
COS 126 Midterm 1 Programming Exam Fall 2012

is part of your midterm exam is like a mini-programming assignment. You will create two
programs, compile them, download test data and run them on your laptop. Debug your code as
needed. is exam is open book, open browser—but only our course website and booksite! Of
course, no internal or external communication is permitted (e.g., talking, email, IM, texting, cell
phones) during the exam. You may use code from your assignments or code found on the
COS126 website. When you are done, submit your program via the course website using the
submit link for Programming Exam 1 on the Assignments page.

Grading. Your program will be graded on correctness, clarity (including comments), design, and
efficiency. You will lose a substantial number of points if your program does not compile or if it
crashes on typical inputs.

Even though you will electronically submit your code, you must turn in this paper so that we have
a record that you took the exam and signed the Honor Code. Print your name, login ID, and
precept number on this page (now), and write out and sign the Honor Code pledge before turning
in this paper. Note: It is a violation of the Honor Code to discuss this midterm exam question with
anyone until aer everyone in the class has taken the exam. You have 90 minutes to complete the
test.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Signature

Part 1 /14

Part 2A /8

Part 2B /8

TOTAL /30

NAME:! ! login id:!
! ! Precept:

Your task in this exam is to write two programs related to the famous derangement problem:

Suppose that N graduating students throw their hats in the air, and each catches a
hat. What is the chance that no student gets his own hat back?

Mathematically, a permutation of size N is a rearrangement p1 p2 p3 . . . pN of the numbers 1 through
N and a derangement is a permutation for which pi ≠ i for any i. For example,

p1 p2 p3 p4 p5 p6 p7 p8 p9

9 8 7 6 5 4 3 2 1

is not a derangement because p5 = 5 and

p1 p2 p3 p4 p5 p6 p7 p8 p9

3 7 6 9 8 2 1 5 4

is a derangement. Your job is to write code to identify and count derangements.

Part 1 (14 points). Write a program HatsPart1 with the following API:

public class HatsPart1

public static boolean isD(int[] a) // Is the permutation in
! ! ! ! ! ! // array a a derangement?

public static void main(String[] args)!// Count how many of the input
! ! ! ! ! ! ! // permutations are derangements.
! ! ! ! ! ! ! // Output the first derangement
! ! ! ! ! ! ! // if it exists.
! ! ! ! ! ! ! // Output the derangement count.

Your public method isD() must return true if the N-item array passed as an argument
represents a derangement, and false otherwise. For example, this code should print false:
int[] test = {9, 8, 7, 6, 5, 4, 3, 2, 1};
StdOut.println(isD(test)); // should print false

Your main() method must read from standard input an int value N followed by a sequence of
permutations of the integers 1 through N (you may assume there will be one or more
permutations). Input and examine each permutation so that you can identify and print the %rst
derangement. Continue to examine the permutations in order to identify and count all the
derangements. If there are no derangements, the %rst line of output should not be printed.

Your output should be in the same format as shown in the example.

Sample Runs. Two sample %les are available at:
http://www.cs.princeton.edu/~cos126/docs/data/5perms9.txt
http://www.cs.princeton.edu/~cos126/docs/data/1000perms15.txt

http://www.cs.princeton.edu/~cos126/docs/data/5perms9.txt
http://www.cs.princeton.edu/~cos126/docs/data/5perms9.txt
http://www.cs.princeton.edu/~cos126/docs/data/1000perms15.txt
http://www.cs.princeton.edu/~cos126/docs/data/1000perms15.txt

% more 5perms9.txt
9
1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1
2 1 4 3 6 5 8 7 9
8 9 2 1 4 7 5 3 6
3 7 6 9 8 2 1 5 4

% java HatsPart1 < 5perms9.txt
First derangement: 8 9 2 1 4 7 5 3 6
Number of derangements: 2

% java HatsPart1 < 1000perms15.txt
First derangement: 12 8 7 5 9 10 1 14 13 2 4 3 11 15 6
Number of derangements: 358

Submission. Submit the single %le HatsPart1.java via Dropbox at

https://dropbox.cs.princeton.edu/COS126_F2012/Exam1

Be sure to click the Check All Submitted Files button to verify your submission.

Part 2 (16 points). Be sure that you have successfully submitted HatsPart1.java before
attempting this part of the exam. Read everything before starting to code.

Assuming that all hats are labeled with owner’s names, one way to get your hat back aer
graduation is to swap hats with the person whose hat you have, continuing until you get your hat.
You are always guaranteed to get your hat back that way. For example, in the permutation

p1 p2 p3 p4 p5 p6 p7 p8 p9

3 7 6 9 8 2 1 5 4

student 1 would get her hat back by swapping with student 3, then 6 then 2, then 7.

e sequence 1 3 6 2 7 is an example of a cycle. e length of this cycle is 5 (including 7 back
to 1). A person who already has her own hat forms a cycle of length 1. Every permutation consists
of a set of 1 or more cycles. In this example, the other cycles are 4 9 and 5 8, each of length 2.

Your next task is to determine the length of the longest cycle in each permutation from the input,
and use that to determine the average longest cycle length for the given permutations. For
example, in the permutation above the longest cycle length is 5. e lengths of the longest cycles
in the %ve permutations in 5perms9.txt are 1, 2, 2, 9, and 5, respectively, so the average length
of the longest cycle in this set of permutations is 3.8.

Write a program HatsPart2 with the API shown on the following page:

https://dropbox.cs.princeton.edu/COS126_F2012/Exam1
https://dropbox.cs.princeton.edu/COS126_F2012/Exam1

public class HatsPart2

public static int maxCycleLength(int[] a) // return the length of the
! ! ! ! ! ! ! // longest cycle in the
! ! ! ! ! ! ! // permutation in array a

public static void main(String[] args)!// Compute and print the average
! ! ! ! ! ! ! // longest cycle length for the
! ! ! ! ! ! ! // input permutations.

e method maxCycleLength() takes as an argument an N-item int array containing a
permutation and returns the longest cycle length, as described above. e main() method, using
the same input format described in Part 1, computes the average max cycle length among the
permutations from standard input, and prints that average as shown below.

Sample Runs. For our two sample %les, your program must behave as follows:

% java HatsPart2 < 5perms9.txt
Average max cycle length: 3.8

% java HatsPart2 < 1000perms15.txt
Average max cycle length: 9.585

Hint. is part is worth 8 points for maxCycleLength() (Part 2B) and 8 points for everything
else (Part 2A). Since Part 2A is much easier than Part 2B, start with a dummy implementation of
maxCycleLength() that just returns 1 and then complete the rest of it aer you have
everything else working.

Submission. Submit the single %le HatsPart2.java via Dropbox at

https://dropbox.cs.princeton.edu/COS126_F2012/Exam1

Again, be sure to click the Check All Submitted Files button to verify your submission.

https://dropbox.cs.princeton.edu/COS126_F2012/Exam1
https://dropbox.cs.princeton.edu/COS126_F2012/Exam1

