
COS 126 Midterm 2 Written Exam Fall 2013

This test has 10 questions, weighted as indicated. The exam is closed book, except that you are
allowed to use a one page cheatsheet (front and back). No calculators or other electronic devices
are permitted. Give your answers and show your work in the space provided.

Print your name, login ID, and precept number on this page (now), and write out and sign the
Honor Code pledge before turning in this paper. Note: It is a violation of the Honor Code to
discuss this midterm exam question with anyone until after everyone in the class has taken the
exam. You have 50 minutes to complete the test.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Signature

1 /5

2 /7

3 /6

4 /6

5 /10

6 /6

7 /8

8 /12

9 /5

10 /5

/70

Name: ______________________________� Login id:_____________�

� � Precept:_____________

1. Boolean Algebra and Combinational Circuits (5 points).

A. (3 points) In the blank at left of each of the boolean expressions below, mark T if the
expression is equivalent to x+y . Otherwise, mark F.

 ______ xy + (x+y)

 ______ xy (x+y)

 ______ xy + (x'y')'

B. (2 points) Circle the one circuit below that computes x+y.

T

F

T

2. Programming languages (7 points). Write YES or NO in each of the seven unshaded boxes
below to indicate whether or not the indicated programming language has the indicated property.

can pass a function
as an argument to
another function

must declare types
of variables

automatic garbage
collection

C

Java

Python

YES

YES

NO

NO

YES

NO

YES

3. REs/DFAs (6 points). By circling exactly one entry in each cell in the table below, indicate
which of the strings at the top are in the language described by the RE/DFA at the left.

010101 111110 000000

(0 | 11)*
match

mismatch

match

mismatch

match

mismatch

accept

reject

accept

reject

accept

reject

4. Linked structures (6 points). Examine the following code and answer the questions below:

public class Node
{
 private String name;
 private Node next;

 public Node (String s, Node n)
 { name = s; next = n; }

 public static void main(String[] args)
 {
 Node a = new Node("Alice", null);
 Node b = new Node("Bob", a);
 Node e = new Node("Eve", b);

 Node cur = e;
 Node temp = null;

 while (cur != null)
 {
 Node next = cur.next;
 cur.next = temp;
 temp = cur;
 cur = next;
 }
 }
}

A. (3 points) In the diagram below, draw arrows to indicate the node references after the
 first three statements (which create the nodes) in main() have been executed.
 If a node reference is null, mark the box with an X.

B. (3 points) In the diagram below, draw arrows to indicate the node references after the
 while loop in main() completes execution.

X

X

5. Creating Data Types (10 points).

Recall the Point data type from the TSP assignment. Your task for this question is to develop an
API for a LineSegment abstract data type by filling in the blanks below the given instance
method descriptions with full method signatures (the constructor signature is provided for you).
For each method you must provide an access modifier, a return type, and parameter types and
names when warranted, but not the code that implements the method. We have provided the
method names; your job is to fill in the blanks around them. Use the Point data type when it is
logical to do so. For reference, a line segment is a part of a line that is bounded by two distinct end
points, and contains every point on the line between its end points.

 A. Constructor: create a line segment with two given end points.

 public LineSegment(Point x, Point y)

 B. Return the string representation of this line segment.

 _____________________toString_______________________________

 C. Return true if the given point is contained by this line segment; false otherwise.

 _____________________contains_______________________________

 D. Return the slope of this line segment.

 _____________________slope___________________________________

 E. Return N equally-spaced points that are contained by this line segment.

 _____________________sample_________________________________

 F. Return the point at the intersection of this line segment and the given line
 segment (null if none exists).

 _____________________intersection__________________________

public String

public boolean

public double

public Point[]
(or Queue<Point>, etc)

public Point

()

(Point p)

()

(int N)

(LineSegment other)

6. BSTs (6 points). In the blanks provided write yes next to any of the following sequences that
could be the sequence of keys examined in a search for the letter M in some binary search tree
containing the letters of the alphabet. Write no next to any sequence that could not result from
such a search.

A. __________ A B C Z L M.

B. __________ C U F N P K M.

C. __________ G Q H I K R M.

D. __________ Z C Y F K P M.

E. __________ E U G P K H M.

7. Computability/Intractability (8 points). For each of the computational problems below,
indicate its difficulty by writing the most appropriate choice of X (not computable), NPC (NP-
complete), P (tractable), or DFA (solvable by a DFA) in the blank at left.

A. _________ Checking whether any given program contains a virus.

B. _________ Compiling any given Java program.

C. _________ Determining whether there exists a set of inputs for which
 any given combinational circuit computes 1.

D. _________ Checking whether any given string is a valid e-mail address.

E. _________ Checking whether any given DNA sequence contains ACGGAC.

F. _________ Finding an optimal traveling salesperson tour through any given
 set of points.

G. _________ Solving Post's correspondence problem.

H. _________ Checking whether any given string has an equal number of 0s and 1s.

yes

no

no

yes

no

X

P

NPC

DFA

DFA

NPC

X

P

8. TOY/Turing (12 points). Consider the following ten simple operations that might be
performed on a 16-bit 2s complement binary integer (ignore overflow).

0. No-op (no change).
1. Flip all bits (0s to 1s and 1s to 0s).
2. Multiply by 2.
3. Multiply by 4.
4. AND with 1.

A. (6 points) Indicate which of the operations is performed on the contents of R7 by each of
the three TOY code sequences below by writing a number between 0 and 9 in the box to the
left of each.

B. (6 points) Indicate which of the operations is performed by each of the Turing machines
below by writing a number between 0 and 9 in the box to the left of each. As usual, we omit
transitions to the same state that do not change the symbol. The input is a (2s complement)
binary number on the tape (surrounded by #s). The head starts on the left bit. The output is
the (2s complement) binary value of the final tape contents.

5. Add 1.
6. Subtract 1.
7. Shift left 2.
8. XOR with all 1s.
9. Negate (multiply by -1).

7101 ��R1 <- 0001

2201 ��

4772 ��

1771 ��R7 <- R7 + R1

4779 ��R7 <- R7 ^ R9

4779 ��R7 <- R7 ^ R9

7101 ��R1 <- 0001

5771 ��

9
0

2

9

0

2

 TOY REFERENCE CARD

INSTRUCTION FORMATS

 | | | ||

 Format 1: | opcode | d | s | t | (0-6, A-B)

 Format 2: | opcode | d | addr | (7-9, C-F)

ARITHMETIC and LOGICAL operations

 1: add R[d] <- R[s] + R[t]

 2: subtract R[d] <- R[s] - R[t]

 3: and R[d] <- R[s] & R[t]

 4: xor R[d] <- R[s] ^ R[t]

 5: shift left R[d] <- R[s] << R[t]

 6: shift right R[d] <- R[s] >> R[t]

TRANSFER between registers and memory

 7: load address R[d] <- addr

 8: load R[d] <- mem[addr]

 9: store mem[addr] <- R[d]

 A: load indirect R[d] <- mem[R[t]]

 B: store indirect mem[R[t]] <- R[d]

CONTROL

 0: halt halt

 C: branch zero if (R[d] == 0) pc <- addr

 D: branch positive if (R[d] > 0) pc <- addr

 E: jump register pc <- R[d]

 F: jump and link R[d] <- pc; pc <- addr

Register 0 always reads 0.

Loads from mem[FF] come from stdin.

Stores to mem[FF] go to stdout.

9. Circuits (5 points). Identify the circuits below by writing one of the identifiers DECODER,
MAJORITY, MEMORY BIT, ODD PARITY or XOR above each of them. (Inputs are at the top
and outputs are on the right or at the bottom.)

10. CPU (5 points). Match each term on the left with a phrase on the right by writing a letter in
each blank space. Use each letter once and only once.

A. SR flip-flop _______ holds instruction address during execution

B. IR _______ performs arithmetic operations

C. bus _______ set of parallel wires

D. ALU _______ two cross-coupled NOR gates

E. PC _______ holds instruction during execution

DECODER

MAJORITY ODD PARITY

XOR

MEMORY

C

D

E

B

A

