buffer>
for (;;) {
wordLen = ReadWord (word) ;

/* If no more words, print line
with no justification. */

if ((wordLen == 0) && (lineLen > 0)) {
puts (line) ;
return 0;

}

if (<Word doesn’t fit on this line>) {
<Print line with justification>
<Clear line buffer>

AddWord (word, line, &linelen);
}

return O;

Again, back tomain ().
What do <No more
words> and <Print line
with no justification>
mean? Those jobs seem
easy enough that we
need not define
additional functions...

Deciding When to Print

8
2

int main(void) {
char word[MAX WORD_LEN + 1];
int wordLen;
char line[MAX LINE LEN + 1];
int linelLen = 0;
<Clear line buffer>
for (;;) {
wordLen = ReadWord (word) ;

/* If no more words, print line
with no justification. */

if ((wordLen == 0) && (lineLen > 0)) {
puts (line) ;
return O;

<Print line with justification>
<Clear line buffer>
}
AddWord (word, line, &lineLen);
}

return 0;

/* If word doesn't fit on this line, then.. */
if ((wordLen + 1 + lineLen) > MAX LINE_ LEN)

{

+ What does <Word
doesn't fit on this
line> mean? That’s
somewhat tricky,
but involves little
code...

Printing with Justification

+ Now, to the heart of the program. What does <Print line with
justification> mean? Certainly that job demands a distinct function.
Moreover, it’s clear that the function must know how many words are in
the given line. So let’s change main () accordingly...

int main(void) {

int numWords = 0;
<Clear line>
for (;;) {

/* If word doesn't fit on this line, then.. */
if ((wordLen + 1 + lineLen) > MAX LINE LEN) {
WritelLine (line, lineLen, numWords) ;
<Clear line>
}

AddWord (word, line, &linelen)
numWords++;

}

return O;

5}
9

X
4

Printing with Justification (cont.)

558 wurme

£

+ And write pseudocode for WriteLine()...

void Writeline (const char *line, int linelen, int numWords) {
<Compute number of excess spaces for line>
for (i = 0; i < lineLen; i++) {
if (<line[i] is not a space>)
<Print the character>
else {
<Compute additional spaces to insert>

<Print a space, plus additional spaces>

<Decrease extra spaces and word count>

20

10

Printing with Justification (cont.)

void Writeline (const char *line, int linelen, int numWords)

{

int extraSpaces, spacesTolnsert, i, j;

/* Compute number of excess spaces for line. */
extraSpaces = MAX LINE_LEN - linelen;

for (i = 0; i < linelLen; i++) {
if (linef[i] !'= ' ')
putchar (line[i]) ;
else {

s:i
T)

+ Let'sgo
ahead and
complete
Writeline

0...

The number

-~
/* Compute additional spaces to_insert. *
spacesToInsert = extraSpaces / |(numWords - 1

of gaps

for (j = 1; j <= spacesToInsert + 1; j++)

/* Decrease extra spaces and word count. */
extraSpaces -= spacesTolnsert;

}

/* Print a space, plus additional spaces. */ Example'

putchar (' '); If extraSpaces is 10
and numWords is 5,
then gaps will contain
} numiords--; 2, 2,3, and 3 extra
spaces respectively

putchar('\n');

21

Clearing the Line

:'i
™)

+ One step remains. What does <Clear line> mean? It’s an easy job, but
it’s done in two places. So we probably should delegate the work to a
distinct function, and call the function in the two places...

int main(void) {

int numWords = 0;
ClearLine(line, &lineLen, &numWords) ;

for (;;) {

/* If word doesn't fit on this line, then.. */

if ((wordLen + 1 + linelLen) > MAX LINE_ LEN) {
WritelLine(line, lineLen, numWords) ;
ClearlLine(line, &linelen, &numWords) ;

}

void Clearline (char *line, int *linelen, int *numWords) {
addWord (wo line[0] = '\0';
numWords++ *lineLen = 0;
} *numWords = 0;
return 0; }

22

11

Modularity: Summary of Example

B

s

9

o &F

* To the user of the program
+ Input: Text in messy format
+ Output: Same text left and right justified, looking mighty pretty

+ Between parts of the program
+ Word-handling functions
+ Line-handling functions
e main () function

+ The many benefits of modularity
+ Reading the code: In small, separable pieces
+ Testing the code: Test each function separately
+ Speeding up the code: Focus only on the slow parts
+ Extending the code: Change only the relevant parts

23

gmﬂ

Part 2: Program Style

24

12

9

Program Style @

Cosip " wec)

s
4

{rwr)

®

* Who reads your code?
+ The compiler
+ Other programmers

typedef struct{double x,y,z}vec;vec U, black,amb={.02,.02,.02};struct sphere{ vec
cen,color;double rad, kd, ks, kt, kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9, .
0s,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,
1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,
1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(), tan() ;double vdot(A,B)vec A ,B;
{return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a* A.x;B.y
+=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(l./

sqrt(vdot(a,A)) A black);}struct sphere*intersect(P,D)vec P,D;
{best=0;tmin=1e30;s= sph+5;while (s--sph)b=vdot (D,U=vcomb(-1.,P,s-cen)) ,u=b*b-
vdot (U,U) +s-rad*s -rad,u=u0?sqrt (u) :1le31,u=b-ule-7?b-u:b+u, tmin=u=le-7&&u<tmin?
best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d, eta, e;vec
N,color; struct sphere*s,*1;if(!level--)return black;if (s=intersect(P,D));else
return amb;color=amb;eta=s-ir;d= -vdot (D,N=vunit (vcomb (-1.,P=vcomb (tmin,D,P),s-
cen))) ;if (d<0)N=vcomb (-1.,N,black),,eta=l/eta,d= -d;l=sph+5;while (1--sph)if ((e=1l -
k1l*vdot (N,U=vunit (vcomb (-1.,P,1-cen))))0&&intersect (P,U)==1) color=vcomb(e ,1-
color,color) ;Uss-color;color.x*=U.x;color.y*=U.y;color.z*=U.z ;e=l-eta* eta*(1-
d*d) ;return vcomb (s-kt,e0?trace (level,P,vcomb (eta,D,vcomb (eta*d-sqrt

(e) ,N,black))) :black,vcomb (s-ks, trace (level,P,vcomb (2*d,N,D)) ,vcomb (s-kd,
color,vecomb (s-k1,U,black)))) ;}main() {printf("$d $d\n",32,32) ;while (yx<32*32)
U.x=yx%32-32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261) ,U=vcomb (255. ,
trace (3,black,vunit (U)) ,black) ,printf("$.0£ %.0f %.0£\n",U);}

This is a working ray tracer! (courtesy of Paul Heckbert) 25

Program Style %

+ Why does program style matter?
+ Bugs often caused by programmer’s misunderstanding
+ What does this variable do?
* How is this function called?
+ Good code = human readable code

* How can code become easier for humans to read?
+ Convey program structure
+ Use common idioms
* Be consistent!
+ Choose descriptive names
« Compose proper comments

+ Use modularity
26

13

5&"-’
o

But Ultimately...

* You only have a certain amount of brainpower

* Where do you want to spend it:
+ Doing new and interesting stuff
+ Finding bugs in old stuff
+ Deciphering things that could have been written clearly

+ Finding something that appears wrong and then double-guessing
yourself or the person who wrote it

* There is nothing fun about debugging cryptic code
« if (a & (a-1))
* a&=a-1
+ Exceptions: crypto code, other high-performance bit-twiddling, but
has to be properly documented

27

C Idioms

5\1#

+ Use C idioms
« Example: Set each array element to 1.0.
+ Bad code (complex for no obvious gain)

i=20;
while (i <= n-1)
array[i++] = 1.0;

« Good code

for (i=0; i<n; i++)
array[i] = 1.0;

+ We’'ll see many C idioms throughout the course
+ Don’t feel obliged to use C idioms that decrease clarity
28

14

5&"-’
ok

Naming

+ Use descriptive names for globals and functions
+ E.g.,,display, CONTROL, CAPACITY
+ Use concise names for local variables
* E.g., i (not arrayIndex) for loop variable
+ Use case judiciously
+ E.g., Buffer_insert (Module_function)
CAPACITY (constant)
buf (local variable)
+ Use a consistent style for compound names
* E.g., frontsize, frontSize, front_size
+ Use active names for functions
* E.g., getchar (), putchar (), Check octal (), etc.

29

5\“3

|

Modularity

+ Big programs are harder to write than small ones
+ “A dog house can be built without any particular design, using
whatever materials are at hand. A house for humans, on the other
hand, is too complex to just throw together.” — K. N. King

+ Abstraction is the key to managing complexity

+ Abstraction allows programmer to know what something does
without knowing how

« Examples of function-level abstraction
+ Function to sort an array of integers
+ Character 1/O functions such as getchar () and putchar ()
« Mathematical functions such as 1em () and ged ()

« Examples of file-level abstraction
+ (Described in a later lecture)

30

15

B

s

Structure: Expressions
+ Use natural form of expressions
+ Example: Check if integer n satisfies j < n < k
+ Bad code

if (!'(n >= k) && !(n <= 3J))

« Good code

if ((j < n) & (n < k))

+ Conditions should read as you’d say them aloud
+ Not “Conditions shouldn’t read as you’d never say them aloud”!

31

Structure: Expressions (cont.) -

558 wurme

)
)

B

+ Parenthesize to resolve ambiguity
« Example: Check if integer n satisfies j < n < k

« Common code

Does this
code work?

if (3 < n && n < k)

+ Clearer code

if ((J < n) && (n < k))

32

16

5&"-’
ok

Structure: Expressions (cont.)

+ Parenthesize to resolve ambiguity (cont.)
« Example: read and print character until end-of-file

+ Bad code
while (c = getchar() != EOF) Does this
putchar(c) ; code
work?
+ Good code
while ((c = getchar()) !'= EOF)
putchar (c) ;

33

)

Structure: Expressions (cont.) g

+ Break up complex expressions
« Example: Identify chars corresponding to months of year

+ Bad code
if ((e == '3") Il (c == "F") || (c ==
'M') || (¢ =="A") || (¢ =="8") || (c
== '0") || (¢ == 'N") || (¢ == "'D"))
ood code — lining up things helps
if ((e == 'J") Il (¢ = "F") ||
(c == 'M") || (¢ =="'4") ||
(c == "'8") || (¢ =="0") ||
(c == 'N") || (¢ == 'D"))
+ Very common, though, to elide parentheses
if (¢ = 'J" || ¢ = "F' || ¢ = 'M' ||
c == "'A' || c == 'S' || c == "'0' ||
c = 'N' || ¢ == 'D") 4

17

Structure: Expressions (cont.)

+ Sometimes, clarity can save you
« Example: you know that (i % 2V¥) isthe sameas (i & 2¥-1)
+ So what happens when you replace
for (1 = 0; 1 < 16; i++) {
if (1 % 4 == 0)
printf ("%d mod 4\n", i);

}

+ With the following?

for (1 = 0; 1 < 16; i++) {
if (1 & 3 == 0)
printf("%d and 3\n", i);

35

Structure: Spacing

gmﬂ

+ Use readable/consistent spacing
« Example: Assign each array element a[j] to the value j.
+ Bad code

for (j=0;3<100;j++) aljl=3:

« Good code

for (j =0

;3 < 100; j++)
al3jl = 3;

+ Often can rely on auto-indenting feature in editor

36

18

Structure: Indentation (cont.)

+ Use readable/consistent/correct indentation
+ Example: Checking for leap year (does Feb 29 exist?)

5&"-’
o

if (day > 28)
legal = FALSE;

else {
if (day > 28)

Does this
code work?

Does this

== 0) {

legal = TRUE; legal = TRUE;
if (month == FEB) { if (month == FEB) ({
if ((year % 4) == 0) if ((year % 4)
if (day > 29) if (day > 29)
legal = FALSE; legal = FALSE;
else }

legal = FALSE;

code work?

37

Structure: Indentation (cont.)

- Use “else-if” for multi-way decision structures
« Example: Comparison step in a binary search.

\'
* Bad code low=0
if (x < v[mid]) ’ 2
high = mid - 1; 4
else 5
if (x > v[mid]) L
low = mid + 1; QEELéi, 7
else 8
return mid;
« Good code high=6 10
if (x < v[mid]) 17
high = mid - 1;
else if (x > v[mid])
low = mid + 1; X
else
return mid;

gmﬂ

38

19

=
Structure: “Paragraphs”

0
o

et orc

®

* Use blank lines to divide the code into key parts

#include <stdio.h>
#include <stdlib.h>

int main(void)

/* Read a circle's radius from stdin, and compute and write its

const double PI = 3.14159;
int radius;

int diam;

double circum;

printf ("Enter the circle's radius:\n");
if (scanf("%d", &radius) != 1)
{
fprintf (stderr, "Error: Not a number\n");
exit (EXIT_FAILURE) ; /* or: return EXIT FAILURE; */
}

diameter and circumference to stdout. Return 0 if successful.

2

»)

-
Structure: “Paragraphs”

J

i e o)

+ Use blank lines to divide the code into key parts

diam = 2 * radius;
circum = PI * (double)diam;

printf ("A circle with radius %d has diameter %d\n",
radius, diam) ;

printf ("and circumference %f.\n", circum);

return 0;

Y

20

Comments a

2

B

s

+ Master the language and its idioms
+ Let the code speak for itself
+ And then...

+ Compose comments that add new information
ey %o i />

- Comment sections (“paragraphs”) of code, not lines of
code
 E.g., “Sort array in ascending order”

« Comment global data
+ Global variables, structure type definitions, field definitions, etc.

« Compose comments that agree with the code!!!
+ And change as the code itself changes. ©

41

5\“3

|

Comments (cont.)

- Comment sections (“paragraphs”) of code, not lines of

#include <stdio.h>
#include <stdlib.h>

int main (void)

/* Read a circle's radius from stdin, and compute and write its
diameter and circumference to stdout. Return 0 if successful. */

const double PI = 3.14159;
int radius;

int diam;

double circum;

/* Read the circle’s radius. */
printf ("Enter the circle's radius:\n");
if (scanf("%d", &radius) !'= 1)
{
fprintf (stderr, "Error: Not a number\n");
exit (EXIT_FAILURE); /* or: return EXIT FAILURE; */
}

21

B

s

Comments (cont.)

/* Compute the diameter and circumference. */
diam = 2 * radius;
circum = PI * (double)diam;

/* Print the results. */
printf ("A circle with radius %d has diameter %d\n",

radius, diam);
printf ("and circumference %f.\n", circum);

return 0;

43

Function Comments

* Describe what a caller needs to know to call the
function properly
* Describe what the function does, not how it works
+ Code itself should clearly reveal how it works...
- If not, compose “paragraph” comments within definition

* Describe input
« Parameters, files read, global variables used

* Describe output
+ Return value, parameters, files written, global variables
affected
* Refer to parameters by name

44

22

Function Comments (cont.) @

« Bad function comment

/* decomment.c */
int main(void) {

/* Read a character. Based upon the character and
the current DFA state, call the appropriate
state-handling function. Repeat until
end-of-file. */

» Describes how the function works

45

|

5"

Function Comments (cont.)

« Good function comment

/* decomment.c */
int main(void) {

/* Read a C program from stdin. Write it to
stdout with each comment replaced by a single
space. Preserve line numbers. Return 0 if
successful, EXIT FAILURE if not. */

» Describes what the function does

46

23

Summary

* Programming style

+ Use top-down design and successive refinement
+ But know that backtracking inevitably will occur

Think about the problem

5&"-’
ok

47

Summary (cont.)

* Program style

Convey program structure
+ Spacing, indentation, parentheses
Use common C idioms
+ But not at the expense of clarity
Choose consistent and descriptive names
« For variables, functions, etc.
Compose proper comments
+ Especially for functions
Divide code into modules
+ Functions and files

g&ﬂ

|

48

24

Appendix: The “justify”

Program

enum {MAX WORD_LEN
enum (MAX_LINE_LEN

#include <stdio.h>
#include <ctype.h>
#include <string.h>

20};
50};

Continued on next slide

49

Appendix: The “justify” Program

}

/* Read a word from stdin.
of the word, or 0 if no word could be read.

int ReadWord(char *word) {

int ch, pos = 0;

/* Skip over white space. */
ch = getchar();

while ((ch !'= EOF) && isspace(ch))

ch = getchar();

/* Store chars up to MAX WORD_LEN in word. */
while ((ch !'= EOF) && (! isspace(ch)))

if (pos < MAX WORD_LEN) ({
word[pos] = (char)ch;
pos++;
}
ch = getchar();
}
word[pos] = '\0';

/* Return length of word. */
return pos;

Assign it to word.

*/

Return the length

Continued on next slide

50

25

Appendix: The “justify” Program

void ClearLine (char *1line, int *linelLen, int *numWords) {

/* Clear the given line. That is, clear line, and set *linelen
and *numWords to 0. */

line[0] = '\0';
*lineLen = 0;
*numWords = 0;

void AddWord (const char *word, char *line, int *linelen) {

/* Append word to line, making sure that the words within line are
separated with spaces. Update *linelLen to indicate the
new line length. */

/* If line already contains some words, append a space. */
if (*lineLen > 0) {
line[*lineLen] = ' ';
line[*lineLen + 1] = '\0';
(*lineLen) ++;
}
strcat(line, word);
(*lineLen) += strlen(word);

Continued on next slide

51

Appendix: The “justify” Program

void Writeline (const char *line, int linelen, int numWords) {

/* Write line to stdout, in right justified form. lineLen
indicates the number of characters in line. numWords indicates
the number of words in line. */

int extraSpaces, spacesTolnsert, i, j;

/* Compute number of excess spaces for line. */
extraSpaces = MAX LINE_LEN - linelen;

for (i = 0; i < lineLen; i++) {
if (line[i] !'= ' ')
putchar (line[i]) ;
else {
/* Compute additional spaces to insert. */
spacesToInsert = extraSpaces / (numWords - 1);

/* Print a space, plus additional spaces. */
for (j = 1; j <= spacesToInsert + 1; j++)
putchar(' ');

/* Decrease extra spaces and word count. */
extraSpaces -= spacesTolnsert;
numWords--;
}
}
putchar('\n');

Continued on next slide

52

26

Appendix: The “justify” Program

int main(void) {

/* Read words from stdin, and write the words in justified format
to stdout. */

/* Simplifying assumptions:
Each word ends with a space, tab, newline, or end-of-file.
No word is longer than MAX WORD_LEN characters. */

char word[MAX WORD_LEN + 1];
int wordLen;

char line[MAX LINE_LEN + 1];
int linelLen = 0;

int numWords = 0;

Clearline(line, &linelLen, &numWords) ;

Continued on next slide

53

Appendix: The “justify”

Program

for (;;) {
wordLen = ReadWord (word) ;

/* If no more words, print line
with no justification. */

if ((wordLen == 0) && (linelLen > 0)) {
puts (line) ;
break;

/* If word doesn't fit on this line, then... */

if ((wordLen + 1 + lineLen) > MAX LINE LEN) {
WriteLine(line, linelen, numWords) ;
ClearlLine(line, &lineLen, &numWords) ;

}

AddWord (word, line, &linelen);
numWords++;
}

return 0;

54

27

