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ABSTRACT

Cloud computing promises great efficiencies by multiplexing re-
sources among disparate customers. For example, Amazon’s Elas-
tic Compute Cloud (EC2), Microsoft Azure, Google’s Compute
Engine, and Rackspace Hosting all offer Infrastructure as a Ser-
vice (IaaS) solutions that pack multiple customer virtual machines
(VMs) onto the same physical server.

The gained efficiencies have some cost: past work has shown
that the performance of one customer’s VM can suffer due to inter-
ference from another. In experiments on a local testbed, we found
that the performance of a cache-sensitive benchmark can degrade
by more than 80% because of interference from another VM.

This interference incentivizes a new class of attacks, that we call
resource-freeing attacks (RFAs). The goal is to modify the work-
load of a victim VM in a way that frees up resources for the at-
tacker’s VM. We explore in depth a particular example of an RFA.
Counter-intuitively, by adding load to a co-resident victim, the at-
tack speeds up a class of cache-bound workloads. In a controlled
lab setting we show that this can improve performance of synthetic
benchmarks by up to 60% over not running the attack. In the nois-
ier setting of Amazon’s EC2, we still show improvements of up
to 13%.

Categories and Subject Descriptors

D.4.6 [Operating System]: Security and Protection; D.4.1 [Operating

System]: Process Management—scheduling; K.6.5 [Management
of Computing and Information System]: Security and Protec-
tion—physical security
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Economics, Experimentation, Measurement, Performance, Secu-
rity
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1. INTRODUCTION

Cloud computing provides high efficiency in part by multiplexing
multiple customer workloads onto a single physical machine. For
example, Amazon’s Elastic Compute Cloud (EC2) [3] runs multi-
ple customer virtual machines (VMs) on a single host. For small
instances, they offer each guest VM roughly 40% of a single CPU
by time slicing. Similarly, access to the local disk, network, mem-
ory, and cache are all shared by virtual machines from multiple cus-
tomers.

However, with this efficiency comes performance interference.
When two customer applications share a machine, they contend for
access to resources. Existing hardware and software virtualization
mechanisms do not provide perfect performance isolation. For ex-
ample, running two applications that make heavy use of memory
bandwidth can degrade the performance of both. Past work has
demonstrated the existence and amount of this interference [5, 19].

As a result, there have been numerous proposals on how to con-
struct hypervisors or processors that better isolate customer appli-
cations from each other. For example, fine-grained accounting of
CPU usage [12], network traffic [28] or disk-queue utilization [11]
can decrease the amount of interference. Unfortunately, the inher-
ent tension between efficiency and isolation means that, in practice,
cloud computing systems continue to provide poor isolation. In ex-
periments on a local Xen [4] testbed, we show, for example, that
certain cache-sensitive workloads take 5x longer when contending
with other memory-intensive workloads.

Unlike in private data centers, such contention in public clouds
arises between disparate customers. Unique to the public cloud set-
ting, then, is the incentive for greedy customers to attempt to free up
resources for their application by interfering with other customers’
use of them. A clear-cut example would be a malicious customer
crashing co-resident VMs, but this requires knowledge of an ex-
ploitable vulnerability and would be easily detectable. We are in-
terested in whether there exist more subtle strategies for freeing up
resources.

We explore an approach based on two observations. First, appli-
cations are often limited by a single bottleneck resource, such as
memory or network bandwidth. Second, we observe that an appli-
cation’s use of resources can change unevenly based on workload.
For example, a web server may be network limited when serving
static content, but CPU limited when serving dynamic content.

A resource-freeing attack (RFA) leverages these observations to
improve a VM’s performance by forcing a competing VM to satu-
rate some bottleneck. If done carefully, this can slow down or shift
the competing application’s use of a desired resource. For example,
we investigate in detail an RFA that improves cache performance
when co-resident with a heavily used Apache web server. Greedy
users will benefit from running the RFA, and the victim ends up



paying for increased load and the costs of reduced legitimate traf-
fic.

We begin this paper with a comprehensive study of the resource
interference exhibited by the Xen hypervisor in our local testbed.
In addition to testing for contention of a single resource, these re-
sults show that workloads using different resources can contend as
well, and that scheduling choices on multicore processors greatly
affect the performance loss. We then develop a proof-of-concept
resource-freeing attack for the cache-network contention scenario
described above. In a controlled environment, we determine the
necessary conditions for a successful resource-freeing attack, and
show that average performance of a cache-sensitive benchmark can
be improved by as much as 212% when the two VMs always share
a single core, highlighting the potential for RFAs to ease cache con-
tention for the attacker. If VMs float among all cores (the default
configuration in Xen), we still see performance gains of up to 60%.
When applied to several SPEC benchmarks [13], whose more bal-
anced workloads are less effected by cache contention, RFAs still
provide benefit: in one case it reduces the effect of contention by
66.5% which translated to a 6% performance improvement.

Finally, we show that resource-freeing attacks are possible in un-
controlled settings by demonstrating their use on Amazon’s EC2.
Using co-resident virtual machines launched under accounts we
control, we show that introducing additional workload on one vir-
tual machine can improve the performance of our cache-sensitive
benchmark by up to 13% and provides speedups for several SPEC
benchmarks as well.

2. SCHEDULING AND ISOLATION IN VIR-
TUALIZED ENVIRONMENTS

A key reason to use hypervisors in cloud computing is their ability
to provide performance isolation between customer applications.
Indeed, isolation was a primary goal for the original development
of the Xen hypervisor used in EC2 [4]. Perfect performance isola-
tion should guarantee that the behavior of one guest virtual machine
does not affect the performance of other guest virtual machines. To
this end, Xen and other virtual machine monitors (VMMs) focus
on fairly allocating CPU time and memory capacity [33]. How-
ever, other hardware resources such as memory bandwidth, cache
capacity, network, and disk have received less attention.

In order to understand the sources and effects of performance
interference, we describe the Xen hypervisor mechanisms and poli-
cies for sharing resources between guest virtual machines while still
providing performance isolation.

CPU. The Xen scheduler provides both fair-share allocation of
CPU and low-latency dispatch for I/O-intensive VMs. We use the
credit scheduler [7] in our experiments, as it is most commonly used
in deployments. The scheduler views VMs as a set of virtual CPUs
(VCPUs), and its task is to determine which VCPUs should be run
on each physical CPU at any given time.

The scheduler gives VCPUs credits at a pre-determined rate. The
credits represent a share of the CPU and provide access to the CPU.
Every 10 ms a periodic scheduler tick removes credits from the cur-
rently running VCPU and if it has none remaining, switches to the
next VCPU in the ready queue. VCPUs are given more credits pe-
riodically (typically every 30 ms). Thus, if a CPU-bound process
runs out of credit, it must suspend for up to 30 ms until it receives
new credits to run. A process that runs for short periods may never
run out of credit, although the total amount it can accrue is limited.

In order to support low-latency I/0O, Xen implements a boost
mechanism that raises the priority of a VM when it receives an in-
terrupt, which moves it towards the head of the ready queue. This

allows it to preempt the running VM and respond to an I/O request
immediately. However, a VM that has run out of credits cannot
receive boost. The boost mechanism is a key component of the
resource-freeing attack we introduce in Section 5.

The credit scheduler supports a work-conserving mode, in which
idle CPU time is distributed to runnable VMs, and a non-work-
conserving mode, in which VMs’ CPU time is capped. The lat-
ter mode reduces efficiency but improves performance isolation.
Though Amazon does not report which mode it uses, our experi-
ments indicate that EC2 uses non-work-conserving scheduling.

On a multiprocessor, Xen can either float VPCUs, letting them
execute on any CPU, or pin them to particular CPUs. When float-
ing, Xen allows a VCPU to run on any CPU unless it ran in the
last 1 ms, in which case it is rescheduled on the same core to main-
tain cache locality. We determined experimentally that EC2 allows
VCPUs to float across cores.

Memory. Xen isolates memory access primarily by controlling the
allocation of memory pages to VMs. In cloud settings, Xen is often
configured to give each VM a static number of pages. It does not
swap pages to disk, actively manage the amount of memory avail-
able to each VM, or use deduplication to maximize use of mem-
ory [33]. Furthermore, x86 hardware does not provide the ability
to enforce per-VCPU limits on memory bandwidth or cache usage.
Hence, these are not managed by Xen.

Devices. By default, Xen seeks fair sharing of disk and network by
processing batches of requests from VMs in round-robin order [4].
For disks, this can lead to widely varying access times, as sets of
random requests may incur a longer delay than sequential accesses.
The Xen default is to make device scheduling work conserving, so
performance can also degrade if another VM that was not using a
device suddenly begins to do so. However, we observe that EC2 sets
caps on the network bandwidth available to an m1.small instance at
around 300 Mbps, but does not cap disk bandwidth.

3. RESOURCE-FREEING ATTACKS

The interference encountered between VMs on public clouds moti-
vates a new class of attacks, which we call resource-freeing attacks
(RFAs). The general idea of an RFA is that when a guest virtual
machine suffers due to performance interference, it can affect the
workload of other VMs on the same physical server in a way that
improves its own performance.

Attack setting. We consider a setting in which an attacker VM
and one or more victim VMs are co-resident on the same physical
server in a public cloud. There may be additional co-resident VMs
as well. It is well known that public clouds make extensive use of
multi-tenancy.

The RFAs we consider in Section 5 assume that the victim is run-
ning a public network service, such as a web server. This is a fre-
quent occurrence in public clouds. Measurements in 2009 showed
that approximately 25% of IP addresses in one portion of EC2’s
address space hosted a publicly accessible web server [25].

Launching RFAs that exploit a public network service require
that the attacker knows with whom it is co-resident. On many
clouds this is straightforward: the attacker can scan nearby internal
P addresses on appropriate ports to see if there exist public network
services. This was shown to work in Amazon EC2, where for exam-
ple m1.small co-resident instances had internal IP addresses whose
numerical distance from an attacker’s internal IP address was at
most eight [25]. Furthermore, packet round-trip times can be used
to verify co-residence. We expect that similar techniques work on
other clouds, such as Rackspace.



The attacker seeks to interfere with the victim(s) to ease con-
tention for resources on the node or nearby network. The attacker
consists of two logical components, a beneficiary and a helper. The
beneficiary is the application whose efficiency the attacker seeks to
improve. The helper is a process, either running from within the
same instance or on another machine, that the attacker will use to
introduce new workload on the victim. Without loss of generality,
we will describe attacks in terms of one victim, one beneficiary, and
one helper.

We assume the beneficiary’s performance is reduced because of
interference on a single contended resource, termed the rarget re-
source. For example, a disk-bound beneficiary may suffer from
competing disk accesses from victim VMs.

Conceptual framework. The beneficiary and the helper work to-
gether to change the victim’s resource consumption in a manner that
frees up the target resource. This is done by increasing the time the
victim spends on one portion of its workload, which limits its use
of other resources.

There are two requirements for an RFA. First, an RFA must raise
the victim’s usage of one resource until it reaches a bottleneck.
Once in a bottleneck, the victim cannot increase usage of any re-
sources because of the bottleneck. For example, once a web server
saturates the network, it cannot use any more CPU or disk band-
width. However, simply raising the victim to a bottleneck does not
free resources; it just prevents additional use of them. The second
requirement of an RFA is to shift the victim’s resource usage so
that a greater fraction of time is spent on the bottleneck resource,
which prevents spending time on other resources. Thus, the bot-
tleneck resource crowds out other resource usage. As an example,
a web server may be sent requests for low-popularity web pages
that cause random disk accesses. The latency of these requests may
crowd requests for popular pages and overall reduce the CPU usage
of the server.

There are two shifts in target resource usage that can help the
beneficiary. First, if the victim is forced to use less of the resource,
then there may be more available for the beneficiary. Second, even
if the victim uses the same amount of the resource, the accesses may
be shifted in time. For example, shifting a victim’s workload so that
cache accesses are consolidated into fewer, longer periods can aid
the beneficiary by ensuring it retains cache contents for a larger
percentage of its run time. A similar effect could be achieved for
resources like the hard disk if we are able to provide the beneficiary
with longer periods of uninterrupted sequential accesses.

Modifying resource consumption. The helper modifies the vic-
tim’s resource usage and pushes it to overload a bottleneck resource.
This can be done externally, by introducing new work over the net-
work, or internally, by increasing contention for other shared re-
sources.

A helper may introduce additional load to a server that both in-
creases its total load and skews its workload towards a particular re-
source. The example above of requesting unpopular content skews
a web server’s resource usage away from the CPU towards the disk.
This can create a bottleneck at either the server’s connection limit
or disk bandwidth. Similarly, the helper may submit CPU-intensive
requests for dynamic data that drive up the server’s CPU usage until
it exceeds its credit limit and is preempted by the hypervisor.

The helper can also affect performance by increasing the load on
other contended resources. Consider again a web server that makes
use of the disk to fetch content. A helper running in the benefi-
ciary’s instance can introduce unnecessary disk requests in order to
degrade the victim’s disk performance and cause the disk to become
a bottleneck. Similarly, the helper could slow the victim by intro-

Xen Version 4.1.1
Xen Scheduler | Credit Scheduler 1

0OS Fedora 15, Linux 2.6.40.6-0.fc15
Dom0 4 VCPU/6 GB memory / no cap / weight 512
DomU 8 instances each with 1 VCPU / 1 GB mem-

ory / 40% cap / weight 256

Network Bridging via Dom0

Disk 5 GB LVM disk partition of a single large
disk separated by 150GB

Figure 1: Xen configuration in our local testbed.

ducing additional network traffic that makes network bandwidth a
bottleneck for the server.

There exist some obvious ways an attacker might modify the
workload of a victim. If the attacker knows how to remotely crash
the victim via some exploitable vulnerability, then the helper can
quite directly free up the target resource (among others). However
this is not only noisy, but requires a known vulnerability. Instead,
we focus on the case that the attacker can affect the victim only
through use (or abuse) of legitimate APIs.

Example RFA. As a simple example of an RFA, we look at the
setting of two web servers, running in separate VMs on the same
physical node, that compete for network bandwidth. Assume they
both serve a mix of static and dynamic content. Under similar loads,
a work-conserving network scheduler will fairly share network ca-
pacity and give each web server 50% (indeed, our experiment show
that Xen does fairly share network bandwidth).

However, if we introduce CPU-intensive requests for dynamic
content to one web server that saturate the CPU time available to the
server, we find that the other server’s share of the network increases
from 50% to 85%, because there is now less competing traffic. We
note that this requires a work-conserving scheduler that splits ex-
cess network capacity across the VMs requesting it. A non-work
conserving scheduler would cap the bandwidth available to each
VM, and thus a decline in the use by one VM would not increase
the bandwidth available to others.

4. CONTENTION MEASUREMENTS

In order to understand which resources are amenable to resource-
freeing attacks in a Xen environment, we created a local testbed
that attempts to duplicate a typical configuration found in EC2 (in
particular, the m1.small instance type).

Testbed. Although Amazon does not make their precise hardware
configurations public, we can still gain some insight into the hard-
ware on which an instance is running by looking at system files and
the CPUID instruction. Based on this, we use a platform consisting
of a 4-core, 2-package 2.66 GHz Intel Xeon E5430 with 6MB of
shared L2 cache per package and 4GB of main memory. This is
representative of some of the architectures used by EC2.

We install Xen on the testbed, using the configurations shown
in Figure 1. Again, while we do not have precise knowledge of
Amazon’s setup for Xen, our configuration approximates the EC2
m1l.small instance.

This configuration allows us to precisely control the workload
by varying scheduling policies and by fixing workloads to different
cores. In addition, it enables us to obtain internal statistics from
Xen, such as traces of scheduling activities.

Figure 2 describes the workloads we use for stressing different
hardware resources. The workloads run in a virtual machine with
one VCPU. In order to understand the impact of sharing a cache,
we execute the workloads in three scenarios:



Workload | Description

CPU Solving the N-queens problem for N = 14.
Net Lightweight web server hosting 32KB static
web pages cached in memory, 5000 requests per
second from a separate client.

Diskrand | Requests for randomly selected 4KB chunk in 1
GB span.

Memrand | Randomly request 4B from every 64B of data
from a 64MB buffer.

LLC Execute LLCProbe, which sequentially re-

quests 4B from every 64B of data within an
LLC-sized buffer using cache coloring to bal-
ance access across cache sets.

Figure 2: Resource-specific workloads used to test contention.

(1) Same core time slices two VMs on a single core, which shares
all levels of processor cache.

(i1) Same package runs two VMs each pinned to a separate core
on a single package, which shares only the last-level cache.

(iii) Different package runs two VMs floating over cores on dif-
ferent packages, which do not share any cache, but do share
bandwidth to memory.

In addition, Xen uses a separate VM named Dom0 to run de-
vice drivers. In accordance with usage guides, we provision Dom0
with four VCPUs. As past work has shown this VM can cause con-
tention [36, 12], we make it execute on a different package for the
first two configurations and allow it to use all four cores (both cores
in both packages) for the third.

Extent of Resource Contention. The goal of our experiments is to
determine the contention between workloads using different hard-
ware resources and determine whether enough contention exists to
mount an RFA. With perfect isolation, performance should remain
unchanged no matter what competing benchmarks run. However, if
the isolation is not perfect, then we may see performance degrada-
tion, and thus may be able to successfully mount an RFA.

Figure 3 provides tables showing the results, which demonstrate
that Xen is not able to completely isolate the performance of any
resource. Across all three configurations, CPU and Memrand
show the least interference, indicating that Xen does a good job
accounting for CPU usage and that the processor limits contention
for memory bandwidth.

However, for all other resources, there are competing workloads
that substantially degrade performance. The two resources suffer-
ing the worst contention are Diskrand where run time increases
455% with contending random disk access; and LLC, where run
time increases over 500% with Net and over 500% with Mem-
rand. for Diskrand, competing disk traffic causes seeks to be
much longer and hence slower. For LLC, competing workloads
either interrupt frequently ( Net) or move a lot of data through the
cache ( Memrand).

The three configurations differ mostly in the LLC results. In
the same-core and different-package configurations, the contention
with LLC is fairly small. On the same core, the conflicting code
does not run concurrently, so performance is lost only after a con-
text switch. On different packages, performance losses come largely
from Dom0 , which is spread across all cores. In the same-package
configuration, though, the tests execute concurrently and thus one
program may displace data while the other is running.

One pair of resources stands out as the worst case across all con-
figurations: the degradation caused by Net on LLC. This occurs for
three reasons: (i) the HTTP requests cause frequent interrupts and

Same core CPU Net Diskrand Memrand LLC

CPU - 5 - - -
Net - 194 - - -
Diskrand - - 455 - -
Memrand - 6 - - -
LLC 8 539 72 38 34

Same package CPU Net Diskrand Memrand LLC
CPU - - - - -

Net - 198 - - -
Diskrand - - 461 - -
Memrand - - 17 - -
LLC 20 448 55 566 566
Diff. package CPU Net Diskrand Memrand LLC
CPU - 20 - - -
Net - 100 - - -
Diskrand - - 462 - -
Memrand - 35 - - -
LLC 6 699 11 15 15

Figure 3: Percentage increase in workload run times indicated
in row when contending with workload indicated in column.
Percentage is computed as run time with contention over run
time on otherwise idle machine. For network, run time is the
time to serve a fixed number of requests. A dash means there
was no significant performance degradation. (Top) The VMs
are pinned to the same core. (Middle) The VMs are pinned to
different cores on the same package. (Bottom) The VMs are
pinned to different packages.

hence frequent preemptions due to boost; (ii) in the same-core and
same-package configurations the web server itself runs frequently
and displaces cache contents; and (iii) Dom0 runs the NIC device
driver in the different-package configuration. We will therefore fo-
cus our investigation of RFAs on the conflict between such work-
loads, and leave exploration of RFAs for other workload combina-
tions to future work.

5. RFA FOR CACHE VERSUS NETWORK

As we saw, a particularly egregious performance loss is felt by
cache-bound workloads when co-resident with a network server.
Unfortunately, co-residence of such workloads seems a likely sce-
nario in public clouds: network servers are a canonical application
(EC2 alone hosts several million websites [21]) while cache-bound
processes abound. The remainder of the paper seeks to understand
whether a greedy customer can mount an RFA to increase perfor-
mance when co-resident with one or more web servers.

Setting. We start by providing a full description of the setting
on which we focus. The beneficiary is a cache bound program
running alone in a VM with one VCPU. We use the LLCProbe
benchmark as stand-in for a real beneficiary. LLCProbe is inten-
tionally a synthetic benchmark and is designed to expose idealized
worst-case behavior. Nevertheless, Its pointer-chasing behavior is
reflected in real workloads [2]. We will also investigate more bal-
anced benchmarks such as SPEC CPU2006 [13], SPECjbb2005 [1]
and graph500 [2].

In addition to the beneficiary, there is a victim VM co-resident
on the same physical machine running the Apache web server (ver-
sion 2.2.22). It is configured to serve a mix of static and dynamic
content. The static content consists of 4,096 32K B web pages
(enough to overlow the 6MB LLC) containing random bytes. The
dynamic content is a CGI script that can be configured to consume
varying amounts of CPU time via busy looping. This script serves
as a stand in for either an actual web server serving dynamic content
on the web, or the effects of DoS attacks that drive up CPU usage,



such as complexity attacks [8, 9]. The script takes a parameter to
control duration of the attack, and spins until wall-clock time ad-
vances that duration. We note that this does not reflect the behavior
of most DoS attacks, which take a fixed number of cycles, but we
use it to provide better control over the web server’s behavior. We
confirmed that the behaviors exhibited also arise with CGI scripts
performing a fixed number of computations.

The Apache server is configured with the mod_mem_cache mod-
ule to reduce the latency of static content and FastCGI to pre-fork a
process for CGI scripts. We also use the Multi-Processing Module
for workers, which is a hybrid multithreaded multi-process Apache
web server design used for better performance and for handling
larger request loads.

To simulate load on the web server, we use a custom-built multi-
threaded load generator that sends web requests for the static con-
tent hosted by the victim. Each client thread in the load generator
randomly selects a static web page to request from the web server.
The load generator includes a rate controller thread that ensures that
the actual load on the web server does not exceed the specified re-
quest rate. The client uses 32 worker threads, which we empirically
determined is enough to sustain the web server’s maximum rate.
Requests are synchronous and hence the load generator waits for
the response to the previous request and then a timeout (to prevent
sending requests too fast) before sending the next request. Since
each thread in the load generator waits for a response from the web
server before sending the next request, it may not meet the specified
request rate if the server or the network bandwidth cannot sustain
the load. The helper, which performs the actual RFA, is identical
to the load generator except that it sends requests for the CGI script
rather than for static pages.

Understanding the contention. We conduct experiments on our
local testbed to understand the basic performance degradation ex-
perienced by LLCProbe as the web server’s workload varies. We
report the average time to probe the cache; one probe involves ac-
cessing every cacheline out of a buffer of size equal to the LLC.
We measure the time per probe by counting the number of probes
completed in 10 seconds.

To understand contention, we first pin the victim VM and the
beneficiary VM to the same core and pin Dom0 to a different pack-
age. The Fixed Core columns in Figure 4 show the runtime per
cache probe averaged over 3 runs for a range of background re-
quest rates to the web sever. The Perf. Degradation column shows
the percent increase in probe time relative to running with an idle
victim VM.

Request Fixed Core Floating Core

Rate Runtime | Increase | Runtime | Increase

0 4033 0 4791 0
100 4780 19% 5362 12%
1000 6500 61% 6887 44%
1500 7740 92% 7759 62%
2000 9569 137% 8508 78%
3000 18392 356% 16630 247%

Figure 4: Runtimes (in microseconds) and percentage increase
of LLCProbe (foreground) workload as a function of request
rate to victim (background). For Fixed Core both VMs are
pinned to the same core and for Floating Core Xen chooses
where to execute them.

As the workload of the victim increases, we see a corresponding
increase in the performance degradation of LLCProbe. To evaluate
our hypothesis that the effect arises due to frequent interruptions,

we use Xentrace [17] to record the domain switches that occur over
a fixed period of time in which the LLCProbe VM runs. We an-
alyzed the case of 1500 requests per second (rps) and 3000 rps.
For the 3000 rps case, the web server runs for less than 1 ms in
80% of the times it is scheduled whereas in the 1500 rps case the
web server runs for less than 1 ms only 40% of the time, because
the longer run periods reflect fixed-length CPU tasks not correlated
with traffic. Because Apache does not saturate its CPU allocation, it
retains “boost” priority, which allows it to preempt LLCProbe for
every request. Thus, LLCProbe also runs for short periods, causing
it to lose the data in its cache.

The rightmost columns in Figure 4 show the same experiment
when the two VMs are allowed to float across all the cores (float-
ing). We see a similar trend here, though slightly less severe be-
cause for some fraction of time, the victim and beneficiary VMs are
scheduled on different packages and do not share an LLC. Thus,
we expect in live settings such as EC2 to see less interference than
when both VMs are pinned to the same core.

We separately investigate the effect of contention with the Xen
driver domain, Dom0 ', which handles all device access such as
interrupts or requests to send a packet. In the typical setting where
Dom0 is assigned one VCPU per physical CPU, Dom0O may run
on any core and uses the same scheduling mechanism as other guest
VMs. As a result, Dom0 receives boost and can interfere with the
beneficiary just like the victim when it handles a network interrupt.
Dom0 and the beneficiary may share a CPU even if the victim is
scheduled elsewhere.

The attack. As alluded to in Section 4, the beneficiary’s perfor-
mance degradation is caused by a victim frequently preempting the
beneficiary and thereby polluting its cache. The preemptions occur
to handle static web page requests due to legitimate traffic to the
victim. Our attack aims to exploit the victim’s CPU allotment as
a bottleneck resource in order to shift, in time, its accesses to the
cache, and to reduce the number of requests it serves. Doing so will
provide the beneficiary longer periods of uninterrupted access to the
cache and less cache pollution from handling requests, resulting in
increased cache hit rates and improved performance.

The trigger for this is the introduction of a small number of CGI
requests per second from a helper. Even a low rate of requests per
second can push the victim up to its CPU cap, forcing it to lose
boost and thus consolidating its use of the cache into a smaller time
frame. Introducing long-latency dynamic requests means that, in-
stead of interrupting LLCProbe frequently, the web server runs
continuously until the Xen scheduler preempts it, which allows LL-
CProbe to run uninterrupted. The Xen credit scheduler allows a
maximum of 30 ms of credit per VCPU, with each domain being al-
lotted only one VCPU in our case. Therefore, the helper sends RFA
requests that invoke the CPU-intensive CGI helper in an effort to
use up the victim’s CPU allotment. In addition, the CPU-intensive
requests displace legitimate traffic and thus reduce the rate of re-
quests that pollute the cache.

Here the helper is any system that can make CGI requests. Given
the very low rate required, this could be a free micro instance run-
ning on the cloud or —scaling up— a single system that performs
the RFA against many victims in parallel (that are each co-resident
with a different beneficiary). While for some applications the helper
might be put to better use helping with whatever computation the
beneficiary is performing, in others this will not be possible (e.g., if
it is not easily parallelized) or not as cost effective. We also men-
tion that one might include a lightweight helper on the same VM as

!The default configuration in Xen is to run device drivers in a single
domain with privileged access to I/O hardware.
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Figure 5: Performance of LLCProbe workload when pinned to same core as co-resident web server. “Baseline” measures baseline
performance when no traffic was sent to the victim; it is shown in each grouping for comparison. “No-RFA” measures performance
when no RFA requests were sent. (Left) Performance when LLCProbe and web server VMs are pinned to same core. (Right)
Performance when they float amongst cores. Error bars indicate one standard deviation.

the beneficiary, but this would require care to ensure that interfer-
ence from the client does not outweigh the potential speedup due
to the RFA. In our experiments to follow, we run the helper on a
system different from the one on which the beneficiary and victim
co-reside.

5.1 Evaluation on Local Testbed

The results above show that LLCProbe experiences a significant
performance gap when running on an otherwise idle server as op-
posed to one that is hosting one or more active web servers. In this
section, we show that this performance gap can be narrowed using
the RFA outlined above. In the following we look at the effective-
ness of the attack under a range of RFA intensities, which specifies
the their total runtime per second. Unless otherwise noted, we im-
plement the RFA using CGI requests specifying 40 ms of compu-
tation. We investigate a range of RFA intensities: 160, 320, and
640 ms. This allows understanding both the effect of overloading
the victim by requesting more computation than its total allotment
of 400 ms.

We first run LLCProbe fifteen times while the victim VM is idle
to get a baseline. Then for each legitimate victim traffic rate and
each level of RFA including “No-RFA”, we run LLCProbe fifteen
times while offering the appropriate legitimate traffic and RFA traf-
fic.

The average runtimes of these tests are shown in Figure 5. We
observe several interesting trends. Consider the left chart, which
reports on a setting with both victim and beneficiary pinned to the
same core and all four Dom0 VCPUs floating across all cores. First,
introducing the extra load from the RFA requests helps the benefi-
ciary. Second, the greater the victim’s load the higher the payoffs
from the RFA.

In order to understand these results, we ran additional experi-
ments trying to identify various sources of interference on the ben-
eficiary. There are three main sources of interference: two effects
on request processing by the web server and the effect of network
packet processing by Dom0 . RFA requests help mitigate the effect
of web server request handling in two ways. First, introducing suffi-
ciently many CPU-intensive requests will deprive the web server of
the boost priority. This is the major reason for the high performance
improvement in the pinned case shown in Figure 5. Second, intro-
ducing long-running CGI requests reduces the amount of CPU time

available to serve legitimate traffic and thus, implicitly reduces the
capacity of the web server. This is the reason for higher payoffs at
higher web-server request rates. Reducing Dom0 ’s impact on the
beneficiary can only be indirectly achieved by saturating the web
server and hence reducing the rate of incoming request to the web
server.

Figure 6 shows the CDF of runtime durations of the web server
(top chart) and LLCProbe (bottom chart) before being preempted
both with and without an RFA for the pinned case. What we see is
that LLCProbe runs for more than 1 ms 85% of the time in the RFA
case but only 60% of the time without the RFA. This accounts for
part of its improved performance. Similarly, the web server changes
from running longer than 1 ms for only 10% of the time to 60% of
the time. Furthermore, we can see that the web server often runs
out of scheduling credit from the vertical line at 30 ms, indicating
that it uses up some of its scheduling quanta.

Figure 7 shows the effect of displacing legitimate traffic at higher
RFA intensities for the floating case. At low web-server request
rates and low RFA intensities, the offered and the observed load
remain similar. However, at 3000 rps and RFA intensity of 320,
the observed load reduces to 1995 rps, which leads LLCProbe to
have performance similar to No-RFA case at 2000 rps (right graph
in Figure 5). This is the primary reason for large performance im-
provement at 3000 rps in both pinned and floating case shown in
Figure 5.

In the floating case shown on the right in Figure 5, we see that
RFA requests can sometimes hurt performance. There appear to be
two reasons for this. First, some percentage of the time LLCProbe
and Apache are running concurrently on two different cores shar-
ing an LLC. Because the two loads run concurrently, every cache
access by the web server hurts the performance of LLCProbe. In
such a case, depriving the web server of boost is insufficient and
LLCProbe performance increases only when the RFA rate is high
enough so that the web server saturates its CPU allotment and so
spends more than half the time waiting (40% CPU cap). In a sep-
arate experiment, we pinned the web server and the LLCProbe to
different cores on the same package, and used a web-server request
rate of 2000 rps. In this configuration, a high RFA intensity im-
proved performance by a meager 2.4%. In contrast, when we pin
the two to the same core, performance improved by 70%. Thus,
improving performance when sharing a core is possible without re-
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Figure 8: Normalized performance (baseline runtime over run-
time) for SPEC workloads on our local testbed for various RFA
intensities. All values are at a web server request rate of 3000
rps.

ducing legitimate foreground traffic, while without sharing a core it
requires displacing some legitimate traffic.

Second, in this floating case the beneficiary will for some per-
centage of the time be scheduled to run on a core or package as
Dom0 . Since Dom0 handles all incoming and outgoing packets, it
may frequently interrupt the beneficiary and pollute its cache state.
When we pin LLCProbe and the web server to different packages
(no shared cache) but let Dom0 float, LLCProbe still experiences
interference. At a load of 2000 rps on the web server, LLCProbe
suffered a 78% degradation in performance just due to Dom0 ’s in-
ference. The RFA we explore can only alleviate contention from
Dom0 by forcing a drop in the web server’s foreground traffic rate
(by exhausting its VM’s CPU allocation as shown in Figure 7).

Finally, we analyze a spectrum of SPEC benchmarks. Each SPEC
benchmark is run three times with an idle webserver, an active web
server, and an active web server with various RFA intensities where
all the VMs (including Dom0 ) float across all cores. Figure 8 de-
picts the normalized performance of seven benchmarks under no
RFA and intensities of 320 and 640. That is, the reported fractions
are computed as ¢’ /t where t is the average runtime (request latency
is computed and used for SPECjbb) and t’ is the average baseline
performance when no traffic is sent to the victim. All benchmarks
benefit from the RFA, with the general trend that cache-sensitive
benchmarks (as indicated by a larger drop in performance relative
to the baseline) achieve more gains from the RFA. For example, the
640 RFA increases normalized performance of SPECjbb from 0.91
to 0.97, a 6 percentage point improvement in performance and a
66.5% reduction in harm due to contention. The smallest improve-
ment occurs with hmmer, which shows only a 1.1 percentage point
improvement because it only suffers a performance loss of 1.6%
without the RFA. Across all the benchmarks, the 640 RFA achieves
an average performance improvement of 3.4 percentage points and
recovers 55.5% of lost performance. These improvements come
largely from the ability of the RFA to reduce the request rate of the
victim web server.



5.2 Evaluation on EC2

The above experiments clearly indicate that RFAs can provide sub-
stantial gains in a controlled setting. To verify that the attacks will
also work in a noisier, more realistic setting, we turn to Amazon’s
Elastic Compute Cloud (EC2). There are several reasons it is im-
portant to evaluate RFAs in a real cloud setting. First of all, the
success of the RFA is highly dependent on the overall load of the
physical machine. The instances in question (the beneficiary and
the victim) make up only a portion of the total possible load on a
single machine. If the other instances on the machine are heavy
resource users, they will constantly interfere with the beneficiary
and overshadow any performance benefit from slowing the victim.
Thus, if most physical machines in EC2 are constantly under heavy
load, we are unlikely to see much effect from an RFA on a single
victim. Furthermore, EC2’s Xen configuration is not publicly avail-
able and may prevent RFAs. Thus, to understand if RFAs actually
behave as an attacker would hope, it is necessary to verify their
effectiveness in a live setting like EC2.

Ethical considerations. When using EC2 for experiments, we are
obligated to consider the ethical, contractual, and legal implications
of our work. In our experiments, we use instances running under
our accounts in our names as stand-ins for RFA victims and benefi-
ciaries. We abide by the Amazon user agreement, and use only the
legitimate Amazon-provided APIs. We only attempt to send rea-
sonable levels of traffic (slightly more than 2000 rps for a small
web page) to our own instances (the stand-ins for victims). We
do not directly interact with any other customer’s instances. Our
experiments are therefore within the scope of typical customer be-
havior on EC2: running a utilized web server and a CPU intensive
application. Our experiments can therefore indirectly impact other
customer’s service only to the same extent as typical use.

Test machines. To test an RFA, we require control of at least two
instances running on the same physical machine. As AWS does
not provide this capability directly, we used known techniques [25]
to achieve sets of co-resident m1.small instances on 12 different
physical machines in the EC2 us.east-1c region. Specifically, we
launched large numbers of instances of the same type and then used
RTT times of network probes to check co-residence. Co-residence
was confirmed using a cache-based covert channel. Nine of these
were the same architecture: Intel Xeon E5507 with a 4MB LLC.
We discarded the other instances to focus on those for which we
had a large corpus, which are summarized in Figure 9.

Machine | # | Machine | # | Machine | #
E5507-1 | 4 | E5507-4 | 3 | E5507-7 | 2
E5507-2 | 2 | E5507-5 | 2 | E5507-8 | 3
E5507-3 | 2 | E5507-6 | 2 | E5507-9 | 3

Figure 9: Summary of EC2 machines and number of co-
resident m1.small instances running under our accounts.

Each instance ran Ubuntu 11.04 with Linux kernel 2.6.38-11-
virtual. For each machine, we choose one of the co-resident in-
stances to play the role of the beneficiary and another one to be the
victim. The beneficiary was configured with various benchmarks
while the victim had the same Apache installation and configuration
as in the local testbed (see Section 5.1). Any remaining co-resident
instances were left idle.

We used separate m1.small instances to run the victim load and
the RFA traffic generator. We note that despite offering load of

2000 rps on EC2, the achieved load was only around 1500 on aver-
age and sometimes slightly less in the presence of RFAs.

Experimental procedure. We chose a subset of the benchmarks
(sphinx, mcf, LLCProbe, and bzip2) used in the local testbed for
the experiments on EC2. We ran each benchmark on a beneficiary
instance while a co-resident victim received requests made by a
client load generator as well as an RFA helper, both located on
separate EC2 instances that were not co-resident with the benefi-
ciary and victim. We used an intensity of 512 ms and changed the
duration of each RFA request to 16 ms, as that was most effective
in our experiments. For each benchmark we run the benchmark no
RFA, followed by running it with the RFA, and we repeat this three
times. (For LLCProbe, each single run of the benchmark was in
fact five sequential runs to gather more samples.) This gives 4 data
points (10 for LLCProbe). The interleaving of no-RFA and RFA
helped limit the effects of unexpected intermittent noise (e.g., from
other co-resident VMs outside our control) that may effect mea-
surements. Throughout these experiments the client load generator
sends web server requests at a configured rate. We also measure the
baseline with no background traffic once at the start of measure-
ments for each benchmark.

Aggregate effectiveness. We start by looking at average perfor-
mance of the RFA’s across all nine machines. Figure 10 depicts the
results as normalized average runtimes (average runtime divided by
average baseline runtime). Thus higher is better (less slowdown
from interference). What we see is that the RFAs provides slight
performance improvements across all the instances and, in partic-
ular, never hurts average runtime. While the absolute effects are
small, they are not insignificant: the RFA improved LLCProbe per-
formance by 6.04%. For the SPEC benchmarks (not shown), we see
that the degradation due to the victim (the No-RFA) is, on average,
less than observed on the local testbed. This may be due to the dif-
ferent architectures and software configurations, or it may be due
to higher contention in the baseline case due to other co-resident
instances (owned by other customers). Given the smaller gap be-
tween baseline and No-RFA, there is less absolute performance to
recover by mounting an RFA. Nevertheless, as a fraction of lost per-
formance, even here the beneficiary receives back a large fraction
of its performance lost to interference.
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Figure 10: Normalized performance (average baseline runtime
over over average runtime) across all machines on EC2 for var-
ious workloads.



Per-machine breakdown. To understand the effect further and, in
particular, to get a better sense of whether other (uncontrolled) co-
resident instances are causing contention, we breakdown the results
by individual machine. Figure 11 depicts average runtimes for each
machine and for each of the four benchmarks. (The error bars for
LLCProbe denote one standard deviation — for the other bench-
marks we omitted these due to having three samples.) As it can be
seen, the baseline, No-RFA, and RFA performances all vary signif-
icantly across the different machines. While we cannot know the
precise reason for this, we speculate that it is mostly due to con-
tention from other customer VMs or, possibly, slight differences
in configuration and baseline software performance of the distinct
machines.

Likewise the benefit of performing an RFA varies by machine.
In the case of LLCProbe, RFAs were always beneficial, but the de-
gree to which they improved performance varied. Machine E5507-6
had the highest speedup of 13% from the RFA, which corresponded
to decreasing the cost of contention by about 33%. Interestingly,
there seems to be little correlation between benchmarks, for exam-
ple E5507-6 had negative improvement from RFA for the bzip2 and
mcf benchmarks. Other machines faired better for SPEC bench-
marks, for example E5507-1 had a 3.2% performance improvement
under RFAs.

These varied results are not unexpected in the noisy environment
of EC2. We draw two general conclusions. First, RFAs can provide
significant speedups in the (real-world) environment of EC2, but
the benefits will vary depending on a variety of environmental fac-
tors. Second, given that the aggregate benefit across all machines is
positive, a greedy customer will —on average over the long term—
benefit from mounting RFAs.

6. DISCUSSION

Practical dimensions. Deploying a resource-freeing attack like
the one explored in the last few sections would be subject to several
complicating issues in practice. First, it may be difficult to pre-
dictably modify the victim’s workload because the victim’s normal
(pre-RFA) workload may be unknown to the attacker. As shown in
Section 5, the amount of extra work required was dependent on the
existing workload of the victim. Here, simple adaptive techniques,
where workload is continually introduced as long as it improves the
beneficiary’s performance, may suffice. Moreover, our results sug-
gest an attacker would typically do well to overestimate the RFA
intensity required.

Second, it may be that co-resident instances do not have services
that are accessible to the RFA helper. As discussed in Section 3
a wide swath of, e.g., EC2 instances run public web servers, and
such interrupt-driven workloads are likely to be the most damag-
ing to cache-bound workloads. Even public servers may only be
indirectly accessible to the helper, for example if they lie behind
a load balancer. Future work might target RFAs that can exploit
other avenues of generating a bottleneck resource for the victim,
for example the attacker might generate extra contention on a disk
drive using asynchronous accesses in order to throttle a victim’s
I/0 bound processes. Such an attack would not require any form of
logical access to the victim.

Third, the client workload we experimented with does not reflect
all victim workloads seen in practice. For example, if thousands
of independent clients submit requests concurrently, the RFA may
not be able to effect as much displacement of inbound connection
requests (though request processing will still be displaced). Future

work might clarify the vulnerability of other victim workloads to
RFAs.

Economics of RFAs. In the setting of public clouds, performance
improvement can translate directly to cost improvement since one
pays per unit time. For long running jobs, even modest improve-
ments in performance can significantly lower cost. Of course, one
must account for the cost of mounting the RFA itself, which could
diminish the cost savings. The RFAs we explored used a helper that
sends a small number of web requests to the victim. For example,
our helper uses only 15 Kbps of network bandwidth with a CPU uti-
lization of 0.7% (of the E5430 as configured in our local testbed).
We located this helper on a separate machine. That the helper is so
lightweight means that one might implement it in a variety of ways
to ameliorate its cost. For example, by running it in places where
spare cycles cannot be used for the main computational task or even
on a non-cloud system used to help manage cloud tasks. One could
also use a cheap VM instance that runs helpers for a large set of
beneficiaries, thereby amortizing the cost of the VM instance.

A related issue is that of VM migration. While contemporary
[aaS clouds do not enable dynamic migration, customers may move
a VM from one system to (hopefully) another by shutting it down
and restarting it. The beneficiary could therefore try to migrate
away from a contended host instead of mounting an RFA. We view
migration and RFAs as two complementary directions along which
a greedy customer will attempt to optimize their efficiency. Which
strategy, or a combination thereof, works best will depend on the
contention, the workload, the likelihood of ending up on an uncon-
tended host, pricing, etc. Understanding the relative economic and
performance benefits of migration and RFAs is an interesting ques-
tion for future work.

Preventing RFAs. To prevent the kinds of RFAs we consider, one
could deploy VMs onto dedicated instances. This was suggested in
the cloud setting by Ristenpart et al. [25], and subsequently added
as a feature in EC2. However, the significant cost of dedicated in-
stances makes it impractical for a variety of settings.

There are two primary methods for preventing RFAs even in
the case of multiplexed physical servers: stronger isolation and
smarter scheduling. A hypervisor that provides strong isolation for
every shared resource can prevent RFAs. This entails using non-
work conserving scheduling, so that idleness of a resource allo-
cated to one VM does not benefit another. In addition, it requires
hardware support for allocating access to processor resources, such
as the cache and memory bandwidth. With current hardware, the
only possibility is cache coloring, which sets virtual-to-physical
mappings to ensure that guest virtual machines do not share cache
sets [14]. This effectively partitions the cache in hardware, which
hurts performance for memory-intensive workloads. Finally, it re-
quires that the hypervisor never overcommit and promise more re-
sources to VMs than are physically available, because concurrent
use of overcommitted resources cannot be satisfied. While this ap-
proach may work, it sacrifices performance and efficiency by leav-
ing resources idle.

A second approach is to apply smarter scheduling. Based on the
contention results in Section 4, the hypervisor can monitor the VMs
between processes and attempt to schedule those workloads that do
not conflict. This approach, often applied to multicore and multi-
threaded scheduling [6, 10, 29], detects workloads with conflicting
resource usages via statistics and processor performance counters,
and attempts to schedule them at different times, so they do not
concurrently share the contended resource, or on separate cores or
packages to reduce contention, as in the case of the LLC.
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A final idea would be to prevent RFAs by detecting and blocking
them. We suspect that this would be very difficult in most settings.
RFAs need not abuse vulnerabilities on a system, rather they can
simply take advantage of legitimate functionality (e.g., CGI scripts
on a web server). Moreover they are stealthy in the sense that it
may only require a few requests per second to drive the victim up
against a resource bottleneck. A provider or the victim itself would
be hard pressed to detect and block RFA requests without prevent-
ing legitimate access to the resource.

7. RELATED WORK

Our work builds on past work surveying the performance interfer-
ence of virtual machines, hardware and software techniques for im-
proving performance isolation, side-channel attacks, and scheduler
vulnerabilities.

Performance interference. Numerous works have found severe
performance interference in cloud computing platforms [15, 22, 26,
34]. Our study of performance interference focuses more on the
worst-case interference in a controlled setting than on the actual
interference in cloud platforms. In addition, we measure the inter-
ference from pairs of different workloads rather than two instances
of the same workload. Finally, our work looks at the impact of
multicore scheduling by pinning VMs to a specific core.

Performance isolation. Contention for cache and processor re-
sources is a major cause of performance loss, and many projects
have studied resource-aware CPU schedulers that avoid contention [6,
18, 38]. In cache/network contention, these schedulers may place
the cache and network workloads on different packages to avoid af-
fecting the cache. Similar work has been done at the cluster level
to place jobs [30, 27, 16]. These systems attempt to place work-
loads that use non-interfering resources together or even to leave a
processor idle if interference is bad. These systems would reduce
the effect of performance isolation and thus reduce the need for and
ability of RFAs to improve performance.

Beyond scheduling, software mechanisms can ensure performance
isolation for many hardware resources, including cache [24], disk [11],
memory bandwidth [32] and network [28]. Similar to the sched-
ulers described above, these techniques all reduce the performance
interference from contention, and if used in a non-work-conserving
fashion, can remove the need/benefit of RFAs.

In addition to software techniques, changes to low-level hard-
ware have been proposed to better share memory bandwidth and
processor caches [20, 23]. Similar to the software isolation tech-
niques, such mechanisms would reduce the amount of contention
and hence the need for RFAs.

Gaming schedulers and allocators. The network/cache RFA works
by forcing the scheduler to context switch at much coarser granu-
larities than normal. Similar techniques have been used in the past
to game schedulers in Linux [31] and Xen [37] in order to extend
the timeslice of a thread. These techniques exploit the difference
between the granularity of CPU allocation (cycles) and the granu-
larity of accounting (timer ticks). RFAs are different in that they
convert an interactive workload into a CPU-bound workload, and
thus affect the priority with which a process is scheduled.

Side-channel attacks. RFAs exploit the lack of isolation to boost
performance. Several projects demonstrated side-channel attacks
through the shared LLC that can be used to extract information
about co-resident virtual machines [25, 36, 35].

8. CONCLUSIONS

Performance isolation proves an elusive goal in cloud computing
environments. Despite years of research on how to reduce con-
tention, current cloud providers do not provide strong isolation for
reasons of cost and efficiency. We have outlined a new threat that
arises at the intersection of imperfect isolation and public clouds:
resource-freeing attacks. These are incentivized by the fact that
contention can lead to significant efficiency loss, and that translates
directly into increased customer costs.

While obviously motivated, we sought to also understand whether
they are possible to mount. We therefore performed extensive ex-
periments both on a local Xen testbed and on Amazon EC2. The
results show that, for a certain class of benchmarks, a greedy cus-
tomer can use RFAs to significantly reduce contention for a re-
source by manipulating a co-resident victim’s workload. Having
observed gains of up to 13% on live EC2 instances suggests that
RFAs are likely to offer improvements for real applications as well.

This is a problem, both for the direct victims of an RFA (that
incur increased cost due to spurious requests) and for the cloud
provider, which will loose overall efficiency because of the load
caused by the extraneous (malicious) gaming of resource alloca-
tions. We leave as an open question a detailed exploration of im-
proved resource allocation mechanisms that de-incentivize or com-
pletely prevent RFAs.
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