
1

1

The Design of C: 
A Rational Reconstruction (cont.)"

2

Goals of this Lecture""
•  Recall from last lecture… "
•  Help you learn about:"

•  The decisions that were available to the designers of C"
•  The decisions that were made by the designers of C"
… and thereby…"
•  C"

•  Why?"
•  Learning the design rationale of the C language provides a richer

understanding of C itself"
•  … and might be more interesting than simply learning the

language itself"
•  A power programmer knows both the programming language and its

design rationale"

2

3

Character Data Types"
•  Issue: What character data types should C have?"
•  Thought process"

•  The most common character codes are (were!) ASCII and EBCDIC"
•  ASCII is 7-bit"
•  EBCDIC is 8-bit"

•  Decisions"
•  Provide type char
•  Type char should be one byte"

•  Historical verdict"
•  Worked fine for Latin-derived alphabets"
•  Unicode required library support for “wide character” type"

4

Character Constants"
•  Issue: How should C represent character constants?"
•  Thought process"

•  Could represent character constants as int constants, with
truncation of high-order bytes"

•  More readable to use single quote syntax ('a', 'b', etc.); but
then…"

•  Need special way to represent the single quote character"
•  Need special ways to represent non-printable characters (e.g.

newline, tab, space, etc.)"

•  Decisions"
•  Provide single quote syntax"
•  Use backslash to express special characters"

3

5

Character Constants (cont.)"
•  Examples"

• 'a' "the a character"
• (char)97" "the a character"
• (char)0141 the a character"
• '\o141' " "the a character, octal character form"
• '\x61' " "the a character, hexadecimal character form"
• '\0' " "the null character"
• '\a' "bell"
• '\b' "backspace"
• '\f' " "formfeed"
• '\n' "newline"
• '\r' "carriage return"
• '\t' "horizontal tab"
• '\v' " "vertical tab"
• '\\' " "backslash"
• '\'' "single quote"

6

Strings"
•  Issue: How should C represent strings?"
•  Thought process"

•  String can be represented as a sequence of chars"
•  How to know where char sequence ends?"

•  Store length before char sequence?"
•  Store special “sentinel” char after char sequence?"

•  Strings are common in systems programming"
•  C should be small/simple"

4

7

Strings (cont.)"
•  Decisions"

•  Adopt a convention"
•  String consists of a sequence of chars terminated with the null

('\0') character"
•  Use double-quote syntax (e.g. "abc", "hello") to represent a

string constant"
•  Provide no other language features for handling strings"

•  Delegate string handling to standard library functions"

•  Examples"
• "abc" is a string constant"
• 'a' is a char constant (1 byte)"
• "a" is a string constant (2 bytes – 'a' and '\0')"

8

Logical Data Type"
•  Issue: How should C represent logical data?"
•  Thought process"

•  Representing a logical value (TRUE or FALSE) requires only one bit"
•  Smallest entity that can be addressed is one byte"
•  Type char is one byte, so could be used to represent logical values"
•  C should be small/simple"

•  Decisions"
•  Don't define a logical data type"
•  Represent logical data using type char, or any integer type"
•  Convention: 0 à FALSE, non-0 à TRUE"
•  Convention used by:"

•  Relational operators (<, >, etc.)"
•  Logical operators (!, &&, ||)"
•  Statements (if, while, etc.)"

"

5

9

Logical Data Type (cont.)"
•  Note"

•  Using integer data to represent logical data permits shortcuts"

…
int i;
…
if (i) /* same as (i != 0) */
 statement1;
else
 statement2;
…

Less typing, but no
real performance
difference"

10

Logical Data Type (cont.)"
•  Note"

•  The lack of logical data type hampers compiler's ability to detect
some errors with certainty"

…
int i;
…
i = 0;
…
if (i = 5)
 statement1;
else
 statement2;
…

Compiler may
warn about this
code"

6

11

Floating-Point Data Types"
•  Issue: What floating-point data types should C have?"
•  Thought process"

•  Systems programs use floating-point data infrequently"
•  But some application domains (e.g. scientific) use floating-point data

often"

•  Decisions"
•  Provide three floating-point data types: float, double, and long
double

•  bytes in float <= bytes in double <= bytes in long double

•  Incidentally, on hats using gcc217"
• float: " "4 bytes"
• double: " "8 bytes"
• long double: "12 bytes"

12

Floating-Point Constants"
•  Issue: How should C represent floating-point constants?"
•  Thought process"

•  Convenient to allow both fixed-point and scientific notation"
•  Decimal is sufficient; no need for octal or hexadecimal"

•  Decisions"
•  Any constant that contains decimal point or "E" is floating-point"
•  The default floating-point type is double
•  Append "F" to indicate float
•  Append "L" to indicate long double

•  Examples"
• double: 123.456, 1E-2, -1.23456E4
• float: 123.456F, 1E-2F, -1.23456E4F
• long double: 123.456L, 1E-2L, -1.23456E4L

7

13

Feature 2: Operators"
•  Issue: What kinds of operators should C have?"
•  Thought process"

•  Should handle typical operations"
•  Should handle bit-level programming ("bit fiddling")"

•  Decisions"
•  Provide typical arithmetic operators: + - * / %"
•  Provide typical relational operators: == != < <= > >="

•  Each evaluates to 0àFALSE or 1àTRUE"
•  Provide typical logical operators: ! && ||"

•  Each interprets 0àFALSE, non-0àTRUE"
•  Each evaluates to 0àFALSE or 1àTRUE"

•  Provide bitwise operators: ~ & | ^ >> <<"
•  Provide a cast operator: (type)

14

Assignment Operator"
•  Issue: What about assignment?"
•  Thought process"

•  Must have a way to assign a value to a variable"
•  Many high-level languages provide an assignment statement"
•  Would be more expressive to define an assignment operator"

•  Performs assignment, and then evaluates to the assigned value"
•  Allows expressions that involve assignment to appear within

larger expressions"

•  Decisions"
•  Provide assignment operator: =
•  Define assignment operator so it changes the value of a variable,

and also evaluates to that value"

8

15

Assignment Operator (cont.)"
•  Examples"

i = 0;
 /* Assign 0 to i. Evaluate to 0.
 Discard the 0. */

i = j = 0;
 /* Assign 0 to j. Evaluate to 0.
 Assign 0 to i. Evaluate to 0.
 Discard the 0. */

while ((i = getchar()) != EOF) …
 /* Read a character. Assign it to i.
 Evaluate to that character.
 Compare that character to EOF.
 Evaluate to 0 (FALSE) or 1 (TRUE). */

Does the
expressiveness
affect clarity?"

16

Special-Purpose Operators"
•  Issue: Should C provide special-purpose assignment

operators?"

•  Thought process"
•  The construct i = i + 1 is common"
•  More generally, i = i + n and i = i * n are common."
•  Special-purpose assignment operators would make code more

expressive"
•  Such operators would complicate the language and compiler"

•  Decisions"
•  The convenience outweighs the complication"
•  Increment/decrement operators (not for floats/double): ++ --"
•  Provide special-purpose assignment operators: += -= *= /= ~=
&= |= ^= <<= >>=

9

17

Sizeof Operator"
•  Issue: How can programmers determine the sizes of data?"
•  Thought process"

•  The sizes of most primitive types are unspecified"
•  C must provide a way to determine the size of a given data type

programmatically"

•  Decisions"
•  Provide a sizeof operator"

•  Applied at compile-time"
•  Operand can be a data type"
•  Operand can be an expression, from which the compiler infers a

data type"

•  Examples, on hats using gcc217"
• sizeof(int) evaluates to 4"
• sizeof(i) evaluates to 4 (where i is a variable of type int)"
• sizeof(i+1) evaluates to 4 (where i is a variable of type int)"

18

Other Operators"
•  Issue: What other operators should C have?"
•  Decisions"

•  Function call operator"
•  Should mimic the familiar mathematical notation"
• function(param1, param2, …)

•  Conditional operator: ?:
•  The only ternary operator"
•  See King book"

•  Sequence operator: ,
•  See King book"

•  Pointer-related operators: & *
•  Described later in the course"

•  Structure-related operators (. ->)"
•  Described later in the course"

10

19

Feature 3: Control Statements"
•  Issue: What control statements

should C provide?"

•  Thought process"
•  Boehm and Jacopini proved that any

algorithm can be expressed as the nesting
of only 3 control structures: 
sequence, selection, repetition"

Barry Boehm"

statement1"

statement2"
statement1"

condition"

statement2"

TRUE" FALSE"

statement"

condition"TRUE" FALSE"

20

Control Statements (cont.)"
"
• Thought Process (cont.)"

•  Dijkstra argued that any algorithm should be
expressed using only those three control
structures (GOTO Statement Considered
Harmful paper)"

•  The ALGOL programming language
implemented control statements accordingly"

• Decisions"
•  Provide statements to implement those 3

control structures"
•  For convenience, provide a few extras"

Edsgar Dijkstra"

11

21

Sequence Statement"
•  Issue: How should C implement sequence?"

• Decision"
•  Compound statement, alias block"

{
 statement1;
 statement2;
 …
}

22

Selection Statements"
•  Issue: How should C implement selection?"
• Decisions"

•  if statement, for one-path, two-path decisions & compound"

if (integerExpr)
 statement1;

if (integerExpr)
 statement1;
else
 statement2;

if (integerExpr)
 statement1;
else {
 if (integerExpr2)
 statement2;
 else
 statement3;
}

if (integerExpr)
 statement1;
else if (integerExpr2)
 statement2;
else
 statement3;

12

23

Selection Statements (cont.)"
• Decisions (cont.)"

•  switch and break statements, for multi-path decisions on a
single integerExpr"

switch (integerExpr) {
 case integerConstant1:
 …
 break;
 case integerConstant2:
 …
 break;
 …
 default:
 …
}

Without break
next case
executes too"

Remembering
break is error-
prone, so type it
when you type case "

24

Repetition Statements"
•  Issue: How should C implement repetition?"
• Decisions"

•  while statement, for general repetition, zero or more times"

•  for statement, for counting loops, zero or more times & init"

•  do…while statement, for loops with test at trailing edge and one
or more times"

while (integerExpr)
 statement;

for (initialExpr; integerExpr; incrementExpr)
 statement;

do
 statement;
while (integerExpr);

13

25

Other Control Statements"
•  Issue: What other control statements should C provide?"
• Decisions"

•  break statement (revisited)"
•  Breaks out of closest enclosing switch or repetition statement"

•  continue statement"
•  Skips remainder of current loop iteration"
•  Continues with next loop iteration"
•  When used with for, still executes incrementExpr!
•  Can be difficult to understand; generally should avoid"

•  goto statement and labels"
•  Avoid (as per Dijkstra)"
•  Most common use is end-of-function error handling"

26

Feature 4: Input/Output Facilities"
•  Issue: Should C provide I/O facilities?"
•  Thought process"

•  Unix provides the stream abstraction"
•  A stream is a sequence of characters"

•  Unix provides 3 standard streams"
•  Standard input, standard output, standard error"

•  C should be able to use those streams, and others"
•  I/O facilities are complex"
•  C should be small/simple"

•  Decisions"
•  Do not provide I/O facilities in C"
•  Instead provide a standard library containing I/O facilities"

•  Constants: EOF
•  Data types: FILE (described later in course)"
•  Variables: stdin, stdout, and stderr
•  Functions: …"

14

27

Reading & Writing Characters"
•  Issue: What functions should C provide for reading &

writing characters? "

•  Thought process"
•  Need function to read a single character from stdin and indicate

that no characters remain"

•  Decisions"
•  Provide getchar() and putchar()functions"
•  Make return type of getchar() wider than char

•  Make it int; that's the natural word size"
•  Make putchar() take int for symmetry"

•  Define getchar() to return EOF (a special non-character int) to
indicate failure

•  Note"
•  There is no such thing as "the EOF character""

28

Reading/Writing Other Data Types"
•  Issue: What functions should C provide for reading data of

other primitive types?"

•  Thought process"
•  Must convert external form (sequence of character codes) to internal

form and vice-versa"
•  Could provide getshort(), getint(), getfloat(), etc."
•  Could provide parameterized functions to read/write any primitive

type of data"

•  Decisions"
•  Provide scanf() / printf() functions"
•  Can read/write any primitive type of data"
•  First parameter is a format string containing conversion

specifications"

•  See King book for details"

15

29

Other I/O Facilities"
•  Issue: What other I/O functions should C provide?"
•  Decisions"

• fopen(): Open a stream"
• fclose(): Close a stream"
• fgetc(): Read a character from specified stream"
• fputc(): Write a character to specified stream"
• fgets(): Read a line/string from specified stream"
• fputs(): Write a line/string to specified stream"
• fscanf(): Read data from specified stream"
• fprintf(): Write data to specified stream"

•  Described in King book, and later in the course after
covering files, arrays, and strings"

30

Summary"
•  C’s design goals affected decisions concerning language

features:"
•  Data types"
•  Operators"
•  Control statements"
•  I/O facilities"

•  Knowing the design goals and how they affected the design
decisions can yield a rich understanding of C"

