
6.1 Combinational Circuits

George Boole (1815 – 1864) Claude Shannon (1916 – 2001)

Digital signals
■ Binary (or “logical”) values: 1 or 0, on or off, high or low voltage
!
Wires.
■ Propagate logical values from place to place.
■ Signals "flow" from left to right.

– A drawing convention, sometimes violated
– Actually: flow from producer to consumer(s) of signal

Signals and Wires

0 0

1 1

1

1
Input Output

2

Logic Gates

Logical gates.
■ Fundamental building blocks.

0 1

1 0

NOT

0
1

0

AND

1
0

0

1
1

1

0
0

0 0
0

0

0
1

1

1
0

1

1
1

1

OR

x x' x
y

xy
x
y

x + y

3

Multiway AND Gates

AND(x0, x1, x2, x3, x4, x5, x6, x7).
■ 1 if all inputs are 1.
■ 0 otherwise.

4

Multiway OR Gates

OR(x0, x1, x2, x3, x4, x5, x6, x7).
■ 1 if at least one input is 1.
■ 0 otherwise.

5

Boolean Algebra

History.
■ Developed by Boole to solve mathematical logic problems (1847).
■ Shannon master's thesis applied it to digital circuits (1937).
!
!
Basics.
■ Boolean variable: value is 0 or 1.
■ Boolean function: function whose inputs and outputs are 0, 1.
!

Relationship to circuits.
■ Boolean variables: signals.
■ Boolean functions: circuits.

"possibly the most important, and also the most famous, 
 master's thesis of the [20th] century" --Howard Gardner

6

Truth Table

Truth table.
■ Systematic method to describe Boolean function.
■ One row for each possible input combination.
■ N inputs ⇒ 2N rows.

AND

AND(x, y)

AND Truth Table

yx

000

010

001

111

0
1

0

1
0

0

1
1

1

0
0

0

8

Truth Table for Functions of 2 Variables

Truth table.
■ 16 Boolean functions of 2 variables.

– every 4-bit value represents one

ZERO
Truth Table for All Boolean Functions of 2 Variables

y
0 0

0 1 0
1 0 0
1 1 0

0
0
1
0

0
1
0
0

x
0
0
1
1

AND
0
0
0
1

y
0
1
0
1

XOR
0
1
1
0

OR
0
1
1
1

x
0

NOR
Truth Table for All Boolean Functions of 2 Variables

y
0 1

0 1 0
1 0 0
1 1 0

y'
1
0
1
0

x'
1
1
0
0

1
0
1
1

EQ
1
0
0
1

1
1
0
1

NAND
1
1
1
0

ONE
1
1
1
1

x
0

9

Truth Table for Functions of 3 Variables

Truth table.
■ 16 Boolean functions of 2 variables.

– every 4-bit value represents one
■ 256 Boolean functions of 3 variables.

– every 8-bit value represents one
■ 2^(2^N) Boolean functions of N variables!

AND
Some Functions of 3 Variables

z
0 0

0 1 0
1 0 0
1 1 0

y
0

x
0
0
0
0

0
0 1
1 0
1 1

01
1
1
1

0
0
0
1

OR
0
1
1
1
1
1
1
1

MAJ
0
0
0
1
0
1
1
1

ODD
0
1
1
0
1
0
0
1

10

Any Boolean function can be expressed using AND, OR, NOT.
■ "Universal."
■ XOR(x,y) = xy' + x'y
!

!
!
!
!
!
!
!
!
!
Exercise. Show {AND, NOT}, {OR, NOT}, {NAND}, {AND, XOR} are universal.
Hint. Use DeMorgan’s Law: (xy)’ = (x’ + y’) and (x + y)’ = (x’y’)

Universality of AND, OR, NOT

1 0 0 000 0
0 0 0 111 1
1 1 1 100 1
0 1 0 001 0

x'
Expressing XOR Using AND, OR, NOT

y x'y x'y + xy'xy'y' XORx
0
0
1
1

Meaning
NOT x

x AND y
x OR y

Notation
x'
x y

x + y

11

Sum-of-Products

Any Boolean function can be expressed using AND, OR, NOT.
■ Sum-of-products is systematic procedure.

– form AND term for each 1 in truth table of Boolean function
– OR terms together

x'yz
Expressing MAJ Using Sum-of-Products

z xyz' xyzxy'zMAJyx
0
0
0
1
0
1
1
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

0
0
0
1
0
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
1

x'yz + xy'z + xyz' + xyz
0
0
0
1
0
1
1
1

12

Translate Boolean Formula to Boolean Circuit

Use sum-of-products form.
■ XOR(x, y) = xy' + x'y.

13

Translate Boolean Formula to Boolean Circuit

Use sum-of-products form.
■ MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz.

14

Simplification Using Boolean Algebra

Many possible circuits for each Boolean function.
■ Sum-of-products not necessarily optimal in:

– number of gates (space)
– depth of circuit (time)
!

■ MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz = xy + yz + xz.

size = 4, depth = 2size = 8, depth = 3
15

Expressing a Boolean Function Using AND, OR, NOT

Ingredients.
■ AND gates.
■ OR gates.
■ NOT gates.
■ Wire.
!

!
Instructions.
■ Step 1: represent input and output signals with Boolean variables.
■ Step 2: construct truth table to carry out computation.
■ Step 3: derive (simplified) Boolean expression using sum-of products.
■ Step 4: transform Boolean expression into circuit.

16

ODD Parity Circuit

ODD(x, y, z).
■ 1 if odd number of inputs are 1.
■ 0 otherwise.

x'y'z
Expressing ODD Using Sum-of-Products

z xy'z' xyzx'yz'ODDyx
0
1
1
0
1
0
0
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
0
0
1

x'y'z + x'yz' + xy'z' + xyz
0
1
1
0
1
0
0
1

18

ODD Parity Circuit

ODD(x, y, z).
■ 1 if odd number of inputs are 1.
■ 0 otherwise.

19

100 0

110 1+

001 1

011 0

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.
■ We build 4-bit adder: 9 inputs, 4 outputs.
■ Same idea scales to 128-bit adder.
■ Key computer component.
!
Step 1.
■ Represent input and output in binary.

x1x2x3 x0

y1y2y3 y0+

z1z2z3 z0

842 7

753 9+

606 6

111

x3
x2
x1
x0

y3
y2
y1
y0

z3
z2
z1
z0

+

c 0

0

c1c2c3 c0

20

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.
!
Step 2. (first attempt)
■ Build truth table.
■ Why is this a bad idea?

– 128-bit adder: 2256+1 rows > # electrons in universe!

4-Bit Adder Truth Table

y2y3

0
0
0
0
1
1
.
1

0
0
0
0
0
0
.
1

x1x2x3 x0

y1y2y3 y0+

z1z2z3 z0

x0x1

0
0
0
0
0
0
.
1

0
0
0
0
0
0
.
1

x2x3

0
0
0
0
0
0
.
1

0
0
0
0
0
0
.
1

y0y1

0
1
0
1
0
1
.
1

0
0
1
1
0
0
.
1

z2z3

0
0
0
0
1
1
.
1

0
0
0
0
0
0
.
1

z0z1

0
1
0
1
0
1
.
1

0
0
1
1
0
0
.
1

28+1 = 512 rows!

c0

0
0
0
0
0
0
.
1

c0

21

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.
!
Step 2. (do one bit at a time)
■ Build truth table for carry bit.
■ Build truth table for summand bit.

Carry Bit

ci ci+1yixi

0
0
0
1
0
1
1
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

Summand Bit

ci ziyixi

0
1
1
0
1
0
0
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

x1x2x3 x0

y1y2y3 y0+

z1z2z3 z0

c1c2c3 c0 = 0

22

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.
!
Step 3.
■ Derive (simplified) Boolean expression.

Carry Bit

ci ci+1yixi

0
0
0
1
0
1
1
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

MAJ
0
0
0
1
0
1
1
1

Summand Bit

ci ziyixi

0
1
1
0
1
0
0
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

ODD
0
1
1
0
1
0
0
1

x1x2x3 x0

y1y2y3 y0+

z1z2z3 z0

c1c2c3 c0 = 0

23

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.
!
Step 4.
■ Transform Boolean expression into circuit.
■ Chain together 1-bit adders.

24

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.
!
Step 4.
■ Transform Boolean expression into circuit.
■ Chain together 1-bit adders.

25

Subtractor

Subtractor circuit: z = x - y.
■ One approach: new design, like adder circuit.
■ Better idea: reuse adder circuit.

– 2's complement: to negate an integer, flip bits, then add 1

x2

x1

x0

y3

y2

y1

y0

x3

z3

z2

z1

z0

y

x

x - y

4-Bit Subtractor Interface 4-Bit Subtractor Implementation

car
ry

1

+
-

26

ALU Interface.
■ Add, subtract, bitwise and, bitwise xor, shift left, shift right, copy.
■ Associate 3-bit integer with 5 primary ALU operations.

– ALU performs operations in parallel
– control wires select which result ALU outputs

TOY Arithmetic Logic Unit: Interface

ALU select

16

16

16

Input 1

Input 2

op 1
+, - 0
& 0
^ 1

<<, >> 1

0
0
1
0
1

ALU

input 2 0 0

2
0
0
0
0
1

subtractshift 
direction

3

27

2n-to-1 Multiplexer

2n-to-1 multiplexer.
■ n select inputs, 2n data 

inputs, 1 output.
■ Copies "selected"  

data input bit to output.

8-to-1 Mux Implementation

s0s1s2

x0

x1

x2

x3

x4

x5

x6

x7

y

y

8-to-1 Mux Interface

x7

x6

x5

x4

x3

x2

x1

x0

111

110

101

100
011
010

001

000

8 to 1  
MUX

sel
ect

n = 8 for main memory

s0s1s2

28

TOY Arithmetic Logic Unit: Implementation

16
Input 1

16
Input 2

16

subtract

carry in

ALU select

&

~

shift direction

3

<<  
>>

MUX

op 1
+, - 0
& 0
^ 1

<<, >> 1

0
0
1
0
1

input 2 0 0

2
0
0
0
0
1

000

001

010

011

100

+

^̂

29 COS 126: General Computer Science • http://www.Princeton.EDU/~cos126

6.2: Sequential Circuits

QS

R

Sequential vs. Combinational Circuits

!
Combinational circuits.
■ Output determined solely by inputs.
■ Can draw solely with left-to-right  

signal paths.
!
!
!
!
Sequential circuits.
■ Output determined by inputs
 AND previous outputs.
■ Feedback loop.

QS

R

31

Flip-Flop

Flip-flop.
■ A small and useful sequential circuit.
■ Abstraction that "remembers" one bit.
■ Basis of important computer components:

– memory
– counter
!

We will consider several flavors.

32

SR Flip-Flop

What is the value of Q if:
■ S = 1 and R = 0 ? ⇒

1

0

1

Q is surely 1

QS

R

33

SR Flip-Flop

What is the value of Q if:
■ S = 1 and R = 0 ? ⇒ Q is surely 1
■ S = 0 and R = 1 ? ⇒

0

1

QS

R

0

Q is surely 0

00

34

SR Flip-Flop

What is the value of Q if:
■ S = 1 and R = 0 ? ⇒ Q is surely 1
■ S = 0 and R = 1 ? ⇒ Q is surely 0"
■ S = 0 and R = 0 ? ⇒

0

0

QS

R 1

0

Q is possibly 0

0

0

35

SR Flip-Flop

What is the value of Q if:
■ S = 1 and R = 0 ? ⇒ Q is surely 1
■ S = 0 and R = 1 ? ⇒ Q is surely 0"
■ S = 0 and R = 0 ? ⇒ Q is possibly 0 . . .

0

0

QS

R 1

1

or possibly 1 !

1

1

36

SR Flip-Flop

What is the value of Q if:
■ S = 1 and R = 0 ? ⇒ Q is surely 1
■ S = 0 and R = 1 ? ⇒ Q is surely 0"
■ S = 0 and R = 0 ? ⇒ Q is possibly 0 . . .

0

0

QS

R

old Q

or possibly 1 !

While S = R = 0 , Q remembers what it was the last time S or R was 1.

1

37

SR Flip-Flop

SR Flip-Flop.
■ S = 1, R = 0 (Set) ⇒ “Flips” bit on.
■ S = 0, R = 1 (Reset) ⇒ “Flops” bit off.
■ S = R = 0 ⇒ Status quo.
■ S = R = 1 ⇒ Not allowed.

Interface
Implementation

S

R

SR flip flopSR flip flop

Q

QS

R

38

Clock

Clock.
■ Fundamental abstraction.

– regular on-off pulse
■ From some oscillating device, possibly external.
■ Synchronizes operations of different circuit elements.
■ 1 GHz clock means 1 billion pulses per second.

cycle time

Clock

1

0

39

How much does it Hert?

Frequency is inverse of cycle time.
■ Expressed in hertz.
■ Frequency of 1 Hz means that there is 1 cycle per second.
■ Hence:

– 1 kilohertz (kHz) means 1000 cycles/sec.
– 1 megahertz (MHz) means 1 million cycles/sec.
– 1 gigahertz (GHz) means 1 billion cycles/sec.
– 1 terahertz (THz) means 1 trillion cycles/sec.
!

By the way, no such thing as 1 “hert” !

Heinrich Rudolf Hertz 
(1857-1894)

40

Clocked SR Flip-Flop

Clocked SR Flip-Flop.
■ Same as SR flip-flop except S and R only active when clock is 1.

InterfaceImplementation

clk

R

S

Q

S

R

SR flip flop

Qclk

R

S

Qclk

R

S

Clocked  
SR flip flop

41

Clocked D Flip-Flop

Clocked D Flip-Flop.
■ Output follows D input while clock is 1.
■ Output is remembered while clock is 0.

InterfaceImplementation

clk

D

Q

D

Cl
Q

clk

R

S

Clocked  
SR flip flop

Q

clk

D

Clocked  
D flip flop

42

Summary

Combinational circuits implement Boolean functions
■ Gates and wires Fundamental building blocks.
■ Truth tables. Describe Boolean functions.
■ Sum-of-products. Systematic method to implement functions.
!
Sequential circuits add "state" to digital hardware.
■ Flip-flop. Represents 1 bit.
■ TOY register. 16 D flip-flops.
■ TOY main memory. 256 registers.
!

Next time: we build a complete TOY computer (oh yes).

43

George Boole (1815 – 1864) Claude Shannon (1916 – 2001)

44

