
6.1  Combinational Circuits

George Boole (1815 – 1864) Claude Shannon (1916 – 2001)

Digital signals 
■ Binary (or “logical”) values: 1 or 0, on or off, high or low voltage 
!
Wires. 
■ Propagate logical values from place to place. 
■ Signals "flow" from left to right. 

– A drawing convention, sometimes violated 
– Actually: flow from producer to consumer(s) of signal
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Logic Gates

Logical gates. 
■ Fundamental building blocks.
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Multiway AND Gates

AND(x0, x1, x2, x3, x4, x5, x6, x7). 
■ 1 if all inputs are 1.  
■ 0 otherwise.
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Multiway OR Gates

OR(x0, x1, x2, x3, x4, x5, x6, x7). 
■ 1 if at least one input is 1. 
■ 0 otherwise.
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Boolean Algebra

History. 
■ Developed by Boole to solve mathematical logic problems (1847). 
■ Shannon master's thesis applied it to digital circuits (1937). 
!
!
Basics. 
■ Boolean variable:  value is 0 or 1. 
■ Boolean function:  function whose inputs and outputs are 0, 1. 
!

Relationship to circuits. 
■ Boolean variables:  signals. 
■ Boolean functions:  circuits.

"possibly the most important, and also the most famous, 
 master's thesis of the [20th] century"  --Howard Gardner
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Truth Table

Truth table. 
■ Systematic method to describe Boolean function. 
■ One row for each possible input combination. 
■ N inputs  ⇒  2N rows.
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Truth Table for Functions of 2 Variables

Truth table. 
■ 16 Boolean functions of 2 variables. 

– every 4-bit value represents one
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Truth Table for Functions of 3 Variables

Truth table. 
■ 16 Boolean functions of 2 variables. 

– every 4-bit value represents one 
■ 256 Boolean functions of 3 variables. 

– every 8-bit value represents one 
■ 2^(2^N) Boolean functions of N variables!
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Any Boolean function can be expressed using AND, OR, NOT. 
■ "Universal." 
■ XOR(x,y) = xy' + x'y 
!

!
!
!
!
!
!
!
!
!
Exercise.  Show  {AND, NOT}, {OR, NOT}, {NAND}, {AND, XOR} are universal. 
Hint.  Use DeMorgan’s Law: (xy)’ = (x’ + y’) and (x + y)’ = (x’y’)

Universality of AND, OR, NOT
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Sum-of-Products

Any Boolean function can be expressed using AND, OR, NOT. 
■ Sum-of-products is systematic procedure. 

– form AND term for each 1 in truth table of Boolean function 
– OR terms together
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Translate Boolean Formula to Boolean Circuit

Use sum-of-products form. 
■ XOR(x, y) = xy' + x'y.
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Translate Boolean Formula to Boolean Circuit

Use sum-of-products form. 
■ MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz.
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Simplification Using Boolean Algebra

Many possible circuits for each Boolean function. 
■ Sum-of-products not necessarily optimal in: 

– number of gates (space) 
– depth of circuit (time) 
!

■ MAJ(x, y, z)  =  x'yz + xy'z + xyz' + xyz  =  xy + yz + xz.

size = 4, depth = 2size = 8, depth = 3
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Expressing a Boolean Function Using AND, OR, NOT

Ingredients. 
■ AND gates. 
■ OR gates. 
■ NOT gates. 
■ Wire. 
!

!
Instructions. 
■ Step 1:  represent input and output signals with Boolean variables. 
■ Step 2:  construct truth table to carry out computation. 
■ Step 3:  derive (simplified) Boolean expression using sum-of products. 
■ Step 4:  transform Boolean expression into circuit.
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ODD Parity Circuit

ODD(x, y, z). 
■ 1 if odd number of inputs are 1.  
■ 0 otherwise.
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ODD Parity Circuit

ODD(x, y, z). 
■ 1 if odd number of inputs are 1.  
■ 0 otherwise.
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100 0

110 1+

001 1

011 0

Let's Make an Adder Circuit

Goal:  x + y = z for 4-bit integers. 
■ We build 4-bit adder:  9 inputs, 4 outputs. 
■ Same idea scales to 128-bit adder. 
■ Key computer component. 
!
Step 1. 
■ Represent input and output in binary.

x1x2x3 x0

y1y2y3 y0+

z1z2z3 z0

842 7

753 9+

606 6

111

x3
x2
x1
x0

y3
y2
y1
y0

z3
z2
z1
z0

+

c 0

0

c1c2c3 c0

20

Let's Make an Adder Circuit

Goal:  x + y = z for 4-bit integers. 
!
Step 2.  (first attempt) 
■ Build truth table. 
■ Why is this a bad idea? 

– 128-bit adder:  2256+1 rows  >  # electrons in universe!
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Let's Make an Adder Circuit

Goal:  x + y = z for 4-bit integers. 
!
Step 2.  (do one bit at a time) 
■ Build truth table for carry bit. 
■ Build truth table for summand bit.
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Let's Make an Adder Circuit

Goal:  x + y = z for 4-bit integers. 
!
Step 3. 
■ Derive (simplified) Boolean expression.
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Let's Make an Adder Circuit

Goal:  x + y = z for 4-bit integers. 
!
Step 4. 
■ Transform Boolean expression into circuit. 
■ Chain together 1-bit adders.
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Let's Make an Adder Circuit

Goal:  x + y = z for 4-bit integers. 
!
Step 4. 
■ Transform Boolean expression into circuit. 
■ Chain together 1-bit adders.
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Subtractor

Subtractor circuit:  z = x - y. 
■ One approach:  new design, like adder circuit. 
■ Better idea:  reuse adder circuit. 

– 2's complement:  to negate an integer, flip bits, then add 1
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ALU Interface. 
■ Add, subtract, bitwise and, bitwise xor, shift left, shift right, copy. 
■ Associate 3-bit integer with 5 primary ALU operations. 

– ALU performs operations in parallel 
– control wires select which result ALU outputs

TOY Arithmetic Logic Unit:  Interface
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2n-to-1 Multiplexer

2n-to-1 multiplexer. 
■ n select inputs, 2n data 

inputs, 1 output. 
■ Copies "selected"  

data input bit to output.

8-to-1 Mux Implementation
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TOY Arithmetic Logic Unit:  Implementation
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6.2:  Sequential Circuits

QS

R



Sequential vs. Combinational Circuits

!
Combinational circuits. 
■ Output determined solely by inputs. 
■ Can draw solely with left-to-right  

signal paths. 
!
!
!
!
Sequential circuits. 
■ Output determined by inputs 
    AND previous outputs. 
■ Feedback loop.

QS

R
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Flip-Flop

Flip-flop. 
■ A small and useful sequential circuit. 
■ Abstraction that "remembers" one bit. 
■ Basis of important computer components: 

– memory 
– counter 
!

We will consider several flavors.
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SR Flip-Flop

What is the value of Q if: 
■ S = 1 and R = 0 ?       ⇒ 

1

0

1

Q is surely 1

QS

R
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SR Flip-Flop

What is the value of Q if: 
■ S = 1 and R = 0 ?       ⇒      Q is surely 1  
■ S = 0 and R = 1 ?       ⇒     

0

1

QS

R

0

Q is surely 0

00
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SR Flip-Flop

What is the value of Q if: 
■ S = 1 and R = 0 ?       ⇒      Q is surely 1  
■ S = 0 and R = 1 ?       ⇒      Q is surely 0"
■ S = 0 and R = 0 ?       ⇒     

0

0
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R 1
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Q is possibly 0

0

0
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SR Flip-Flop

What is the value of Q if: 
■ S = 1 and R = 0 ?       ⇒      Q is surely 1  
■ S = 0 and R = 1 ?       ⇒      Q is surely 0"
■ S = 0 and R = 0 ?       ⇒      Q is possibly 0 . . .     

0

0

QS

R 1

1

or possibly 1 !

1

1
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SR Flip-Flop

What is the value of Q if: 
■ S = 1 and R = 0 ?       ⇒      Q is surely 1  
■ S = 0 and R = 1 ?       ⇒      Q is surely 0"
■ S = 0 and R = 0 ?       ⇒      Q is possibly 0 . . .     

0

0

QS

R

old Q

or possibly 1 !

While S = R = 0 , Q remembers what it was the last time S or R was 1.

1
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SR Flip-Flop

SR Flip-Flop. 
■ S = 1, R = 0 (Set) ⇒   “Flips” bit on. 
■ S = 0, R = 1 (Reset) ⇒   “Flops” bit off. 
■ S = R = 0  ⇒    Status quo. 
■ S = R = 1  ⇒    Not allowed. 

Interface
Implementation

S

R

SR flip flopSR flip flop

Q

QS

R
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Clock

Clock. 
■ Fundamental abstraction. 

– regular on-off pulse 
■ From some oscillating device, possibly external. 
■ Synchronizes operations of different circuit elements. 
■ 1 GHz clock means 1 billion pulses per second.

cycle time

Clock

1

0
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How much does it Hert?

Frequency is inverse of cycle time. 
■ Expressed in hertz. 
■ Frequency of 1 Hz means that there is 1 cycle per second. 
■ Hence: 

– 1 kilohertz (kHz) means 1000 cycles/sec. 
– 1 megahertz (MHz) means 1 million cycles/sec. 
– 1 gigahertz (GHz) means 1 billion cycles/sec. 
– 1 terahertz (THz) means 1 trillion cycles/sec. 
!

By the way, no such thing as 1 “hert” !

Heinrich Rudolf Hertz 
(1857-1894)
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Clocked SR Flip-Flop

Clocked SR Flip-Flop. 
■ Same as SR flip-flop except S and R only active when clock is 1.

InterfaceImplementation
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Clocked D Flip-Flop

Clocked D Flip-Flop. 
■ Output follows D input while clock is 1. 
■ Output is remembered while clock is 0.

InterfaceImplementation
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Summary

Combinational circuits implement Boolean functions 
■ Gates and wires Fundamental building blocks. 
■ Truth tables.  Describe Boolean functions. 
■ Sum-of-products. Systematic method to implement functions. 
!
Sequential circuits add "state" to digital hardware. 
■ Flip-flop.  Represents 1 bit. 
■ TOY register. 16 D flip-flops. 
■ TOY main memory. 256 registers. 
!

Next time:  we build a complete TOY computer (oh yes).
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George Boole (1815 – 1864) Claude Shannon (1916 – 2001)

44


