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Abstract
We present Resilient Distributed Datasets (RDDs), a dis-
tributed memory abstraction that allows programmers
to perform in-memory computations on large clusters
while retaining the fault tolerance of data flow models
like MapReduce. RDDs are motivated by two types of
applications that current data flow systems handle in-
efficiently: iterative algorithms, which are common in
graph applications and machine learning, and interac-
tive data mining tools. In both cases, keeping data in
memory can improve performance by an order of mag-
nitude. To achieve fault tolerance efficiently, RDDs pro-
vide a highly restricted form of shared memory: they are
read-only datasets that can only be constructed through
bulk operations on other RDDs. However, we show that
RDDs are expressive enough to capture a wide class
of computations, including MapReduce and specialized
programming models for iterative jobs such as Pregel.
Our implementation of RDDs can outperform Hadoop
by 20× for iterative jobs and can be used interactively to
search a 1 TB dataset with latencies of 5–7 seconds.

1 Introduction
High-level cluster programming models like MapReduce
[12] and Dryad [18] have been widely adopted to process
the growing volumes of data in industry and the sciences
[4]. These systems simplify distributed programming by
automatically providing locality-aware scheduling, fault
tolerance, and load balancing, enabling a wide range of
users to analyze big datasets on commodity clusters.

Most current cluster computing systems are based on
an acyclic data flow model, where records are loaded
from stable storage (e.g., a distributed file system),
passed through a DAG of deterministic operators, and
written back out to stable storage. Knowledge of the data
flow graph allows the runtime to automatically schedule
work and to recover from failures.

While acyclic data flow is a powerful abstraction,
there are applications that cannot be expressed efficiently
using only this construct. Our work focuses on one
broad class of applications not well served by the acyclic
model: those that reuse a working set of data in multi-

ple parallel operations. This class includes iterative al-
gorithms commonly used in machine learning and graph
applications, which apply a similar function to the data
on each step, and interactive data mining tools, where a
user repeatedly queries a subset of the data. Because data
flow based frameworks do not explicitly provide support
for working sets, these applications have to output data
to disk and reload it on each query with current systems,
leading to significant overhead.

We propose a distributed memory abstraction called
resilient distributed datasets (RDDs) that supports appli-
cations with working sets while retaining the attractive
properties of data flow models: automatic fault tolerance,
locality-aware scheduling, and scalability. RDDs allow
users to explicitly cache working sets in memory across
queries, leading to substantial speedups on future reuse.

RDDs provide a highly restricted form of shared mem-
ory: they are read-only, partitioned collections of records
that can only be created through deterministic transfor-
mations (e.g., map, join and group-by) on other RDDs.
These restrictions, however, allow for low-overhead fault
tolerance. In contrast to distributed shared memory sys-
tems [24], which require costly checkpointing and roll-
back, RDDs reconstruct lost partitions through lineage:
an RDD has enough information about how it was de-
rived from other RDDs to rebuild just the missing parti-
tion, without having to checkpoint any data.1 Although
RDDs are not a general shared memory abstraction, they
represent a sweet-spot between expressivity, scalability
and reliability, and we have found them well-suited for a
wide range of data-parallel applications.

Our work is not the first to note the limitations of
acyclic data flow. For example, Google’s Pregel [21] is
a specialized programming model for iterative graph al-
gorithms, while Twister [13] and HaLoop [8] provide an
iterative MapReduce model. However, these systems of-
fer restricted communication patterns for specific classes
of applications. In contrast, RDDs are a more general
abstraction for applications with working sets. They al-
low users to explicitly name and materialize intermediate

1Checkpointing may be useful when a lineage chain grows large,
however, and we discuss when and how to perform it in Section 5.3.
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results, control their partitioning, and use them in opera-
tions of their choice (as opposed to giving the runtime a
set of MapReduce steps to loop). We show that RDDs
can be used to express both Pregel, iterative MapRe-
duce, and applications that neither of these models cap-
ture well, such as interactive data mining tools (where a
user loads a dataset into RAM and runs ad-hoc queries).

We have implemented RDDs in a system called Spark,
which is being used to develop a variety of parallel appli-
cations at our organization. Spark provides a language-
integrated programming interface similar to DryadLINQ
[34] in the Scala programming language [5], making it
easy for users to write parallel jobs. In addition, Spark
can be used interactively to query big datasets from a
modified version of the Scala interpreter. We believe that
Spark is the first system to allow an efficient, general-
purpose programming language to be used interactively
to analyze large datasets on clusters.

We evaluate RDDs through both microbenchmarks
and measurements of user applications. We show that
Spark outperforms Hadoop by up to 20× for iterative ap-
plications, improves the performance of a data analytics
report by 40×, and can be used interactively to scan a 1
TB dataset with latencies of 5–7s. In addition, we have
implemented the Pregel and HaLoop programming mod-
els on top of Spark, including the placement optimiza-
tions they employ, as relatively small libraries (100 and
200 lines of Scala respectively). Finally, we have taken
advantage of the deterministic nature of RDDs to build
rddbg, a debugging tool for Spark that lets users rebuild
any RDD created during a job using its lineage and re-
run tasks on it in a conventional debugger.

We begin this paper by introducing RDDs in Section
2. Section 3 then presents the API of Spark. Section 4
shows how RDDs can express several parallel applica-
tions, including Pregel and HaLoop. Section 5 discusses
the representation of RDDs in Spark and our job sched-
uler. Section 6 describes our implementation and rddbg.
We evaluate RDDs in Section 7. We survey related work
in Section 8 and conclude in Section 9.

2 Resilient Distributed Datasets (RDDs)
This section describes RDDs and our programming
model. We start by discussing our goals, from which we
motivate our design (§2.1). We then define RDDs (§2.2),
discuss their programming model in Spark (§2.3), and
show an example (§2.4). We finish by comparing RDDs
with distributed shared memory in §2.5.

2.1 Goals and Overview

Our goal is to provide an abstraction that supports appli-
cations with working sets (i.e., applications that reuse an
intermediate result in multiple parallel operations) while
preserving the attractive properties of MapReduce and

related models: automatic fault tolerance, locality-aware
scheduling, and scalability. RDDs should be as easy to
program against as data flow models, but capable of effi-
ciently expressing computations with working sets.

Out of our desired properties, the most difficult one to
support efficiently is fault tolerance. In general, there are
two options to make a distributed dataset fault-tolerant:
checkpointing the data or logging the updates made to
it. In our target environment (large-scale data analytics),
checkpointing the data is expensive: it would require
replicating big datasets across machines over the data-
center network, which typically has much lower band-
width than the memory bandwidth within a machine
[16], and it would also consume additional storage (repli-
cating data in RAM would reduce the total amount that
can be cached, while logging it to disk would slow
down applications). Consequently, we choose to log up-
dates. However, logging updates is also expensive if
there are many of them. Consequently, RDDs only sup-
port coarse-grained transformations, where we can log a
single operation to be applied to many records. We then
remember the series of transformations used to build an
RDD (i.e., its lineage) and use it to recover lost partitions.

While supporting only coarse-grained transformations
restricts the programming model, we have found RDDs
suitable for a wide range of applications. In particu-
lar, RDDs are well-suited for data-parallel batch analyt-
ics applications, including data mining, machine learn-
ing, and graph algorithms, because these programs nat-
urally perform the same operation on many records.
RDDs would be less suitable for applications that asyn-
chronously update shared state, such as a parallel web
crawler. However, our goal is to provide an efficient pro-
gramming model for a large array of analytics applica-
tions, and leave other applications to specialized systems.

2.2 RDD Abstraction

Formally, an RDD is a read-only, partitioned collection
of records. RDDs can be only created through determin-
istic operations on either (1) a dataset in stable storage
or (2) other existing RDDs. We call these operations
transformations to differentiate them from other opera-
tions that programmers may apply on RDDs. Examples
of transformations include map, filter, groupBy and join.

RDDs do not need to be materialized at all times. In-
stead, an RDD has enough information about how it was
derived from other datasets (i.e., its lineage) to compute
its partitions from data in stable storage.

2.3 Programming Model

In Spark, RDDs are represented by objects, and transfor-
mations are invoked using methods on these objects.

After defining one or more RDDs, programmers can
use them in actions, which are operations that return a

2

hissar
Sticky Note
What about "reduce" operation ?



value to the application or export data to a storage sys-
tem. Examples of actions include count (which returns
the number of elements in the RDD), collect (which re-
turns the elements themselves), and save (which outputs
the RDD to a storage system). In Spark, RDDs are
only computed the first time they are used in an action
(i.e., they are lazily evaluated), allowing the runtime to
pipeline several transformations when building an RDD.

Programmers can also control two other aspects of
RDDs: caching and partitioning. A user may ask for an
RDD to be cached, in which case the runtime will store
partitions of the RDD that it has computed to speed up
future reuse. Cached RDDs are typically stored in mem-
ory, but they spill to disk if there is not enough memory.2

Lastly, RDDs optionally allow users to specify a parti-
tioning order based on a key associated with each record.
We currently support hash and range partitioning. For
example, an application may request that two RDDs be
hash-partitioned in the same way (placing records with
the same keys on the same machine) to speed up joins
between them. Consistent partition placement across it-
erations is one of the main optimizations in Pregel and
HaLoop, so we let users express this optimization.

2.4 Example: Console Log Mining

We illustrate RDDs through an example use case. Sup-
pose that a large website is experiencing errors and an
operator wants to search terabytes of logs in the Hadoop
filesystem (HDFS) to find the cause. Using Spark, our
implementation of RDDs, the operator can load just the
error messages from the logs into RAM across a set of
nodes and query them interactively. She would first type
the following Scala code at the Spark interpreter:3

lines = spark.textFile("hdfs://...")

errors = lines.filter(_.startsWith("ERROR"))

errors.cache()

Line 1 defines an RDD backed by an HDFS file (as a
collection of lines of text), while line 2 derives a filtered
RDD from it. Line 3 asks for errors to be cached. Note
that the argument to filter is Scala syntax for a closure.

At this point, no work has been performed on the clus-
ter. However, the user can now use the RDD in actions,
e.g., to count the number of messages:

errors.count()

The user can also perform further transformations on
the RDD and use their results, as in the following lines:

// Count errors mentioning MySQL:

errors.filter(_.contains("MySQL")).count()

2Users can also request other behaviors, like caching only on disk.
3Spark’s language-integrated API is similar to DryadLINQ [34].

lines 

errors 

filter(_.startsWith(“ERROR”)) 

HDFS errors 

time fields 

filter(_.contains(“HDFS”))) 

map(_.split(‘\t’)(3)) 

Figure 1: Lineage graph for the third query in our example.
Boxes represent RDDs and arrows represent transformations.

// Return the time fields of errors mentioning

// HDFS as an array (assuming time is field

// number 3 in a tab-separated format):

errors.filter(_.contains("HDFS"))

.map(_.split(’\t’)(3))

.collect()

After the first action involving errors runs, Spark will
cache the partitions of errors in memory, greatly speed-
ing up subsequent computations on it. Note that the base
RDD, lines, is never cached. This is desirable because
the error messages might only be a small fraction of the
data (small enough to fit into memory).

Finally, to illustrate how our model achieves fault tol-
erance, we show the lineage graph for the RDDs in our
third query in Figure 1. In this query, we started with
errors, the result of a filter on lines, and applied a fur-
ther filter and map before running a collect. The Spark
scheduler will pipeline the latter two transformations and
send a set of tasks to compute them to the nodes holding
the cached partitions of errors. In addition, if a partition
of errors is lost, Spark rebuilds it by applying a filter on
only the corresponding partition of lines.

2.5 RDDs vs. Distributed Shared Memory

To further understand the capabilities of RDDs as a dis-
tributed memory abstraction, we compare them against
distributed shared memory (DSM) [24] in Table 1. In
DSM systems, applications read and write to arbitrary
locations in a global address space. (Note that under this
definition, we include not only traditional shared mem-
ory systems, but also systems where an application might
share data through a distributed hash table or filesystem,
like Piccolo [28].) DSM is a very general abstraction,
but this generality makes it harder to implement in an ef-
ficient and fault-tolerant manner on commodity clusters.

The main difference between RDDs and DSM is that
RDDs can only be created (“written”) through bulk trans-
formations, while DSM allows reads and writes to each
memory location. This restricts RDDs to applications
that perform bulk writes, but allows for more efficient
fault tolerance. In particular, RDDs do not need to incur
the overhead of checkpointing, as they can be recovered
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Aspect RDDs Distr. Shared Mem. 
Reads Bulk or fine-grained Fine-grained 
Writes Bulk transformations Fine-grained 
Consistency Trivial (immutable) Up to app / runtime 
Fault recovery Fine-grained and low-

overhead using lineage 
Requires checkpoints 
and program rollback 

Straggler 
mitigation 

Possible using backup 
tasks 

Difficult 

Work 
placement 

Automatic based on 
data locality 

Up to app (runtimes 
aim for transparency) 

Behavior if not 
enough RAM 

Similar to existing 
data flow systems 

Poor performance 
(swapping?) 

Table 1: Comparison of RDDs with distributed shared memory.

using lineage.4 Furthermore, only the lost partitions of
an RDD need to be recomputed upon failure, and they
can be recomputed in parallel on different nodes, with-
out having to roll back the whole program.

One interesting observation is that RDDs also let a sys-
tem tolerate slow nodes (stragglers) by running backup
copies of tasks, as in MapReduce [12]. Backup tasks
would be hard to implement with DSM as both copies of
a task would read/write to the same memory addresses.

The RDD model also provides two other benefits over
DSM. First, in bulk operations on RDDs, a runtime can
schedule tasks based on data locality to improve perfor-
mance. Second, cached RDDs degrade gracefully when
there is not enough memory to store them, as long as they
are only being used in scan-based operations. Partitions
that do not fit in RAM can be stored on disk and will pro-
vide similar performance to current data flow systems.

One final point of comparison is the granularity of
reads. Many of our actions on RDDs (e.g., count and
collect) perform bulk reads that scan the whole dataset,
which also lets us schedule them close to the data. How-
ever, RDDs can be used for fine-grained reads as well,
through key lookups on hash or range partitioned RDDs.

3 Spark Programming Interface
Spark provides the RDD abstraction through a language-
integrated API in Scala [5]. Scala is a statically typed
functional and object-oriented language for the Java VM.
We chose to use Scala due to its combination of concise-
ness (which is especially useful for interactive use) and
efficiency (due to static typing). However, nothing about
the RDD abstraction requires a functional language; it
would also be possible to provide RDDs in other lan-
guages by using classes to represent the user’s functions,
as is done in Hadoop [2].

To use Spark, developers write a driver program that

4In some applications, it can still help to checkpoint RDDs with
long lineage chains, as we discuss in Section 5.3.

Worker 
tasks 

results 
Cache 

Input Data 

Worker 
Cache 

Input Data 

Worker 
Cache 

Input Data 

Driver 

Figure 2: Spark runtime. A user’s driver program launches
multiple workers, which read data blocks from a distributed file
system and can cache computed RDD partitions in memory.

connects to a cluster to run workers, as shown in Figure
2. The driver defines one or more RDDs and invokes
actions on them. The workers are long-lived processes
that can cache RDD partitions in RAM as Java objects.

As can be seen from the example in Section 2.4, users
provide arguments to RDD operations like map by pass-
ing closures (function literals). Scala represents each clo-
sure as a Java object, and these objects can be serialized
and loaded on another node to pass the closure across the
network. Scala also saves any variables bound in the clo-
sure as fields in the Java object. For example, one can
write code like var x = 5; rdd.map(_ + x) to add 5 to
each element of an RDD.5 Overall, Spark’s language in-
tegration is similar to DryadLINQ [34].

RDDs themselves are statically typed objects
parametrized by an element type. For example,
RDD[Int] is an RDD of integers. However, most of our
examples omit types since Scala supports type inference.

Although our method of exposing RDDs in Scala is
conceptually simple, we had to work around issues with
Scala’s closure objects using reflection.6 We also needed
more work to make Spark usable from the Scala inter-
preter, as we shall discuss in Section 6. Nonetheless, we
did not have to modify the Scala compiler.

3.1 RDD Operations in Spark

Table 2 lists the main RDD transformations and actions
available in Spark. We give the signature of each oper-
ation, showing type parameters in square brackets. Re-
call that transformations are lazy operations that define a
new RDD, while actions launch a computation to return
a value to the program or write data to external storage.

Note that some operations, such as join, are only avail-
able on RDDs of key-value pairs. Also, our function
names are chosen to match other APIs in Scala and other
functional languages; for example, map is a one-to-one

5We save each closure at the time it is created, so that the map in
this example will always add 5 even if x changes.

6Specifically, when a closure is nested inside another closure, it may
indirectly reference variables from the outer closure that it does not
need. We discuss the issue and our fix in an extended technical report.
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Transformations

map(f : T ⇒ U) : RDD[T] ⇒ RDD[U]
filter(f : T ⇒ Bool) : RDD[T] ⇒ RDD[T]

flatMap(f : T ⇒ Seq[U]) : RDD[T] ⇒ RDD[U]
sample(fraction : Float) : RDD[T] ⇒ RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)] ⇒ RDD[(K, Seq[V])]
reduceByKey(f : (V,V) ⇒ V) : RDD[(K, V)] ⇒ RDD[(K, V)]

union() : (RDD[T],RDD[T]) ⇒ RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)]) ⇒ RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)]) ⇒ RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U]) ⇒ RDD[(T, U)]

mapValues(f : V ⇒ W) : RDD[(K, V)] ⇒ RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)] ⇒ RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)] ⇒ RDD[(K, V)]

Actions

count() : RDD[T] ⇒ Long
collect() : RDD[T] ⇒ Seq[T]

reduce(f : (T,T) ⇒ T) : RDD[T] ⇒ T
lookup(k : K) : RDD[(K, V)] ⇒ Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: RDD transformations and actions available in Spark. Seq[T] denotes a sequence of elements of type T.

mapping, while flatMap maps each input value to one or
more outputs (similar to the map in MapReduce).

In addition to these operators, users can ask for an
RDD to be cached. Furthermore, users can get an RDD’s
partition order, which is represented by a Partitioner
class, and partition another RDD according to it. Op-
erations such as groupByKey, reduceByKey and sort au-
tomatically result in a hash or range partitioned RDD.

4 Example Applications
We now illustrate how RDDs can be used to express sev-
eral data-parallel applications. We start by discussing
iterative machine learning applications (§4.1), and then
show how RDDs can also express several existing cluster
programming models: MapReduce (§4.2), Pregel (§4.3),
and HaLoop (§4.4). Finally, we discuss classes of appli-
cations that RDDs are not suitable for (§4.5).

4.1 Iterative Machine Learning

Many machine learning algorithms are iterative in nature
because they run iterative optimization procedures, such
as gradient descent, to optimize an objective function.
These algorithms can be sped up substantially if their
working set fits into RAM across a cluster. Furthermore,
these algorithms often employ bulk operations like maps
and sums, making them easy to express with RDDs.

As an example, the following program implements lo-
gistic regression [15], a common classification algorithm
that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)

.map(parsePoint).cache()

var w = // random initial vector

for (i <- 1 to ITERATIONS) {

val gradient = points.map{ p =>

p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)

w -= gradient

}

We start by defining a cached RDD called points as
the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. In Section 7.1, we show that caching points in
memory in this manner yields significant speedups over
loading the data file from disk and parsing it on each step.

Other examples of iterative machine learning algo-
rithms that users have implemented with Spark include
k-means, which runs one map/reduce pair per iteration
like logistic regression; expectation maximization (EM),
which alternates between two different map/reduce
steps; and alternating least squares matrix factorization,
a collaborative filtering algorithm. Chu et al. have shown
that iterated MapReduce can also be used to implement
other common learning algorithms [11].

4.2 MapReduce using RDDs

The MapReduce model [12] can readily be expressed
using RDDs. Given an input dataset with elements of
type T and functions myMap : T ⇒ List[(Ki, Vi)] and
myReduce : (Ki,List[Vi])⇒ List[R], one can write:

data.flatMap(myMap)

.groupByKey()

.map((k, vs) => myReduce(k, vs))

Alternatively, if the job has a combiner, one can write:
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(id, (state, messages)) 

verticesi+1 messagesi+1 

verticesi messagesi 

cogroup 

mapValues 

mapValues flatMap 

next iteration 

(id, (newState, outMsgs)) 

Figure 3: Data flow for one iteration of Pregel as implemented
using RDDs. Boxes show RDDs, arrows show transformations.

data.flatMap(myMap)

.reduceByKey(myCombiner)

.map((k, v) => myReduce(k, v))

The reduceByKey operation performs partial aggrega-
tions on the mapper nodes, like MapReduce’s combiners.

4.3 Pregel using RDDs

Pregel [21] is a programming model for graph applica-
tions based on the Bulk Synchronous Parallel paradigm
[32]. Programs run as a series of coordinated iterations
called supersteps. On each superstep, each vertex in the
graph runs a user function that can update state associ-
ated with the vertex, mutate the graph topology, and send
messages to other vertices for use in the next superstep.
This model can express many graph algorithms, includ-
ing shortest paths, bipartite matching, and PageRank.

As an example, we sketch a Pregel implementation of
PageRank [7]. The program associates a current PageR-
ank r as state with each vertex. On each superstep, each
vertex sends a contribution of r

n to each of its neigh-
bors, where n is its number of neighbors. At the start
of the next superstep, each vertex updates its rank to
α/N + (1 − α)

∑
ci, where the sum is over the contri-

butions it received and N is the total number of vertices.
Pregel partitions the input graph across the workers

and stores it in memory. At each superstep, the workers
exchange messages through a MapReduce-like shuffle.

Pregel’s communication pattern can be expressed us-
ing RDDs, as we show in Figure 3 and in the code below.
The key idea is to store the vertex states and sent mes-
sages at each superstep as RDDs and to group them by
vertex IDs to perform the shuffle communication pattern.
We then apply the user’s function on the state and mes-
sages for each vertex ID to produce a new RDD of (Ver-
texID, (NewState, OutgoingMessages)) pairs, and map it
to separate out the next iteration’s states and messages.7

val vertices = // RDD of (ID, State) pairs

val messages = // RDD of (ID, Message) pairs

7We assume that the State type includes both the vertex’s edge list
and its user-defined state, e.g., its rank in PageRank.

val grouped = vertices.cogroup(messages)

val newData = grouped.mapValues {

(vert, msgs) => userFunc(vert, msgs)

// returns (newState, outgoingMsgs)

}.cache()

val newVerts = newData.mapValues((v,ms) => v)

val newMsgs = newData.flatMap((id,(v,ms)) => ms)

An important aspect of this implementation is that the
grouped, newData, and newVerts RDDs will be parti-
tioned in the same way as the input RDD, vertices. As
a result, vertex states will not leave the machines that
they started on, much like in Pregel, reducing the job’s
communication cost. This partitioning happens automat-
ically because cogroup and mapValues preserve the par-
titioning of their input RDD.8

The full Pregel programming model includes several
other facilities, such as combiners. We discuss how to
implement them in Appendix A. In the remainder of this
section, we discuss fault tolerance in Pregel, and show
how RDDs can provide the same fault recovery proper-
ties and can also reduce the amount of data to checkpoint.

We have implemented a Pregel-like API as a library on
top of Spark in about 100 lines of Scala, and we evaluate
it with PageRank in Section 7.2.

4.3.1 Fault Tolerance for Pregel

Pregel currently checkpoints vertex states and messages
periodically for fault tolerance [21]. However, the au-
thors also describe work on confined recovery to rebuild
lost partitions individually by logging sent messages on
other nodes. RDDs can support both approaches.

With just the implementation in Section 4.3, Spark can
always rebuild the vertex and message RDDs using lin-
eage, but recovery may be expensive due to the long lin-
eage chain. Because each iteration’s RDDs depend on
the previous one’s, losing a node may cause the loss of
all iterations’ versions of the state for some partition, re-
quiring “cascaded re-execution” [20] to rebuild each lost
partition in turn. To avoid this, users can call save on the
vertices and messages RDDs periodically to checkpoint
them to stable storage. Once this is done, Spark will
automatically recompute only the lost partitions (rather
than rolling back the whole program) on a failure.

Finally, we note that RDDs can also reduce the amount
of checkpointing required by expressing a more efficient
checkpointing scheme. In many Pregel jobs, vertex states
include both immutable and mutable components. For
example, in PageRank, a vertex’s list of neighbors never
changes, but its rank does. In such cases, we can place
the immutable data in a separate RDD from the mutable
data, with a short lineage chain, and checkpoint just the
mutable state. We illustrate this approach in Figure 4.

8Users could use a custom partitioner to further reduce communi-
cation, e.g., by placing pages from the same domain on the same node.

6



mutableState0 
(e.g. ranks) 

messages0 

group & compute 

immutableState 
(e.g. topology) 

mutableState2 messages2 

group & compute 

mutableState1 messages1 

future iterations 

input file 
map 

Figure 4: Data flow for an optimized variant of Pregel using
RDDs. Only the mutable state RDDs must be checkpointed;
immutable state can be rebuilt quickly by re-mapping the input.

In PageRank, the immutable state (a list of neighbors)
is much larger than the mutable state (a floating-point
value), so this approach can greatly reduce overhead.

4.4 HaLoop using RDDs

HaLoop [8] is an extended version of the Hadoop frame-
work designed to improve the performance of iterative
MapReduce programs. Applications expressed using
HaLoop’s programming model uses the output of the re-
duce phases of earlier iterations as the input to the map
phase of the next iteration. Its loop-aware task scheduler
tries to ensure that in every iteration, consecutive map
and reduce tasks that process the same partition of data
are scheduled on the same physical machine. Ensuring
inter-iteration locality reduces data transfer between ma-
chines and allows the data to be cached in local disks for
reuse in later iterations.

We have implemented a HaLoop-like API on Spark
using RDDs to express HaLoop’s optimizations. The
consistent partitioning across iterations is ensured
through partitionBy, and the input and output of every
phase are cached for use in later iterations. This library
is written in 200 lines of Scala code.

4.5 Applications Not Suitable for RDDs

As discussed in Section 2.1, RDDs are best suited for
applications that perform bulk transformations that ap-
ply the same operation to all the elements of a dataset. In
these cases, RDDs can efficiently remember each trans-
formation as one step in a lineage graph and can recover
lost partitions without having to log a large amount of
data. RDDs would be less suitable for applications that
make asynchronous fine-grained updates to shared state,
such as a storage system for a web application or an in-
cremental web crawler and indexer. For these applica-
tions, it is more efficient to use systems that perform tra-
ditional update logging and data checkpointing, such as

Operation Meaning 
partitions() Return a list of Partition objects 

preferredLocations(p) List nodes where partition p can be 
accessed faster due to data locality 

dependencies() Return a list of dependencies 
iterator(p, parentIters) Compute the elements of partition p 

given iterators for its parent partitions 
partitioner() Return metadata specifying whether 

the RDD is hash/range partitioned 

Table 3: Internal interface of RDDs in Spark.

databases, RAMCloud [26], Percolator [27] and Piccolo
[28]. Our goal is to provide an efficient programming
model for batch analytics applications and leave these
asynchronous applications to specialized systems.

5 RDD Representation and Job Scheduling
In Spark, we wanted to support a wide range of compos-
able transformations on RDDs without having to mod-
ify the scheduler for each new transformation, and we
wanted to capture lineage information across all these
transformations. We designed a small, common internal
interface for RDDs that facilitates these goals.

In a nutshell, each RDD has a set of partitions, which
are atomic pieces of the dataset; a set of dependencies on
parent RDDs, which capture its lineage; a function for
computing the RDD based on its parents; and metadata
about its partitioning scheme and data placement. For
example, an RDD representing an HDFS file has a par-
tition for each block of the file and knows which nodes
each block is on from HDFS. Meanwhile, the result of
a map on this RDD has the same partitions, but applies
the map function to the parent’s data when computing its
elements. We summarize the RDD interface in Table 3.

The most interesting question in designing this inter-
face is how to represent dependencies between RDDs.
We found it both sufficient and useful to classify de-
pendencies into two types: narrow dependencies, where
each partition of the child RDD depends on a constant
number of partitions of the parent (not proportional to its
size), and wide dependencies, where each partition of the
child can depend on data from all partitions of the parent.
For example, map leads to a narrow dependency, while
join leads to to wide dependencies (unless the parents are
hash-partitioned). Figure 5 shows other examples.9

This distinction is useful for two reasons. First, narrow
dependencies allow for pipelined execution on one clus-
ter node, which can compute all the parent partitions. For
example, one can apply a map followed by a filter on an
element-by-element basis. In contrast, wide dependen-
cies require data from all parent partitions to be available

9While one can envision dependencies that are neither narrow nor
wide, we found that these classes captured all the operations in §3.1.
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union 

groupByKey 

join with inputs not 
co-partitioned 

join with inputs 
co-partitioned 

map, filter 

Narrow Dependencies: Wide Dependencies: 

Figure 5: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

and to be shuffled across the nodes using a MapReduce-
like operation. Second, recovery after a node failure is
more efficient with a narrow dependency, as only the lost
parent partitions need to be recomputed, and they can be
recomputed in parallel on different nodes. In contrast, in
a lineage graph with wide dependencies, a single failed
node might cause the loss of some partition from all the
ancestors of an RDD, requiring a complete re-execution.

Thanks to our choice of common interface for RDDs,
we could implement most transformations in Spark in
less than 20 lines of code. We sketch some examples
in §5.1. We then discuss how we use the RDD interface
for scheduling (§5.2). Lastly, we discuss when it makes
sense to checkpoint data in RDD-based programs (§5.3).

5.1 Examples of RDD Implementations

HDFS files: The input RDDs in our examples are all
files in HDFS. For these RDDs, partitions returns one
partition for each block of the file (with the block’s offset
stored in each Partition object), preferredLocations gives
the nodes the block is on, and iterator reads the block.

map: Calling map on any RDD returns a MappedRDD
object. This object has the same partitions and preferred
locations as its parent, but applies the function passed to
map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.10

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not).

10Note that our union operation does not drop duplicate values—it is
equivalent to SQL’s UNION ALL.

join 

union 

groupBy 

map 

Stage 3 

Stage 1 

Stage 2 

A: B: 

C: D: 

E: 

F: 

G: 

Figure 6: Example showing how Spark computes job stages.
Boxes with solid outlines are RDDs. Partitions are shaded rect-
angles, in black if they are cached. To run an action on RDD G,
the scheduler builds stages at wide dependencies and pipelines
narrow transformations inside each stage. In this case, stage 1
does not need to run since B is cached, so we run 2 and then 3.

5.2 Spark Job Scheduler

Our scheduler uses the structure of RDDs to find an effi-
cient execution plan for each action. The interface of the
scheduler is a runJob function that takes an RDD to work
on, a set of partitions of interest, and a function to run on
the partitions. This interface is sufficient to express all
the actions in Spark (count, collect, save, etc).

Overall, our scheduler is similar to Dryad’s [18], but
additionally takes into account which partitions of RDDs
are available in caches. The scheduler examines the lin-
eage graph of the target RDD to builds a DAG of stages
to execute. Each stage contains as many pipelined trans-
formations with narrow dependencies as possible. The
boundaries of the stages are the shuffle operations re-
quired for wide dependencies, or any cached partitions
that can short-circuit the computation of a parent RDD.
Figure 6 shows an example. We launch tasks to compute
missing partitions from each stage when its parents end.

The scheduler places tasks based on data locality to
minimize communication. If a task needs to process
a cached partition, we send it to a node that has that
partition. Otherwise, if a task processes a partition for
which the containing RDD provides preferred locations
(e.g., due to data locality in HDFS), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks
to compute the missing partitions of those stages.

Finally, the lookup action, which lets the user fetch an
element from a hash or range partitioned RDD by its key,
poses an interesting design question. When lookup is

8



called by the driver program, we can build just the parti-
tion that the desired key falls in using the existing sched-
uler interface. However, we are also experimenting with
allowing tasks on the cluster (e.g., maps) to call lookup,
to let users treat RDDs as large distributed hash tables.
In this case, the dependency between the tasks and the
RDD being looked up is not explicitly captured (since
workers are calling lookup), but we have the task tell the
scheduler to compute the RDD in question if it cannot
find cached partitions for it registered on any nodes.

5.3 Checkpointing

Although the lineage information tracked by RDDs al-
ways allows a program to recover from failures, such re-
covery may be time-consuming for RDDs with long lin-
eage chains. For example, in the Pregel jobs in Section
4.3, each iteration’s vertex states and messages depends
on the previous ones. Thus, it can be helpful to check-
point RDDs with long lineage chains to stable storage.

In general, checkpointing is useful for RDDs with long
lineage graphs composed of wide dependencies. In these
cases, a node failure in the cluster may result in the loss
of some slice of data from each parent RDD, requiring
a full recomputation [20]. In contrast, for RDDs with
narrow dependencies on data in stable storage, such as
the points in our logistic regression example (§4.1) and
the immutable vertex states in our optimized variant of
Pregel (§4.3.1), checkpointing may never be worthwhile.
Whenever a node fails, lost partitions from these RDDs
can be recomputed in parallel on other nodes, at a frac-
tion of the cost of replicating the whole RDD.

Spark currently provides an API for checkpointing but
leaves the decision of which data to checkpoint to the
user. In future work, we plan to implement automatic
checkpointing using cost-benefit analysis to pick the best
cut in the RDD lineage graph to checkpoint at.11

Note that because RDDs are read-only, they can be
checkpointed in the background without incurring any
overhead to maintain consistency (e.g., copy-on-write
schemes, distributed snapshots, or program pauses).

6 Implementation
We have implemented Spark in about 10,000 lines of
Scala. The system can use any Hadoop data source
(e.g., HDFS, HBase) as input, making it easy to integrate
into Hadoop environments. We did not need to modify
the Scala compiler; Spark is implemented as a library.

We discuss three of the technically interesting parts
of the implementation: our modified Scala interpreter
that allows interactive use of Spark (§6.1), cache man-
agement (§6.2), and our debugging tool, rddbg (§6.3).

11The problem of checkpoint selection for is similar to optimal
checkpointing for HPC systems [33].

var query = “hello” 

rdd.filter(_.contains(query)) 
   .count() 

Line 1: 

Line 2: 

Closure1 

line1: 

eval(s): { return 
 s.contains(line1.query) } 

Line1 

query: 

String 

hello 

Line2 

line1: 

a) Lines typed by user b) Resulting object graph 

Figure 7: Example showing how the Spark interpreter trans-
lates two lines entered by the user into Java objects.

6.1 Interpreter Integration

Scala includes an interactive shell similar to those of
Ruby and Python. Given the low latencies attained with
in-memory data, we wanted to let users run Spark in-
teractively from the interpreter as a large-scale “parallel
calculator” for mining big datasets.

The Scala interpreter normally operates by compiling
a class for each line typed by the user, loading it into
the JVM, and invoking a function on it. This class in-
cludes a singleton object that contains the variables or
functions on that line and runs the line’s code in an ini-
tialize method. For example, if the user types var x =
5 followed by println(x), the interpreter defines a class
called Line1 containing x and causes the second line to
compile to println(Line1.getInstance().x).

We made two changes to the interpreter in Spark:

1. Class shipping: To let the worker nodes fetch the
bytecode for the classes created on each line, we
made the interpreter serve these classes over HTTP.

2. Modified code generation: Normally, the single-
ton object created for each line of code is accessed
through a static method on its corresponding class.
This means that when we serialize a closure refer-
encing a variable defined on a previous line, such as
Line1.x in the example above, Java will not trace
through the object graph to ship the Line1 instance
wrapping around x. Therefore, the worker nodes will
not receive x. We modified the code generation logic
to reference the instance of each line object directly.

Figure 7 shows how the interpreter translates a set of
lines typed by the user to Java objects after our changes.

We found the Spark interpreter to be useful in process-
ing large traces obtained as part of our research and ex-
ploring datasets stored in HDFS. We also plan to use it
as a basis for interactive tools providing higher-level data
analytics languages, such as variants of SQL and Matlab.
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6.2 Cache Management

Our worker nodes cache RDD partitions in memory as
Java objects. We use an LRU replacement policy at the
level of RDDs (i.e., we do not evict partitions from an
RDD in order to load other partitions from the same
RDD) because most operations are scans. We found this
simple policy to work well in all our user applications so
far. Programmers that want more control can also set a
retention priority for each RDD as an argument to cache.

6.3 rddbg: A Tool for Debugging RDD Programs

While we initially designed RDDs to be deterministically
recomputable for fault tolerance, this property also facil-
itates debugging. We built a tool called rddbg that uses
lineage information logged by a program to let the user
(1) reconstruct any RDDs created by the program and
query it interactively and (2) re-run any task in the job in
a single-process Java debugger (e.g., jdb) by feeding in
the recomputed RDD partitions it depended on.

We stress that rddbg is not a full replay debugger: in
particular, it does not replay nondeterministic code or be-
havior. However, it is useful for finding logic bugs as
well as performance bugs where one task is consistently
slow (e.g., due to skewed data or unusual input).

For example, we used rddbg to fix a bug in a user’s
spam classification job (§7.5) where all iterations were
producing only zero values. Re-executing a reduce task
in the debugger quickly indicated that the input weight
vector (stored in a custom sparse vector class) was un-
expectedly empty. As reads from unset elements in the
sparse vector return zero by design, no runtime excep-
tion was ever raised. Setting a breakpoint in the vector
class and executing the task again quickly led into the de-
serialization code where we found the array of the vec-
tor class’s field names being deserialized was also empty,
which allowed us to diagnose the bug: the data field in
the sparse vector class was mistakenly marked as tran-
sient (an out-of-date annotation used with a previous se-
rialization library), preventing it from being serialized.
rddbg adds minimal overhead to a program’s execu-

tion because the program already has to serialize and
send all the closures associated with each RDD across
the network. We simply log them to disk as well.

7 Evaluation
We evaluated Spark and RDDs through a series of exper-
iments on Amazon EC2 [1], including comparisons with
Hadoop and benchmarks of user applications. Overall,
our results show the following:

• Spark outperforms Hadoop by up to 20× in iterative
machine learning applications. The speedup comes
from storing data in memory and from avoiding de-
serialization cost by caching Java objects.

• Applications written by our users perform well. In
particular, we used Spark to speed up an analytics
report that was running on Hadoop by 40×.

• When nodes fail, Spark can recover quickly by re-
building only the lost RDD partitions.

• Spark can be used to query a 1 TB dataset interac-
tively with latencies of 5–7 seconds.

We start by presenting benchmarks for iterative ma-
chine learning applications (§7.1) and PageRank (§7.2)
against Hadoop. We then evaluate fault recovery in Spark
(§7.3) and behavior when the working set does not fit in
cache (§7.4). Finally, we discuss results for user applica-
tions (§7.5) and interactive data mining (§7.6).

Unless otherwise specified, our experiments used
m1.xlarge EC2 nodes with 4 cores and 15 GB of RAM.
We used HDFS for persistent storage, with 256 MB
blocks. Before each job, we cleared OS buffer caches
across the cluster to measure disk read times accurately.

7.1 Iterative Machine Learning Applications

We implemented two iterative machine learning (ML)
applications, logistic regression and k-means, to com-
pare the performance of the following systems:
• Hadoop: The Hadoop 0.20.2 stable release.

• HadoopBinMem: A Hadoop deployment that prepro-
cesses the input data into a low-overhead binary for-
mat in the first iteration to eliminate text parsing in
later iterations and stores it in an in-memory HDFS.

• Spark: An RDD-enabled system that caches Java ob-
jects in the first iteration to eliminate parsing and de-
serialization overheads in later iterations.

We ran both logistic regression and k-means for 10 it-
erations using 100 GB input datasets (Table 4) on 25–100
machines using 400 tasks (one for each block of 256 MB
input). The key difference between the two jobs is the
amount of computation required per byte per iteration.
The iteration time of k-means is dominated by compu-
tation for updating cluster coordinates. Logistic regres-
sion is less compute-intensive and more sensitive to time
spent in deserialization and parsing.

Since typical ML algorithms require tens of iterations
to converge, we report times for the first iteration and
subsequent iterations separately. We find that caching
RDDs in memory greatly speeds up future iterations.

First Iterations All three systems read text input from
HDFS in their first iterations. As shown in Figure 9 for
the “first iteration” bars, Spark was faster than Hadoop
across experiments mostly due to signaling overheads
involved in Hadoop’s heartbeat protocol between dis-
tributed components. HadoopBinMem was the slow-
est because it ran an extra MapReduce job to convert the
data to binary.
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Application Data Description Size
Logistic
Regression

1 billion 9-dimensional points 100 GB

K-means 1 billion 10-dimensional points
(k = 10 clusters)

100 GB

PageRank Link graph from 4 million
Wikipedia articles

49 GB

Interactive
Data Mining

Wikipedia page view logs from
October, 2008 to April, 2009

1 TB

Table 4: Applications used to benchmark Spark.
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Figure 8: Running times for iterations after the first one in
Hadoop, HadoopBinMem, and Spark. The jobs all processed
100 GB data on an increasing number of machines.

Subsequent Iterations Figure 9 also shows the aver-
age times for subsequent iterations, and Figure 8 shows
those times for different cluster sizes. We found Spark
to be up to 25.3× and 20.7× faster than Hadoop and
HadoopBinMem respectively for logistic regression on
100 machines. From Figure 8(b), Spark only achieved
a 1.9× to 3.2× speedup over Hadoop because k-means
is dominated by computation overhead (using more ma-
chines helps increase the speedup factor).

In the subsequent iterations, Hadoop still read text
input from HDFS, so Hadoop’s iteration times did not
improve noticeably from its first iterations. Using pre-
converted SequenceFiles (Hadoop’s binary storage for-
mat), HadoopBinMem saved parsing costs in subsequent
iterations. However, HadoopBinMem still incurred other
overheads, such as reading each file from the in-memory
HDFS and converting bytes to Java objects. Because
Spark operates directly on cached Java objects in RDDs,
its iteration times decreased significantly, scaling linearly
as the cluster size increased.

Understanding the Speedup We were surprised to
find that Spark outperformed even Hadoop with in-
memory storage of binary data (HadoopBinMem) by a
20× margin. Hadoop ran slower due to several factors:
1. Minimum overhead of the Hadoop software stack,

2. Overhead of the HDFS stack while reading input, and

3. Deserialization cost to convert binary records to us-
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Figure 9: Length of the first and later iterations for Hadoop,
HadoopBinMem, and Spark for logistic regression and k-
means using 100 GB data on a 100-node cluster.

In-memory In-memory
Cached RDD

HDFS File Local File
Text Input 15.38 (0.26) 13.13 (0.26)

2.93 (0.31)
Binary Input 8.38 (0.10) 6.86 (0.02)

Table 5: Iteration times for logistic regression using 256 MB
data on a single machine for different forms of input. Numbers
in parentheses represent standard deviations.

able in-memory Java objects.

To measure (1) we ran no-op Hadoop jobs, and these
took at least 25 seconds just to complete the minimal re-
quirements of job setup, starting tasks, and cleaning up.
Regarding (2), we found that HDFS performed multiple
memory copies and a checksum to serve each block.

To measure (3), we ran microbenchmarks on a sin-
gle machine to compute logistic regression on 256 MB
inputs, and show the results in Table 5. First, the dif-
ferences between in-memory HDFS and local file show
that reading through the HDFS interface introduced a 2-
second overhead, even when data was in memory on the
local machine. Second, the differences between the text
and binary input indicate parsing overhead was 7 sec-
onds. Finally, converting pre-parsed binary data into in-
memory Java objects took 3 seconds. These overheads
will accumulate as each machine processes more blocks.
By caching RDDs as in-memory Java objects, Spark in-
curred only the 3 seconds of computing time.

7.2 PageRank

We compared the performance of our Pregel implemen-
tation using RDDs with Hadoop for the PageRank appli-
cation using a 49 GB Wikipedia dump stored in HDFS.
We ran 10 iterations of the PageRank algorithm to pro-
cess a link graph of approximately 4 million articles.
Figure 10 demonstrates that in-memory caching alone
provided Spark with a 2× speedup over Hadoop on 30
nodes. Specifying hash partitioning for the input ver-
tices RDD improved the speedup to 2.6×, and introduc-
ing combiners further increased it to 3.6×. The results
also scaled nearly linearly to 60 nodes.
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Figure 11: Iteration times during k-means computation in pres-
ence of single node failure. One machine was killed at the
beginning of the 6th iteration, which resulted in partial RDD
reconstruction using lineage information.

7.3 Fault Recovery

We evaluated the overhead of reconstructing RDD parti-
tions using lineage information in case of a single-node
failure for the k-means application. Figure 11 compares
the iteration times for 10 iterations of the k-means appli-
cation on a 75-node cluster in normal operating scenario
with when the cluster lost one node at the beginning of
the 6th iteration. Without any failure, each iteration con-
sisted of 400 tasks working on 100 GB of data.

Until the end of the 5th iteration, the iteration times
were about 58 seconds. In the 6th iteration, one of the
machines was killed, and the tasks running in that ma-
chine died along with the partitions cached there. The
Spark scheduler re-ran these tasks in parallel on other
machines, where they re-read corresponding input data,
reconstructed RDDs from lineage information, and re-
cached them, which increased the iteration time to 80
seconds. Once the lost RDD partitions were recon-
structed, the average iteration time went back down to
58 seconds, same as before the failure.

7.4 Behavior with Insufficient Memory

So far, we ensured that every machine in the cluster
had enough memory to cache all the RDDs across iter-
ations. A natural question is how Spark runs if there is
not enough memory to store a job’s working set. In this
experiment, we configured Spark not to use more than a
certain percentage of required memory to cache RDDs in
each machine. We present results for various amounts of
cache space for logistic regression in Figure 12. We see
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Figure 12: Spark performance for logistic regression using 100
GB data on 25 machines for varying size of RDD cache.

that performance degrades gracefully with less space.

7.5 User Applications Built on Spark

In-Memory Analytics Conviva Inc, a video distribu-
tion company, used Spark to greatly accelerate an analyt-
ics report that they compute for their customers, which
previously ran using about 20 Hive [3] queries over
Hadoop. These queries all worked on the same subset
of the data (records matching some customer-provided
predicates), but performed aggregations (sums, averages,
percentiles, and COUNT DISTINCT) over different group-
ing fields, requiring separate MapReduce jobs. The com-
pany used Spark to load the data of interest into RAM
once and then run the aggregations. A report on about
200 GB of compressed data that used to take 20 hours
on a Hadoop cluster now runs in 30 minutes on only two
Spark machines with 96 GB RAM. The 40× speedup
comes from not having to decompress and filter the data
repeatedly on each job.

Traffic Modeling Researchers in the Mobile Millen-
nium project at Berkeley [17] parallelized a learning al-
gorithm for inferring road traffic congestion from spo-
radic automobile GPS measurements. The source data
were a 10,000 link road network for a metropolitan area,
as well as 600,000 samples of point-to-point trip times
for GPS-equipped automobiles (travel times for each
path may include multiple road links). Using a traffic
model, the system can estimate and congestion by infer-
ring the expected time it takes to travel across individual
road links. The researchers trained this model using an
Spark implementation of an iterative expectation maxi-
mization (EM) algorithm, which involved broadcasting
road network data to the worker nodes, and performing
reduceByKey operations between the E and M steps. The
application scaled nearly linearly from 20 to 80 nodes
(with 4 cores/node), as shown in Figure 13(a).

Social Network Spam Classification The Monarch
project at Berkeley [31] used Spark to identify link spam
in Twitter messages. They implemented a logistic regres-
sion classifier on top of Spark similar to the example in
Section 7.1, but they used a distributed reduceByKey to
sum the gradient vectors in parallel. In Figure 13(b) we
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Figure 13: Per-iteration run time of (b) traffic modeling ap-
plication and (a) social network spam classification on Spark.
Error bars represent one standard deviation.
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Figure 14: Response times for different interactive queries on
increasingly larger input datasets.

show the scaling results for training a classifier over a 50
GB subset of the data — 250,000 URLs and at least 107

distinct features/dimensions related to the network, con-
tent and lexical properties of the pages associated with
visiting a URL. The scaling is not as close to linear as
for the traffic application due to a higher fixed communi-
cation cost per iteration.

7.6 Interactive Data Mining

To demonstrate Spark’ ability to interactively process
large data volumes, we used it to analyze 1TB of
Wikipedia page view logs from Oct. 2008 to Apr. 2009.
For this experiment, we used 100 m2.4xlarge EC2 in-
stances each with 8 cores and 68 GB of RAM. We tried
the following simple queries to find total views of (1)
all pages, (2) pages with titles exactly matching a given
word, and (3) pages with titles partially matching a word.
Each of these queries scanned the entire input data.

Figure 14 presents the response times for the queries
on the full dataset as well as on half and one-tenth of
the dataset. Even at 1 TB of data, queries on Spark took
5–7 seconds. This was more than an order of magni-
tude faster than working with on-disk data; for example,
querying the 1 TB dataset from disk took 170s. This il-
lustrates that RDD caching makes Spark a powerful tool
for interactive data mining.

8 Related Work
Distributed Shared Memory (DSM): RDDs can be
viewed as a form of distributed shared memory, which

is a well-studied abstraction [24]. As discussed in §2.5,
RDDs provide a more restricted programming model
than DSM, but one that lets datasets be rebuilt efficiently
if nodes fail. While some DSM systems achieve fault
tolerance through checkpointing [19], Spark reconstructs
lost partitions of RDDs using lineage. These partitions
can be recomputed in parallel on different nodes, with-
out reverting the whole program to a checkpoint. RDDs
also push computation to the data as in MapReduce [12],
and can mitigate stragglers through speculative execu-
tion, which would be difficult to implement in a general
shared memory system.

In-Memory Cluster Computing: Piccolo [28] is a
cluster programming model based on mutable, in-
memory distributed tables. Because Piccolo allows read-
write access to table entries, it has similar recovery
characteristics to distributed shared memory, requiring
checkpoints and rollback and not supporting speculative
execution. Piccolo also does not provide higher-level
data flow operators like groupBy and sort, requiring the
user to read and write table cells directly to implement
these operators. As such, Piccolo’s programming model
is lower-level than Spark’s, but higher-level than DSM.

RAMClouds [26] were proposed as a storage system
for web applications. They likewise provide fine-grained
reads and writes, so they must log data for fault tolerance.

Data Flow Systems: RDDs extend the popular “paral-
lel collection” programming model used in DryadLINQ
[34], Pig [25], and FlumeJava [9] to efficiently sup-
port applications with working sets, by allowing users
to explicitly store datasets in memory as unserialized ob-
jects, control their partitioning, and perform random key
lookups. As such, RDDs retain the high-level nature of
programming in these data flow systems and will be fa-
miliar to existing developers, while supporting a substan-
tially broader class of applications. While the extensions
RDDs add are conceptually simple, to our knowledge,
Spark is the first system to add these capabilities to a
DryadLINQ-like programming model to efficiently sup-
port applications with working sets.12

Several specialized systems have been developed for
applications with working sets, including Twister [13]
and HaLoop [8], which implement an iterative MapRe-
duce model, and Pregel [21], which provides a Bulk Syn-
chronous Parallel programming model for graph applica-
tions. RDDs are a more general abstraction that can ex-
press both iterative MapReduce, Pregel, and applications
that are not captured by these systems, such as interac-
tive data mining. In particular, they allow programmers

12FlumeJava supports a “cached execution” mode where it will save
intermediate results to a distributed file system for reuse in future runs,
but it does not provide in-memory storage or avoid the cost of repli-
cation in the distributed file system, and does not let the programmer
explicitly choose which datasets to cache.
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to choose which operations to run on RDDs dynamically
(e.g. look at the result of one query to decide what query
to run next), rather than providing a fixed set of steps to
iterate, and they support more types of transformations.

Finally, Dremel [22] is a low-latency query engine for
large on-disk datasets that leverages a column-oriented
format for nested record data. The same format could be
used to store RDDs in Spark, but Spark also gives users
the ability to load data into RAM for faster queries.

Lineage: Capturing lineage or provenance information
for data has long been a research topic in scientific com-
puting and databases, for applications such as explaining
results, allowing them to be reproduced by others, and
recomputing data if a bug is found in a workflow or if a
dataset is lost. We refer the reader to [6] and [10] for sur-
veys of this work. RDDs provide a restricted program-
ming model where fine-grained lineage is inexpensive to
capture, so that it can be used for fault recovery.

Caching Systems: Nectar [14] can reuse intermedi-
ate results across DryadLINQ jobs by identifying com-
mon subexpressions with program analysis. This capa-
bility would be very interesting to add to an RDD-based
system. However, Nectar does not provide in-memory
caching, nor does it let users explicitly control which
datasets to cache and how to partition them. Ciel [23]
can likewise memoize task results but does not provide
in-memory caching and explicit control over caching.

Language Integration: Spark’s language integration
resembles that of DryadLINQ [34], which captures ex-
pression trees to run on a cluster using LINQ.13 Unlike
DryadLINQ, Spark lets users explicitly store RDDs in
RAM across queries and control their partitioning to op-
timize communication. DryadLINQ also does not sup-
port interactive use like Spark.

Relational Databases: RDDs are conceptually simi-
lar to views in a database, and cached RDDs resemble
materialized views [29]. However, like DSM systems,
databases typically allow read-write access to all records,
requiring logging of operations and data for fault tol-
erance and additional overhead to maintain consistency.
These overheads are not required with the more restricted
programming model of RDDs.

9 Conclusion
We have presented resilient distributed datasets (RDDs),
a distributed memory abstraction for data-parallel appli-
cations on commodity clusters. RDDs support a broad
range of applications with working sets, including iter-
ative machine learning and graph algorithms and inter-

13One advantage of LINQ over our closure-based approach, how-
ever, is that LINQ provides an abstract syntax tree for each expression,
allowing for query optimization through operator reordering. We plan
to leverage Scala equivalents of LINQ (e.g., [30]) to achieve this.

active data mining, while preserving the attractive prop-
erties of data flow models, such as automatic fault re-
covery, straggler mitigation, and locality-aware schedul-
ing. This is accomplished by restricting the program-
ming model to allow for efficient reconstruction of RDD
partitions. Our implementation of RDDs outperforms
Hadoop by up to 20× in iterative jobs and can be used to
interactively query hundreds of gigabytes of data.
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A Pregel Details
Pregel provides several other facilities in addition to mes-
sage passing. We sketch how to implement each of them
using RDDs, starting with the code in Section 4.3.

Termination Votes: Vertices in Pregel vote to halt the
program. This can be implemented in Spark by keeping a
voted-to-halt flag in the State class and running a reduce
over newData to AND together these flags.

Combiners: Messages in Pregel can be aggregated on
source nodes with a combiner. This can be done using a
reduceByKey on the messages RDD before the cogroup.

Aggregators: Pregel’s aggregators merge values from
all the nodes using an associative function on each itera-
tion and make the result visible on the next one. We can
merge aggregators using a reduce over vertex states.

Topology Mutations: Pregel lets users add and delete
vertices or edges. This can be supported in Spark by
sending a special message to the vertex ID whose state
must be updated. In addition, to support adding and re-
moving vertices, we need to change the mapValues call
that creates the new vertices RDD to flatMapValues.
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