
COS 126 General Computer Science Spring 2013

Written Exam 1

This test has 8 questions, weighted as indicated. The exam is closed book, except that you are
allowed to use a one-page single-sided cheatsheet. No calculators or other electronic devices are
permitted. Give your answers and show your work in the space provided.

Print your name, login ID, and precept number on this page (now), and write out and sign the
Honor Code pledge before turning in this paper. It is a violation of the Honor Code to discuss this
exam until everyone in the class has taken the exam. You have 50 minutes to complete the test.

Write out and sign the Honor Code pledge before turning in the test:
“I pledge my honor that I have not violated the Honor Code during this examination.”

Pledge:

Signature:

Problem Score

1 /12

2 /10

3 /9

4 /9

5 /8

6 /9

7 /6

8 /7

Total /70

Name:

NetID:

Precept:
P01 12:30 TTh Dave Pritchard
P01A 12:30 TTh Donna Gabai
P01B 12:30 TTh Pawel Przytycki
P02 1:30 TTh Tom Funkhouser
P02A 1:30 TTh Allison Chaney
P02B 1:30 TTh Pawel Przytycki
P02C 1:30 TTh Vivek Pai
P02D 1:30 TTh Siddhartha Chaudhuri
P03 2:30 TTh Tom Funkhouser
P03A 2:30 TTh Allison Chaney
P04 3:30 TTh Vivek Pai
P04B 3:30 TTh Shilpa Nadimpalli
P05 7:30 TTh Shilpa Nadimpalli
P06 10am WF Lennart Beringer
P07 1:30 WF Dave Pritchard
P07A 1:30 WF Kevin Lee
P07B 1:30 WF Siyu Liu
P08 12:30 WF Donna Gabai
P08A 12:30 WF Judi Israel
P09 11am WF Judi Israel

1. Java Expressions (12 points)

For each of the Java expressions below, write down the type of the expression and its value. If
the expression causes a syntax or run-time error, write an X in both boxes.

Type Value

1 + 2 + "3" + 4 + 5

(double)(1 / 2 + 1.0)

false && (!(!!true || (true || !true)))

7 = 11

true != false

Double.parseDouble("1E1")

2. Number Systems (10 points)

For this problem, we ask you to perform several calculations on hexadecimal numbers. For each
part, we are using a 16-bit twos-complement representation.

(a) What is 0ABE, expressed in binary?

(b) What is FFEE, expressed in decimal?

(c) What is F00D ∧ FEED, expressed in hexadecimal?

(d) What is B0D1 & FACE, expressed in hexadecimal?

(e) What is B0D1 | FACE, expressed in hexadecimal?

3. Debugging (9 points)

Recall that the absolute value function of x is defined by

abs(x) =

{
x, if x ≥ 0;

−x, otherwise.

For example, abs(4) = 4 and abs(−2) = 2.

The following program is supposed to compute the sum of the absolute values of its arguments.
Here is a sample run and the expected output:

% java AbsoluteSum 1 -2 4

The absolute sum is 7

However, your AbsoluteSum program is not working. Here is its source code:

1 public class AbsoluteSum {

2 public static void main(String[] args) {

3 int n = args.length;

4 int sum = 0;

5 for (int i = 0; i < n; n++) {

6 int value = Integer.parseInt(args(i));

7 if (value < 0);

8 value = -1 * value;

9 sum = sum + value;

10 }

11 System.out.println("The absolute sum is " + sum);

12 }

13 }

For the three parts below, give the line number where there is a bug in the program, and a brief
description of the bug. You do not need to write code to fix the bug.

(a) Find a syntax error that prevents the code from compiling.

Line: Description:

(b) Find an error that causes the code to run forever (assuming the previous error was fixed).

Line: Description:

After fixing these two bugs, you run the program and find it is computing the wrong value:

% java AbsoluteSum 1 -2 4

The absolute sum is -3

(c) Find the error that causes this incorrect output.

Line: Description:

4. Arrays (9 points)

For this problem, you will trace the values stored in three arrays by the following program.

public class ThreeArrays {

public static void main(String[] args) {

int n = args.length;

int[] a = new int[n];

int[] b = new int[n+1];

int[] c = b;

for (int i = 0; i < n; i++)

a[n-i-1] = Integer.parseInt(args[n-i-1]);

for (int i = 0; i < n; i++)

b[i+1] = b[i] + a[i];

for (int i = 0; i < n; i++)

c[i+1] = b[i] + c[i+1];

}

}

If we run

% java ThreeArrays 1 10 100

what are the values stored in the arrays at the end of the program? Enter your responses in
the boxes below.

a[0]: a[1]: a[2]:

b[0]: b[1]: b[2]: b[3]:

c[0]: c[1]: c[2]: c[3]:

TOY Reference Card Use this for the next problem on the facing page.

TOY REFERENCE CARD

INSTRUCTION FORMATS

| | | ||

Format 1: | opcode | d | s | t | (0-6, A-B)

Format 2: | opcode | d | addr | (7-9, C-F)

ARITHMETIC and LOGICAL operations

1: add R[d] <- R[s] + R[t]

2: subtract R[d] <- R[s] - R[t]

3: and R[d] <- R[s] & R[t]

4: xor R[d] <- R[s] ^ R[t]

5: shift left R[d] <- R[s] << R[t]

6: shift right R[d] <- R[s] >> R[t]

TRANSFER between registers and memory

7: load address R[d] <- addr

8: load R[d] <- mem[addr]

9: store mem[addr] <- R[d]

A: load indirect R[d] <- mem[R[t]]

B: store indirect mem[R[t]] <- R[d]

CONTROL

0: halt halt

C: branch zero if (R[d] == 0) pc <- addr

D: branch positive if (R[d] > 0) pc <- addr

E: jump register pc <- R[d]

F: jump and link R[d] <- pc; pc <- addr

Register 0 always reads 0.

Loads from mem[FF] come from stdin.

Stores to mem[FF] go to stdout.

pc starts at 10

16-bit registers

16-bit memory locations

8-bit program counter

5. TOY (8 points)

A NOOP (no operation) in a TOY program is a command that has no effect, other than that the
program counter advances just past this command. One use of NOOPs is as a quick alternative
to renumbering all of the lines in your TOY program, when you want to delete a line in the
middle.

When we call a command a NOOP, we cannot make any assumptions about the state of the
machine. For example, the command 1BB0 is a NOOP since it adds zero to register B, which
cannot possibly have any effect on any register or memory location. But the command 1BBA is
not a NOOP because, depending on the contents of register A, this might change the value of
register B.

Similarly, a pair of commands at memory locations L and L+ 1 forms a NOOP if reaching line
L means that we are guaranteed to get to line L+ 2, with everything the same as it was at line
L (except the program counter).

Determine which of the commands and pairs below are NOOPs. The
... symbols represent hidden

parts of the program. Do not make any assumptions about the hidden parts or the initial state
of the machine. Circle your YES/NO answer for each of the 8 possible NOOPs.

Use the TOY reference card on the facing page.

...
20: D0D0 This line is a NOOP: YES NO
...
30: BEEF This line is a NOOP: YES NO
...
40: 6991

41: 5991
This pair of lines is a NOOP: YES NO

...
50: 433E

51: 43E3
This pair of lines is a NOOP: YES NO

...
60: 2222 This line is a NOOP: YES NO
...
70: 3333 This line is a NOOP: YES NO
...
80: DA82

81: CB82
This pair of lines is a NOOP: YES NO

...
90: DA90

91: CA91
This pair of lines is a NOOP: YES NO

...

6. Methods and Input/Output (9 points)

In this problem, you will analyze the program below:

public class Methodical {

public static int transform(int x, int y) {

x = x + 2;

return (x + y);

}

public static int transform(double z) {

int y = (int) z;

StdOut.println(y);

z = z + 1;

return (int) z;

}

public static void main(String[] args) {

String w = args[0];

int x = Integer.parseInt(StdIn.readString());

int y = Integer.parseInt(args[1]);

double z = StdIn.readDouble();

transform(z);

StdOut.println(z);

StdOut.println(w + transform(x, y));

}

}

The file numbers.txt contains the following three lines:
4
5
6

(a) What is printed when we run Methodical with the arguments and input below?

% java Methodical 1 2 3 < numbers.txt

First line:

Second line:

Third line:

(b) What type of error occurs if we run this command?

% java Methodical 1 2 3 < numbers.txt | java Methodical

Circle one of I, II, III or IV.

I. No such element in readString

II. Array index out of bounds

III. Number format exception in parseInt

IV. Program runs forever

7. Recursion (6 points)

For the first four parts of this problem, you will investigate the behaviour of the recursive method
defined by:

public static void f(int n) {

// print n

System.out.print(n + " "); // space to separate the outputs

// recursive calls, but when n is zero, acts as the base case

for (int i = 0; i < n; i++) {

f(i);

}

}

(a) What is printed when you call f(0)?

Output:

(b) What is printed when you call f(1)?

Output:

(c) What is printed when you call f(2)?

Output:

(d) What is printed when you call f(3)?

Output:

(e) For this part, we ask instead about the method g:

public static int g(int n) {

if (n % 2 == 0) return n/10;

return g(g(n/10));

}

What is the value of g(3122013)?

Value:

8. Recursive Graphics (7 points)

Here is a method that draws squares recursively:

public static void draw(int n, double x, double y, double r) {

if (n==0) return; // base case

draw(n-1, x, y, r/4);

StdDraw.square(x, y, r); // draw a square

draw(n-1, x - r/2, y, r/4);

draw(n-1, x + r/2, y, r/4);

}

Below, we plot the picture produced when draw(3, 0.5, 0.5, 0.5) is called. It draws thirteen
squares, which we have also labelled with dashed circles and arrows.

(a) What is the order in which the squares were drawn? Write all of the integers from 1 to 13
in the circles to indicate this order, with 1 labelling the first square drawn and 13 the last.

(b) Which of the follow expressions represents the order of growth of the running time of draw
as a function of the first argument n? Circle one.

• log3 n

• n log3 n

• n3

• 3n

