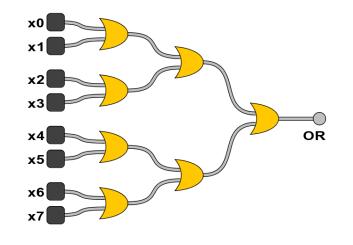
Signals and Wires Digital signals Binary (or "logical") values: 1 or 0, on or off, high or low voltage 6.1 Combinational Circuits Wires. Propagate logical values from place to place. • Signals "flow" from left to right. - A drawing convention, sometimes violated - Actually: flow from producer to consumer(s) of signal -0 0 -1 - 1 - 1 - 1 Input Output George Boole (1815 - 1864) Claude Shannon (1916 - 2001) Logic Gates Multiway AND Gates Logical gates. AND(x₀, x₁, x₂, x₃, x₄, x₅, x₆, x₇). Fundamental building blocks. • 1 if all inputs are 1. 0 otherwise. × xЗ AND OR NOT AND

Multiway OR Gates

$OR(x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7).$

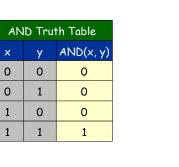
- 1 if at least one input is 1.
- 0 otherwise.

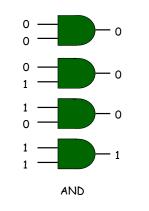


Truth Table

Truth table.

- Systematic method to describe Boolean function.
- One row for each possible input combination.
- N inputs \Rightarrow 2^N rows.





Boolean Algebra

History.

- Developed by Boole to solve mathematical logic problems (1847).
- Shannon master's thesis applied it to digital circuits (1937).

"possibly the most important, and also the most famous, master's thesis of the [20th] century" --Howard Gardner

Basics.

- Boolean variable: value is 0 or 1.
- Boolean function: function whose inputs and outputs are 0, 1.

Relationship to circuits.

- Boolean variables: signals.
- Boolean functions: circuits.

Truth Table for Functions of 2 Variables

Truth table.

- 16 Boolean functions of 2 variables.
 - every 4-bit value represents one

Truth Table for All Boolean Functions of 2 Variables									
x	у	ZERO	AND		x		у	XOR	OR
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Truth Table for All Boolean Functions of 2 Variables									
×	У	NOR	EQ	y'		- x'		NAND	ONE
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

9

Truth Table for Functions of 3 Variables

Truth table.

- 16 Boolean functions of 2 variables.
 - every 4-bit value represents one
- 256 Boolean functions of 3 variables.
 - every 8-bit value represents one
- 2^(2^N) Boolean functions of N variables!

Some Functions of 3 Variables							
x	У	z	AND	OR	MAJ	ODD	
0	0	0	0	0	0	0	
0	0	1	0	1	0	1	
0	1	0	0	1	0	1	
0	1	1	0	1	1	0	
1	0	0	0	1	0	1	
1	0	1	0	1	1	0	
1	1	0	0	1	1	0	
1	1	1	1	1	1	1	
					1		

Universality of AND, OR, NOT

x'y xy' x'y + xy' XOR

0

1

1

0

0

1

1

0

0

0

1

0

Any Boolean function can be expressed using AND, OR, NOT.

Expressing XOR Using AND, OR, NOT

0

1

0

0

"Universal."

x y

0

0 1

1 1

10

12

0

1 0

XOR(x,y) = xy' + x'y

×'

1

1

0

0

v'

1

0

1

0

Notation	Meaning
x'	NOT x
ху	x AND y
x + y	x OR y

11

13

Exercise. Show {AND, NOT}, {OR, NOT}, {NAND}, {AND, XOR} are universal.
Hint. Use DeMorgan's Law: (xy)' = (x' + y') and (x + y)' = (x'y')

Sum-of-Products

Any Boolean function can be expressed using AND, OR, NOT.

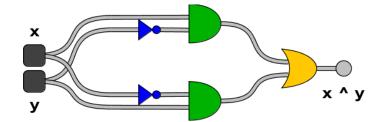
- Sum-of-products is systematic procedure.
 - form AND term for each 1 in truth table of Boolean function
 - OR terms together

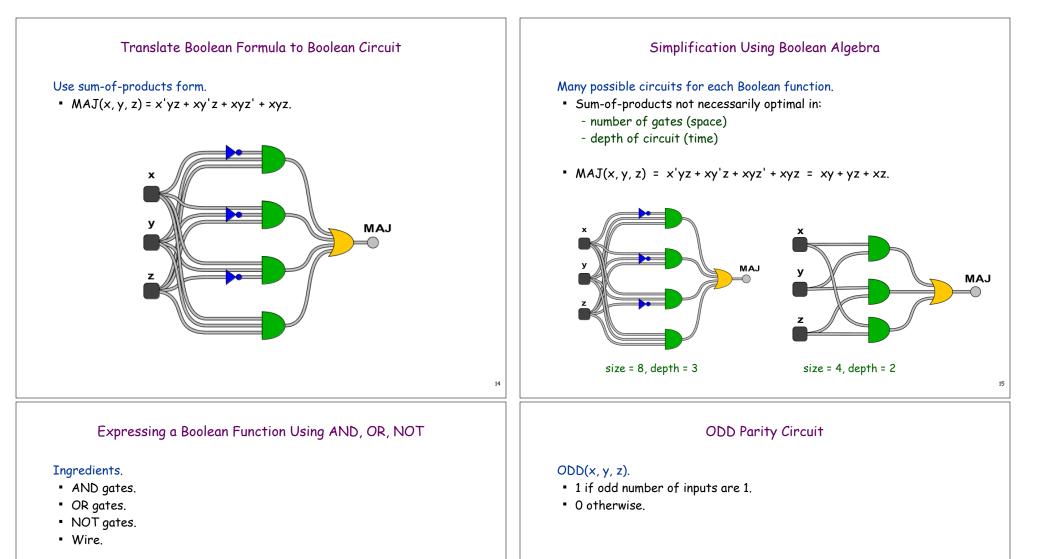
	Expressing MAJ Using Sum-of-Products									
×	x y z MAJ x'yz					xyz'	xyz	x'yz + xy'z + xyz' + xyz		
0	0	0	0	0	0	0	0	0		
0	0	1	0	0	0	0	0	0		
0	1	0	0	0	0	0	0	0		
0	1	1	1	1	0	0	0	1		
1	0	0	0	0	0	0	0	0		
1	0	1	1	0	1	0	0	1		
1	1	0	1	0	0	1	0	1		
1	1	1	1	0	0	0	1	1		

Translate Boolean Formula to Boolean Circuit

Use sum-of-products form.

XOR(x, y) = xy' + x'y.





Instructions.

- Step 1: represent input and output signals with Boolean variables.
- Step 2: construct truth table to carry out computation.
- Step 3: derive (simplified) Boolean expression using sum-of products.
- Step 4: transform Boolean expression into circuit.

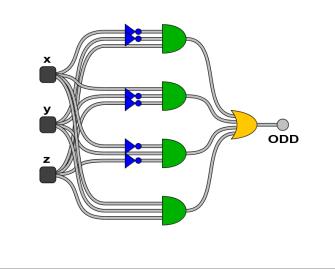
Expressing ODD Using Sum-of-Products									
×	У	z	ODD	x'y'z	x'yz'	xy'z'	xyz	x'y'z + x'yz' + xy'z' + xyz	
0	0	0	0	0	0	0	0	0	
0	0	1	1	1	0	0	0	1	
0	1	0	1	0	1	0	0	1	
0	1	1	0	0	0	0	0	0	
1	0	0	1	0	0	1	0	1	
1	0	1	0	0	0	0	0	0	
1	1	0	0	0	0	0	0	0	
1	1	1	1	0	0	0	1	1	

ODD Parity Circuit

Let's Make an Adder Circuit

ODD(x, y, z).

- 1 if odd number of inputs are 1.
- 0 otherwise.



Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 2. (first attempt)

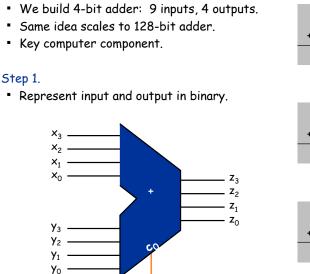
•	Build	truth	table.	
---	-------	-------	--------	--

- Why is this a bad idea?
 - 128-bit adder: 2²⁵⁶⁺¹ rows > # electrons in universe!

4-Bit Adder Truth Table												
c ₀	x ₃	x ₂	x_1	× ₀	У 3	Y 2	Y ₁	Yo	z ₃	z ₂	z ₁	z ₀
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	1	1	0	0	1	1
0	0	0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	0	1	0	1	0	1	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1

c₀

2⁸⁺¹ = 512 rows!



	1	1	1	0
	2	4	8	7
+	3	5	7	9
	6	0	6	6
	1	1	0	0
	0	0	1	0
+	0	1	1	1
	1	0	0	1
	c3	c ₂	c_1	c ₀
	×3	x ₂	\mathbf{x}_1	× ₀
+	y ₃	Y ₂	Y ₁	y o
	z ₃	z ₂	z_1	z ₀

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

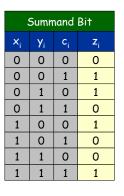
Goal: x + y = z for 4-bit integers.

Step 2. (do one bit at a time)

- Build truth table for carry bit.
- Build truth table for summand bit.

	c ₃	c ₂	c ₁	c ₀ = 0
	x ₃	× ₂	x ₁	× ₀
+	y ₃	Y ₂	Y ₁	y ₀
	z ₃	Z ₂	z ₁	z _o

Car	ry Bi	t	
Y _i	c _i	c _{i+1}	
0	0	0	
0	1	0	
1	0	0	
1	1	1	
0	0	0	
0	1	1	
1	0	1	
1	1	1	
	Yi 0 1 1 0 0 1	Yi Ci 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0	0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1



21

19

20

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 3.

Derive (simplified) Boolean expression.

×	Yi	c _i	c _{i+1}	MAJ
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

×	Y _i	c _i	z _i	ODD
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

 $C_3 C_2$

 X_3

 $Z_3 Z_2 Z_1 Z_0$

+ Y₃ Y₂

 X_2

 $c_1 c_0 = 0$

Y₁ **Y**₀

23

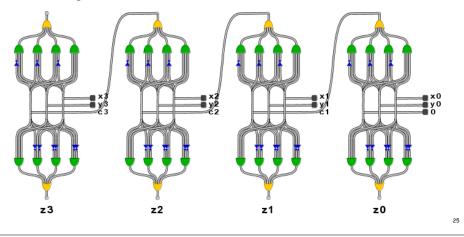
 $\mathbf{x}_1 = \mathbf{x}_0$

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 4.

- Transform Boolean expression into circuit.
- Chain together 1-bit adders.

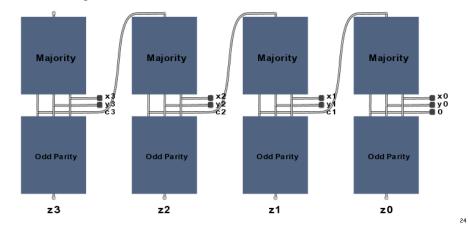


Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 4.

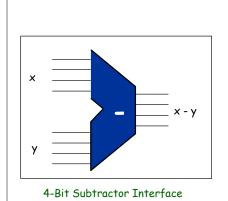
- Transform Boolean expression into circuit.
- Chain together 1-bit adders.

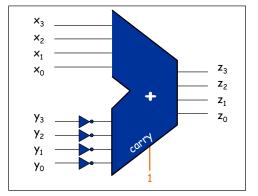


Subtractor

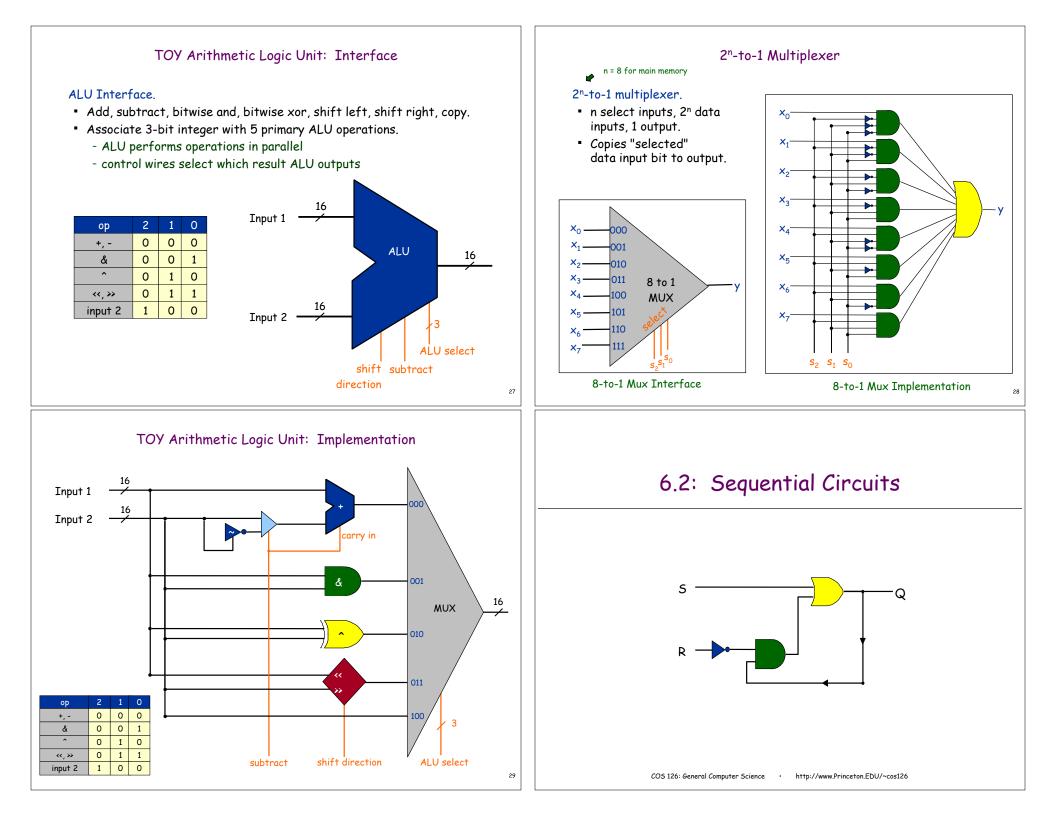
Subtractor circuit: z = x - y.

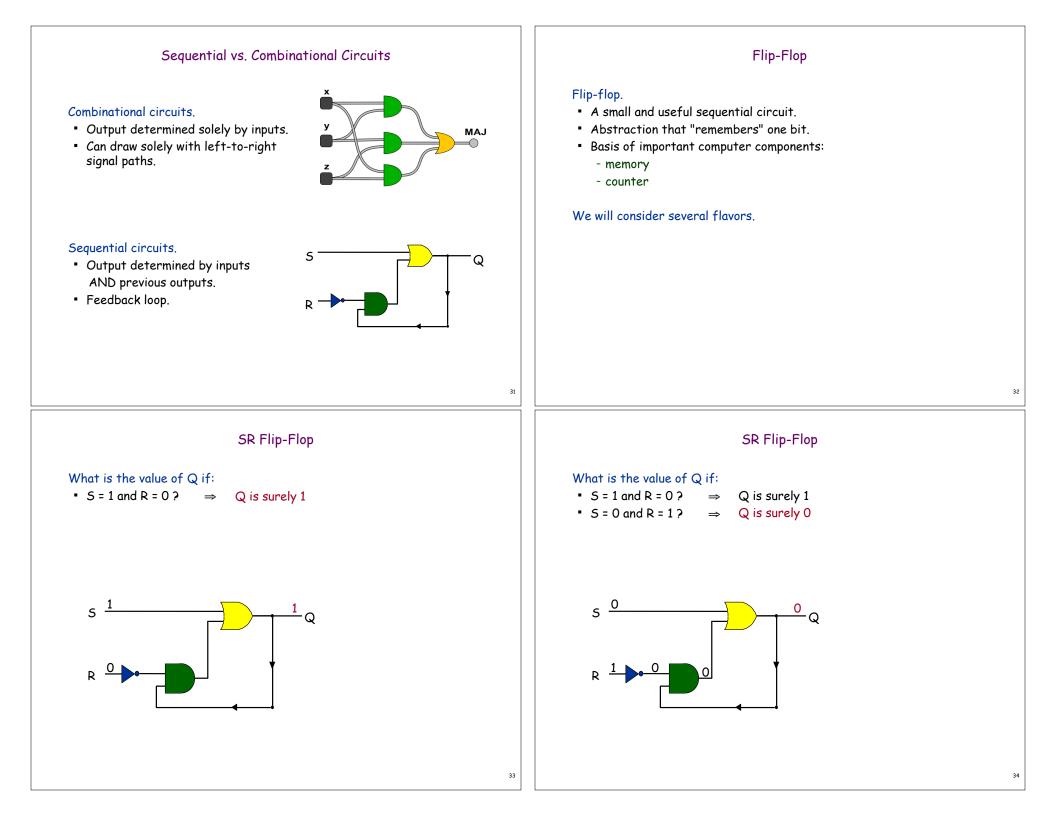
- One approach: new design, like adder circuit.
- Better idea: reuse adder circuit.
 - 2's complement: to negate an integer, flip bits, then add 1

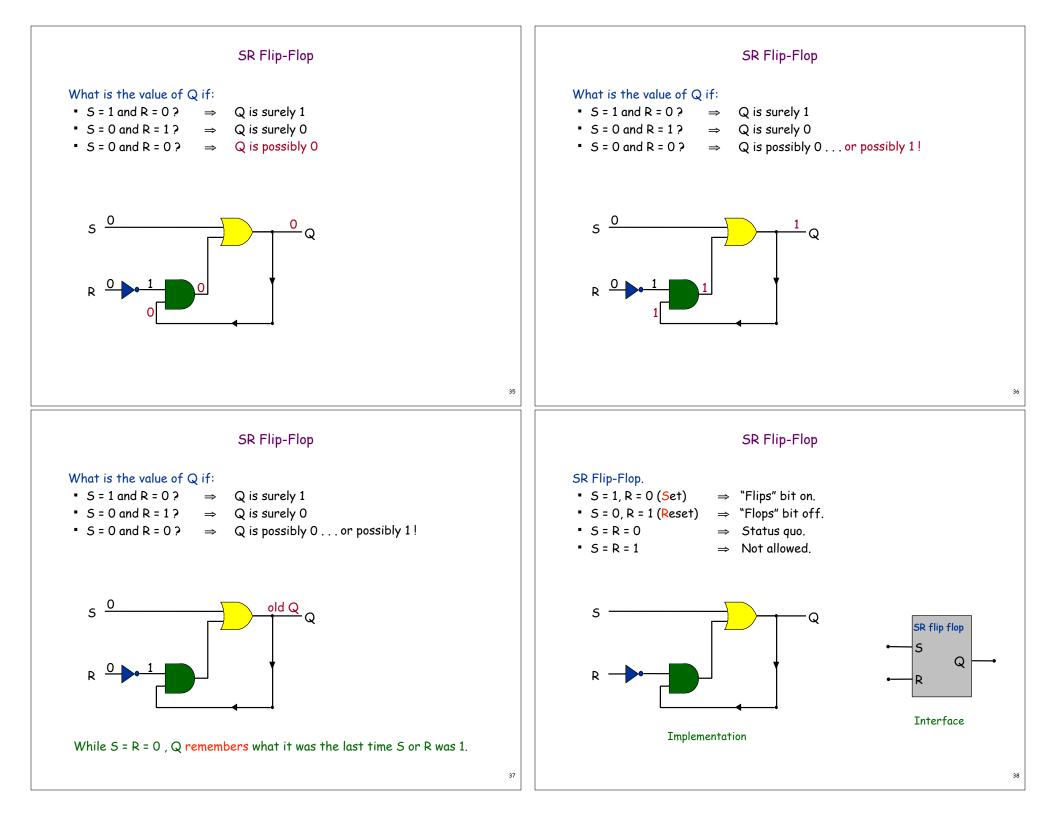




4-Bit Subtractor Implementation



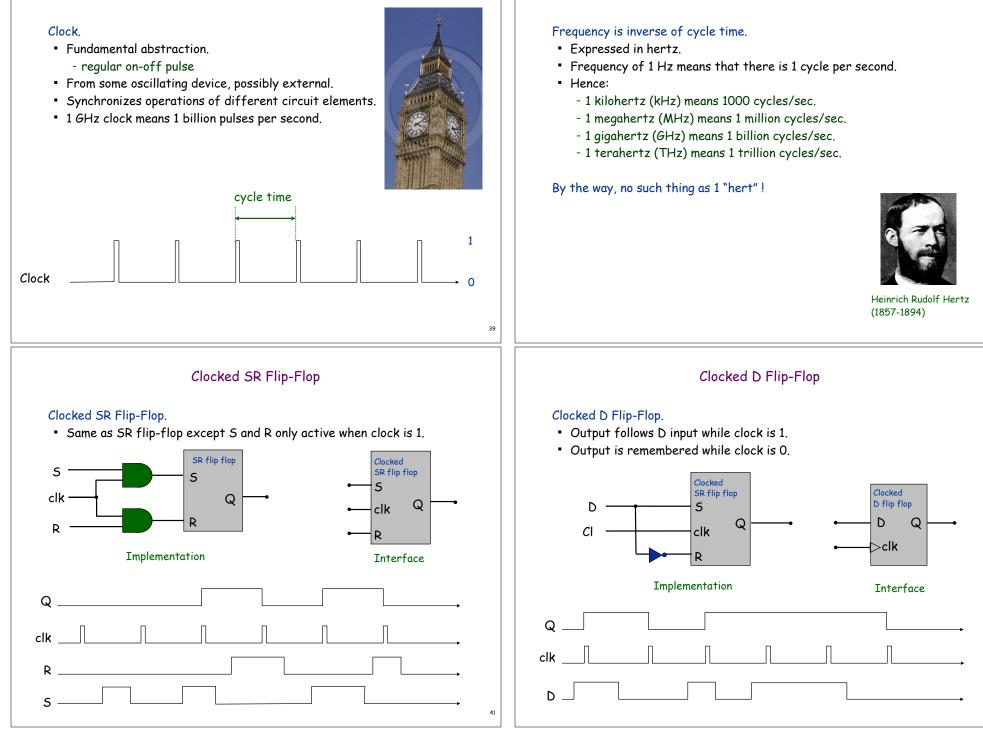




How much does it Hert?

40

42



Clock

Summary

Combinational circuits implement Boolean functions

- Gates and wires Fundamental building blocks.
- Truth tables. Describe Boolean functions.
- Sum-of-products. Systematic method to implement functions.

Represents 1 bit.

Sequential circuits add "state" to digital hardware.

- Flip-flop.
- TOY register. 16 D flip-flops.
- TOY main memory. 256 registers.

Next time: we build a complete TOY computer (oh yes).

George Boole (1815 - 1864)

43

Claude Shannon (1916 - 2001)

44