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ABSTRACT
Efficient high-dimensional similarity search structures are essential
for building scalable content-based search systems on feature-rich
multimedia data. In the last decade, Locality Sensitive Hashing
(LSH) has been proposed as indexing technique for approximate
similarity search. Among the most recent variations of LSH, multi-
probe LSH techniques have been proved to overcome the overlinear
space cost drawback of common LSH. Multi-probe LSH is built on
the well-known LSH technique, but it intelligently probes multi-
ple buckets that are likely to contain query results in a hash table.
Our method is inspired by previous work on probabilistic similar-
ity search structures and improves upon recent theoretical work on
multi-probe and query adaptive LSH. Whereas these methods are
based on likelihood criteria that a given bucket contains query re-
sults, we define a more reliable a posteriori model taking account
some prior about the queries and the searched objects. This prior
knowledge allows a better quality control of the search and a more
accurate selection of the most probable buckets. We implemented
a nearest neighbors search based on this paradigm and performed
experiments on different real visual features datasets. We show that
our a posteriori scheme outperforms other multi-probe LSH while
offering a better quality control. Comparisons to the basic LSH
technique show that our method allows consistent improvements
both in space and time efficiency.

Categories and Subject Descriptors
H.3.3 [Information Storgage and Retrieval]: Informa-
tion Search and Retrieval

General Terms
Algorithms, Performance, Theory

1. INTRODUCTION AND RELATED
Efficient high-dimensional similarity search structures are

essential for building scalable content-based multimedia sys-
tems including multimedia search engines as well as brows-
ing, summarization or content enrichment technologies. In-
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deed, multimedia contents are typically represented by high
dimensional feature vectors that are frequently processed by
algorithms involving nearest neighbors search, e.g. ranking,
matching, quantizing, clustering or learning.
Early proposed tree-based indexing methods for Nearest
Neighbors (NN) search such as R-tree [8], SR-tree [13], M-
tree [5] or more recently cover-tree [2] return accurate re-
sults, but they are not time efficient for data with high (in-
trinsic) dimensionalities. It has been shown in [21] that when
the dimensionality exceeds about 10, existing indexing data
structures based on space partitioning are slower than the
brute-force, linear-scan approach.
Approximate nearest-neighbor algorithms have been shown
to be an interesting way of dramatically improving the
search speed, and are often a necessity. The principle is
to speed-up the search by returning only an approximation
of the exact query results, according to an accuracy mea-
sure. Some of the first proposed approximate solutions were
simply extensions of exact methods to the search of ε-NN
[22, 4]; a ε-NN being an object whose distance to the query
is lower than (1+ε) times the distance of the true k-th near-
est neighbor. In [22] e.g., Zezula et al. deal with ε-NN in
a M -tree. The performance gain is around 20 for a recall of
50% compared to exact results.
Clustering-based approximate methods have also been pro-
posed to achieve substantial speed-ups over sequential scan
[7, 15]. These algorithms partition the data into clusters
and rank them at query time according to their similar-
ity with the query vector. Cluster preprocessing is however
very time consuming and prevents from practical operations
such as insertions or deletions. In [9], Houle et al. devel-
oped a practical index called SASH for approximate sim-
ilarity queries in extremely high-dimensional data. SASH
is a multi-level structure of random samples connected to
some of their neighbors. Queries are processed by first lo-
cating approximate neighbors within the sample, and then
using the pre-established connections to discover neighbors
within the remainder of the data set.
Overall, one of the most popular approximate nearest neigh-
bor search algorithms used in multimedia applications is the
Locality-Sensitive Hashing (LSH) [6]. The basic method
uses a family of locality-sensitive hash functions composed
of linear projections over randomly selected directions in
the feature space. The principle is that nearby objects are
hashed into the same hash bucket with a high probability,
for at least one of the used hash function. LSH has been
proved to achieve very good time efficiency for high dimen-
sional features and has been successfully applied in several
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multimedia applications including visual local features in-
dexing [14], songs intersection [3] or 3D object indexing [18].
Time efficiency improvements of the basic LSH method have
been proposed recently: In [1], Andoni and Indyk propose a
near-optimal LSH that uses a Leech lattice for the geomet-
ric hashing instead of one-dimensional random projections.
The idea is that lattices offer better quantization proper-
ties for the mean square error dissimilarity measure used in
Euclidean spaces. In [10], Jegou et al. also use a lattice in-
stead of random projections, but improves the search time
efficiency by performing an on-line selection of the most ap-
propriate hash functions from the whole pool of functions.
To achieve high search accuracy, LSH methods needs how-
ever to use a large number of hash tables and its main draw-
back is that it requires very large amount of available mem-
ory. To solve this problem, Multi-probe LSH methods have
been proposed recently [17, 19]. Such methods are built on
the well-known LSH technique, but instead probing only the
bucket containing the query in each hash table, they probe
multiple buckets that are likely to contain query results. The
first multi-probe LSH strategy, denoted entropy-based LSH,
was proposed by Panigrahy [19]. The principle was to sam-
ple multiple buckets by randomly generating ”perturbated”
objects near the query object, resulting in several query ob-
jects whose results are merged in the end. The intention of
the method was clearly to trade time for space requirements.
In [17], Lv et al. propose a more efficient Multi-probe LSH
method that generates directly perturbated hash buckets in-
stead of perturbated query objects, thanks to an efficient al-
gorithm producing optimal probing sequences of hash buck-
ets that are likely to contain similar objects to the query.
This paper presents a new Multi-probe LSH method that
generalizes and improves upon these previous techniques.
Whereas they based on a simple likelihood criterion that a
given bucket contains query results, we define a more re-
liable a posteriori probabilistic model taking account some
prior about the queries and the searched objects. This prior
knowledge allows a more accurate selection of the most prob-
able buckets, improving time efficiency and offering a better
quality control of the search.
Our new Multi-probe LSH method is somehow inspired by
previous works of the authors on Probabilistic similarity
search structures [20, 12]. Such methods can also be consid-
ered as hashing algorithms but contrary to LSH techniques
they are based on a single multidimensional hash function
induced by a space filling curve or an adaptive grid in the
orginal feature space. The principle of the search is then to
select the most probable hash buckets according to a prob-
abilistic model of the searched objects, learned on query
samples. Such techniques have been proved to achieve very
good time efficiency for the search of distorted features in
huge datasets and has been successfully applied in scalable
content-based copy detection applications [20, 12]. How-
ever these techniques fail to index high dimensional features
whose intrinsic dimensionality exceeds about 30 to 40 fea-
tures, mainly because they use a single multidimensional
grid hash table whereas LSH methods solve this problem by
using several radomly selected hash functions.
The paper is organized as follows: Section 2 reminds general
principles of Locality-Sensitive Hashing methods. Section
3 describes the proposed a posteriori Multi-probe Locality
Sensitive Hashing method. Section 4 reports experimental
results of the proposed method on real datasets.

2. LOCALITY SENSITIVE HASHING
In this section, we remind the general Euclidean Locality-

Sensitive Hashing algorithm as described in [6], since we use
the same indexing scheme. The basic idea of LSH is to use a
set of hash functions that map similar objects into the same
hash bucket with a probability higher than non-similar
objects. At indexing time, all the feature vectors of the
dataset are inserted in L hash tables corresponding to
L randomly selected hash functions. At query time, the
query vector is also mapped onto the L hash tables and the
correponding L hash buckets are selected as candidates to
contain objects similar to the query. A final step is then
performed to filter the candidate objects by computing
their distance to the query.
More formally, let V be a dataset of N d-dimensional
feature vectors in R

d under the l2 norm. For any point
v ∈ R

d, the notation ‖v‖2 represents the l2 norm of the
vector v.

Now let G =
˘

g : R
d → Z

k
¯

be a family of hash functions
such as:

g(v) = (h1(v), . . . , hk(v))

where the functions hi for i ∈ [1, k] belongs to a locality
sensitive hashing function family H =

˘

h : R
d → Z

¯

[6]. We

remind that a function family H =
˘

h : R
d → Z

¯

is called

(R, cR, p1, p2)-sensitive for l2 if for any q,v ∈ R
d:

Pr(h(q) = h(v)) ≥ p1 when ‖q − v‖2 ≤ R (1)

Pr(h(q) = h(v)) ≤ p2 when ‖q − v‖2 ≥ cR (2)

where c > 1 and p1 > p2. Intuitively, that means that
nearby objects within distance R have a greater chance of
being hashed to the same value than objects that are far
away (distance greater than cR).
For the l2 metric, the typically used LSH functions h ∈ H
are defined as:

h (v) =

—

a.v + b

w

�

(3)

where a ∈ R
d is a random vector with entries chosen inde-

pendently from a Gaussian distribution and b a real number
chosen uniformly from the range [0, w].
Now, the LSH indexing method works as follows:

1. Choose L hash functions g1, . . . ,gL from G, indepen-
dently and uniformly at random (each hash function
gj = (hj,1(v), . . . , hj,k(v)) is the concatenation of k
LSH functions randomly generated from H).

2. Use each of the L hash functions to construct one hash
table (resulting in L hash tables).

3. Insert all points v ∈ V in each of the L hash tables by
computing the corresponding L hash values.

At query time, the L hash values of a given query vector q
are computed in order to generate a set of L candidate hash
buckets (one in each hash table). The candidate objects
are then filtered by computing their distance to the query
according to the query objective (typically the K-nearest
neighbors or the neighbors in a given range).
In multi-probe LSH methods [17, 19], the main difference is
that the set of candidate hash buckets is extended to more
than one bucket in each hash table, by selecting neighboring
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hash buckets to the query one. The idea is to increase the
probability to find a relevant neighbor in a single hash table
and consequently reduce the number L of required hash ta-
bles. The different approaches mainly differ in terms of how
they select the multiple buckets per hash table and we will
come again to this point in the next section.

3. A POSTERIORI MULTI-PROBE
LOCALITY SENSITIVE HASHING

This section describes the proposed method. Sub-section
3.1 introduces our new success probability criterion to find
neighbors in a given bucket. Sub-section 3.2 describes
the derived Probabilistic Query-directed Probing Sequence
algorithm. Sub-section 3.3 focuses on the implementation
details for approximate nearest neighbor search. Finally,
sub-section 3.4 analyses more precisely the advantages of
our method compared to other Multi-probe LSH methods.

To make our argumentation easier, let us first refor-
mulate the definition of a hash function g ∈ G as:

g = bgrc

with

gr(v) = A v + B (4)

and where

A =

„

ta1

w
, . . . ,

tak

w

«

and

B =

„

b1

w
, . . . ,

bk

w

«

Thus, a hash function gr can be uniquely defined by a set
of parameters θ = {A,B} and we denote gr

θ(v) a hash
function parametrized by a fixed θ.
Secondly, let n (q) be the set of relevant neighbors of a
given query q. This relevant set of neighbors depends on
the targeted similar objects, e.g. the K-nearest neighbors
of q or the results of a R-range query around q or any other
relevant vectors.

3.1 Success Probability Estimation
Although all multi-probe LSH approaches visit multiple

buckets for each hash table, they are very different in terms
of how they probe multiple buckets. In this section, we will
introduce the criterion used by our technique to estimate
the success probability that a given hash bucket in a given
hash table (among L) contains a relevant object v ∈ n(q).
We first start by introducing the criterion used by others
multi-probe [17, 19] and query-adaptive [10] LSH methods.

Locality sensitive hashing theory is based on the proba-
bility distribution of the hash values of two given points q
and v, over the random choices of the hash functions, e.g.
over random choices of parameters set θ. In other words,
θ is considered as a random variable whereas v and q are
considered as constants. More formally, let gr

v(θ) denote the
hash function g for a constant v and a variable θ. And let

δq,v(θ) = gr
v(θ) − gr

q(θ) (5)

be the difference of the hash values of v and q as a function
of θ. Due to the property of p-stable distributions [6], to
which the Gaussian distribution used to generate the LSH
functions belongs, it is possible to show that the probabil-
ity distribution of δq,v(θ) is also a normal distribution with
independent Gaussian components and with variances σR

proportional to R = ‖v − q‖2:

pδq,v(θ)|(q,v) =

0

B

@

N (0, σ2
R)

...
N (0, σ2

R)

1

C

A
(6)

From this statement, LSH theory derives the probability
that two given points q and v collide in the same bucket
over the randomly picked hash functions as done in [6].
In a more general case, it is also possible to derive the
probability that q and v belongs to adjacent buckets over
the randomly picked hash functions. Such probability
can be used to estimate the overall search quality of a
step-wise multi-probe LSH approach (as the one mentioned
in [17]), which would consist in probing the same bucket
neighborhood in all hash tables (e.g. all the neighboring
hash buckets which differ in at most c coordinates from the
hash bucket of the query).

Now, basic multi-probe LSH method [17] and some query-
adaptive LSH approach [10] are based on a likelihood inter-
pretation of the probability distribution pδq,v(θ)|(q,v). The
density probability of δq,v over random values of θ can indeed
also be interprated as the likelihood of δθ = gr

θ(v) − gr
θ(q)

over random choices of q and v, for fixed values of θ (i.e. for
a fixed hash table). Formally, let

lδθ(q,v)|θ = pδq,v(θ)|(q,v) (7)

denote this likelihood. From Equation 6, we can derive:

lδθ(q,v)|(θ) = K exp
−
‖g

r
θ
(v)−g

r
θ
(q)‖

2
σ2

R (8)

As this likelihood mostly depends on ‖gr
θ(v) − gr

θ(q)‖2, the
authors of [17] and [10] suggest to use as success criterion of
a given hash bucket u = gθ(q) + ∆, ∆ ∈ Z

d, the distance
between the boundaries of this hash bucket and the real
query hash gr

θ(q).

At this point, it is important to remind that the likeli-
hood lδθ(q,v)|(θ) does not model the real probability to find
a neighbor v of q in the hash bucket u = gθ(q)+∆. Consid-
ering this likelihood as a probability density would be in fact
a case of prosecutor’s fallacy since the real density depends
on the prior distribution of v ∈ n(q).
Our method rather estimates the success probability of a
given hash bucket in a given hash table a posteriori, i.e. for
an observed hash function gr

θ parametrized by a known θ.
For a given query q, in the absence of evidence, a point
v ∈ n (q) is indeed a random variable to which we associate
a prior probability distribution pv|q(x), x ∈ R

d. For a given
query q and a given hash function gθ, our success criterion is
then based on the distribution of gr

θ(v) over random choices
of v ∈ n(q), denoted as pgr

θ
(v)|(q,θ). We will see later, in sec-

tion 3.3, how we can derive this posterior distribution from
prior distributions pv|q. For now, we suppose that this dis-
tribution is known.
After scalar quantization of the components of gr

θ , the prob-
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ability to find a relevant neighbor in a bucket characterized
by its key u = (u1, . . . , uk) ∈ Z

k is:

Pgθ |(q,θ)(u) = Prv (gθ (x) = u : x ∈ n (q))

=

Z u1+1

u1

. . .

Z uk+1

uk

pgr
θ
|(q,θ)(y)dy

Now, the principle of our probabilistic multi-probe LSH
method is to visit the most probable hash buckets of a given
hash function gθ according to their posterior probabilities
Pgθ |(q,θ)(u). More precisely, our algorithm selects the mini-
mal set of hash buckets, such that the global probability is
higher than a quality control parameter α. Formally, let U
be a set of hash keys u ∈ Z

k and let

Uα =

(

U :
X

u∈U

Pgθ |(q,θ)(u) ≥ α

)

then we wish to find the set of keys Umin(α) such as:

Umin(α) = argmin
U∈Uα

(|U |) (9)

A naive way to construct Umin(α) would be to compute
the success probability of all possible keys and sort them,
but it is of course practically impossible. A more efficient
but approximate way would be to first use an s-step-wise
probing algorithm that selects all the hash buckets which
differ in at most s coordinates from the hash bucket of the
query and then to sort them according to their posterior
probability. This method has the advantage to be generic
but is still not very efficient since the number of hash buckets

probabilities to estimate remains
Ps

n=1 2n ×

„

k
n

«

. If we

tolerate an independence hypothesis of the components of
Pgθ |(q,θ)(u), it is however possible to use a drastically more
efficient algorithm, similar to the Query-Directed Probing
Sequence algorithm defined in [17] and which is described in
section 3.2.
At this point, we can remark that if we consider the following
discrete distribution

Pgθ |(q,θ)(u) =



1 if u = gθ(q)
0 if u 6= gθ(q)

(10)

our method is equivalent to the basic LSH method. Also, if
the prior pv|q is modeled by an isotropic normal distribution
around q, pgr

θ
|(q,θ) would be also an isotropic normal distri-

bution and our method would be somehow equivalent to the
common likelihood-based multi-probe LSH method.

3.2 Probabilistic Query-directed Probing
Sequence algorithm

As mentioned in previous section, under the independence
hypothesis of the components of gr

θ , it is possible to define
an efficient probabilistic probing sequence algorithm. Note
that this is in the general not the case since gr

θ(v) is a
function of the random variable v ∈ n(q) which generally
does not have independent components. However, we will
see in the experiments that it seems to be an acceptable
hypothesis.

From this assumption, follows:

pgr
θ
|(q,θ)(y) =

k
Y

i=1

phr
i
|(q,θi)(yi) y ∈ R

k
yi ∈ R (11)

where θi = {ai, bi} and after quantization

Pgθ |(q,θ)(u) =

k
Y

i=1

Phi|(q,θi)(ui) u ∈ Z
k

ui ∈ Z (12)

Note that in practice, the domain of ui is not infinite and
ui belongs to a a very short range of integer values bounded
by:

u
min
i = min

x∈V
hi(x)

u
max
i = max

x∈V
hi(x)

where V is the dataset we wish to index.
Now, to achieve the objective of Equation 9, our Probabilis-
tic Query-directed Probing algorithm works in a similar way
than the one defined in [17], so we let the reader refer to it
for full details and illustrations. The main differences of
our algorithm are (1) that the relevance criterion of a hash
bucket is not a sum of squared distances but a product of
probabilities and (2) the ending condition is not the number
of iterations (i.e. the number of probes) but the estimated
success probability over all generated probes (3) the prob-
ing is not limited to the hash buckets adjacent to the query
bucket uq = gθ(q).
The principle of the algorithm is to generate a list of hash
buckets in decreasing order of their probability Pgθ |(q,θ)(u)
and to stop when the sum of their probabilities is larger than
α.
Given the query object q and the hash functions hi for i =
1, . . . , k corresponding to a single hash table, we first com-
pute Phi|(q,θi)(ui) for i = 1, . . . , k and ui = umin

i , . . . , umax
i .

This generates an array of k lists of ni probabilities (ni =
umax

i − umin
i + 1). Then, the ni values of each of the k

lists are sorted in decreasing order, and finally the k lists
are also sorted in decreasing order of their first element. Let
pj [zj ] denote the (zj − 1)-th element in the j-th list of the
sorted array. A hash bucket with key u, can now be uniquely
represented by a sorted key z = (z1, . . . , zj , . . . , zk) ∈ Z

k.
According to equation 12, the probability of a hash bucket
characterized by its sorted key z remains the product of in-
dependent probabilities:

Pr(z) =

k
Y

j=1

pj [zj ]

The problem of generating hash buckets in decreasing order
of their probability now reduces to the problem of generat-
ing sorted keys z in decreasing order of their probability. To
do that, three operations generating child sorted keys from a
parent one are defined. The two first ones (shift and expand)
are similar to the ones used in [17], except that our repre-
sentation is not the same. The last one (extend) is added to
explore hash buckets not adjacent to the query bucket:

• shift(z): This operation shifts to the right the last non
zero component of z if it is equal to one and if it is not
the last one (e.g. shift((1, 2, 1, 0, 0))=(1, 2, 0, 1, 0)).
Otherwise, returns nothing
(e.g. shift((1, 2, 1, 0, 1))=∅, shift((0, 2, 0, 0, 0))=∅).
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• expand(z): This operation sets to one the
component following the last non zero com-
ponent of z if it is not the last one z (e.g.
expand((1, 2, 1, 0, 0))=(1, 2, 1, 1, 0)). Otherwise, it
returns nothing (e.g. expand((1, 2, 1, 0, 1))=∅).

• extend(z): This operation adds one to the last non zero
component. (e.g. extend((1, 2, 1, 0, 0))=(1, 2, 2, 0, 0).

The important property of these three operations is
that they generate child hash buckets with probabili-
ties lower than the parent one (Pr (shift (z)) < Pr (z),
Pr (expand (z)) < Pr (z) and Pr (extend (z)) < Pr (z)).
The other important property is that, for any hash bucket
characterized by its sorted key z, there is a unique sequence
of shift, expand and extend operations which will generate z
from the starting bucket z0 = (0, . . . , 0).
Now, the algorithm used to generate the hash buckets in de-
creasing order of their probability and achieve the objective
of equation 9 is the following:

maxHeap=∅;
OutputKeyList=∅;
z0 = (0, . . . , 0);
maxHeap→Insert(z0,Pr(z0));
l = 1;
Pt = 0;
while Pt < α do

zl=maxHeap→ExtractMax();
OutputKeyList→Add(zl);
Pt = Pt + Pr(zl);
zshift=shift(zl);
maxHeap→Insert(zshift,Pr(zshift));
zexp=expand(zl);
maxHeap→Insert(zexpand,Pr(zexpand));
zext=extend(zl);
maxHeap→Insert(zextend,Pr(zextend));
l = l + 1;

end
return OutputKeyList;

A max-heap is used to maintain the collection of can-
didate hash buckets and output the top node at each
iteration. The number of elements in the heap at any point
of time is less than two times the number of iterations (i.e.
the number of generated probes).

3.3 Approximate nearest neighbor search
implementation

3.3.1 A posteriori probabilities estimation
We implemented a nearest neighbors search technique

based on the proposed method. This section describes how
we compute the a posteriori probabilities Phi|(q,θi)(ui) re-
quired by the Probabilistic Query-directed Probing algo-
rithm (cf. Equation 12).
Our estimation is based on a training set of Ns sampled
query objects qs and corresponding retrieved objects v ∈
n(qs), typically obtained by randomly picking Ns sample ob-
jects in the dataset and searching their exact nearest neigh-
bors thanks to an exhaustive scan of the dataset.
Now, let us model the prior distribution pv|q by a multi-
variate Normal distribution with conditional mean µ(q) and

conditional covariance matrix Σ(q):

pv|q = N (µ(q), Σ(q))

The hash function gr
θ(v) being a linear application of v (cf.

Equation 4), it also produces a Gaussian random variable
with conditional covariance matrix AΣ(q)AT and condi-
tional mean gr

θ(µ(q)). The distribution of the independent
components hr

i is then:

phr
i
|(q,θi) = N (hr

i (µ(q)), aT
i Σ(q)ai) (13)

At this point, the conditional functions µ(q) and Σ(q) for
any query q could be estimated by a Parzen window over
the Ns samples of the training set. However, this process
would be to expensive at query time. In our current im-
plementation, we simplified the problem by considering a
simpler model where the mean and variance of phr

i
|(q,θi) are

conditioned only by hr
i (q) and not q itself. The main fun-

dation of this assumption is to consider hr
i (v) independent

from hr
i′ 6=i(q) which is quite realistic due to the indepen-

dence of the randomly selected projection vectors ai. In
practice, using the datasets described in section 4, the nor-
malized mutual information between pairs of such variables
is very law, around 0.04 on average with a maximum at 0.15
for the most dependent pair of hash functions of the HSV
dataset.
For each sample query qs, we estimate the sample mean µs

and sample covariance matrix Σs over the retrieved neigh-
bors v ∈ n(qs). For all hash functions hr

i , we then compute
the Ns hashing values hr

i (qs) and associate them a sample
variance (cf. Equation 13):

σ
2
i (hr

i (qs)) = aT
i Σsai

and a sample mean:

µi(h
r
i (qs)) = h

r
i (µs)

The conditional mean µi(h
r
i (q)) and conditional variance

σ2
i (hr

i (q)) for any q are then interpolated by a Gaussian
kernel over the Ns sample:

µi(h
r
i (q)) =

Pns

s=1 K(hr
i (q), hr

i (qs)) hr
i (µs)

Pns

s=1 K(hr
i (q), hr

i (qs))
(14)

σ
2
i (hr

i (q)) =

Pns

s=1 K(hr
i (q), hr

i (qs)) σ2
i (hr

i (qs))
Pns

s=1 K(hr
i (q), hr

i (qs))
(15)

where K(x, y) is the Gaussian kernel function. At this point,
the discrete distribution of the hash values after quantization
can be computed as:

Phi|(q,θi)(h
r
i (q), ui) =

Z ui+1

y=ui

N (µi(h
r
i (q)), σ2

i (hr
i (q)))dy

(16)
In our experiments, we typically use Ns = 1000 query sam-
ples and σK = w

5
for the Gaussian kernel parameter.

3.3.2 Pre-computation of probabilities in Look-up
Tables

In practice, to speed up the Probabilistic Query-directed
Probing algorithm at query time, we pre-compute, at in-
dexing time, the discrete distributions Phi|(q,θi)(h

r
i (q), ui)

for quantized values of hr
i (q). Let hz

i (q) ∈ [0, Nz] be the
quantized value of hr

i (q):

h
z
i (q) =

—

“

h
r
i (q) − u

min
i

” Nz

umax
i + 1 − umin

i

�

(17)

213



At indexing time, we pre-compute the discrete distri-
butions Phi|(q,θi)(ui) for all possible quantized values
hz

i (q) ∈ 0, . . . , Nz according to Equations 14, 15 and 16.
Over all hash functions h

j
i , this process generates a set of

L × k × Nz Look-up tables of size umax
i + 1 − umin

i . In the
experiments, we used Nz = 2500 and the resulting space
requirement for the Look-up tables did not exceed 5 Mb.
At query time, the probabilities required by the Probabilis-
tic Query-directed Probing algorithm (cf. Equation 12) are
computed only by quantizing hr

i (q) according to Equation
17 and reading the corresponding values in the Look-up
tables.

3.3.3 Refinement step
At query time, once the most probable hash buckets are

selected, the distance to the query is computed for all the ob-
jects they contain and only the objects satisfying the query
objective are output (v ∈ n(q)).

3.3.4 Parameters settings
The main parameters of our technique are the common

LSH parameters L, k and w (cf. section 2) and the single
hash table quality control parameter α (cf. section 3.1).
A suggested in [6] and [1], we choose common settings for
the LSH techniques: k = ln(N) and w = 4R where R is
the average distance of the searched objects v ∈ n(q) to the
query q. The total quality of the search αT is set by the
user. In the basic LSH technique, it is equal to

αT = 1 − (1 − p
k
0)L (18)

where p0 is the probability that a query q and a neighbor v
collide in the same bucket for a single hash function. In our
technique, the probability to retrieve a neighbor v in one of
the L multidimensional indexes is estimated by α and thus
we get:

αT = 1 − (1 − α)L (19)

To guaranty that the global probability is higher than αT

we thus choose L as:

L =

—

ln(1 − αT )

ln(1 − α)
+ 1

�

(20)

The estimation of the total search time Tt can be ex-
pressed as a function of α:

Tt(α) = L × T (α) =

„

ln(1 − αT )

ln(1 − α)
+ 1

«

× T (α) (21)

where T (α) is the search time in one of the L indexes. If it
exists, this function has a minimum when its derivative is
null, leading to the following equality:

T ′(α)

T (α)
=

ln(1 − αT )

ln(1 − α)(1 − α) (ln(1 − α) + ln(1 − αT ))
(22)

The second term is a strictly decreasing function that
tends to infinity when α tends to zero and to zero when
α tends to one. The first term is the logarithmic derivative
of T (α). It is always higher than zero due to the growth
of T (α) with α and it is usually increasing with α due to
the exponential growth of T (α). Thus, Tt(α) has usually a
unique minimum at α = αmin that can be determined exper-
imentally by searching a single index with varying values of

α, measuring T (α) and minimizing Tt(α) according to equa-
tion 21. Such estimation is illustrated on Figure 1 for the
three datasets described in the experimental section 4 and
αT =0.95. The minimum of Tt(α) is achieved respectively at
αmin=0.44 for HSV dataset, at αmin=0.57 for SIFT dataset
and at αmin=0.78 for Dipole dataset. From these values,
we can derive the optimal value of L thanks to equation 20,
which gives respectively L=5, L=4 and L=2.
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Figure 1: Theoretical global search time vs success
probability control parameter alpha (global control
quality parameter set to αT = 0.95): Mininima are
achieved respectively at αmin=0.44 for HSV dataset,
at αmin=0.57 for SIFT dataset and at αmin=0.78 for
Dipole dataset

3.4 Advantages over other multi-probe LSH
schemes

We summarize here the advantages of our probabilistic
multi-probe LSH technique compared to other multi-probe
LSH techniques:

1. More efficient filtering: taking account the prior distri-
bution of the searched objects allows to reduce signifi-
cantly the required number of probes to achieve similar
recall. High recall can even be obtained efficiently with
a single hash table.

2. Search quality control and parameters estimation: The
relevance criterion of a hash bucket being a probability
and not a likelihood score, it allows to have a coarse
estimation of the probability to find relevant objects
without tuning. Having an estimation of the probabil-
ity also allows to estimate automatically the required
number of hash tables L without tuning.

3. Genericity and Query adaptivity: Our probabilistic fil-
tering algorithm is fully independent of the query type.
It just requires query samples and corresponding rel-
evant objects sets, not necessarily nearest neighbors.
Examples of other relevant objects are distorted fea-
tures obtained after transformation of a multimedia
content or nearest neighbors of the query in another
dataset (e.g. a category specific dataset or a train-
ing dataset). The search can also be easily adapted
to different objectives by pre-computing different prior
models and corresponding probabilities Look-up tables
for the same index structure. A typical application is
to achieve class dependent queries.
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4. EXPERIMENTS

4.1 Experimental setup
This section describes the configurations of our experi-

ments, including the evaluation datasets, benchmarks, met-
rics, and some implementation details.

4.1.1 Evaluation datasets
All the experiments are based on the three following visual

features datasets. The dataset sizes are chosen such that the
index data structure of the basic LSH method can fit in main
memory.

• HSV dataset: A set of common 120-dimensional hsv
histograms extracted from a collection of 512,927 im-
ages collected from the web in a design-oriented per-
spective (European project TRENDS).

• SIFT dataset: A set of common SIFT local features
[16] extracted in a collection of 350 images randomly
built from the ImagEval1 benchmark corpus. The
particularity of such features is that the generated vec-
tors are very sparse with a large amount of null com-
ponents.

• DIPOLE dataset: A set of 5,405,324 20-dimensional
local features based on oriented dissociated dipoles ex-
tracted around multi-resolution Harris interest points
[11]. Contrary, to the two previous datasets, such fea-
tures are not histograms but differential operators with
dense distributions. The source image collection in-
cludes 5,474 images built from the ImagEval bench-
mark corpus.

Table 1 summarizes the dimension and size of the three
datasets.

dataset size dimension

HSV 512,927 120
SIFT 523,338 128

DIPOLE 5,405,324 20

Table 1: Experimental datasets summary

4.1.2 Evaluation benchmark
For each dataset, we randomly picked a set Q of 1000

objects as query objects. Depending on the experiment, the
ideal answer of each query (ground truth) is defined either by
the K nearest neighbors or by all the objects in a given range
R (not including the query itself). We used the Euclidean
distance for all datasets. Unless otherwise specified, we use a
K-nearest neighbor search with K = 100. The performances
are evaluated in two main aspects: search quality and speed.
Search quality is measured by recall:

recall =
|I(Q) ∩ A(Q)|

|I(Q)|
(23)

where I(Q) is the ideal set of answers over all queries
and A(Q) the set of actual answers over all queries. Note
that we do not need to consider precision here, since all

1http://www.imageval.org/

candidate objects found in checked hash buckets are filtered
at query time according to the query parameters (Top K
candidates or all candidates whose distance is below R for
range queries).
Search speed is measured by averaging the query time over
the 1000 queries.

4.1.3 Hardware
The evaluation is done on a PC with one 64-bit 2GHz

CPU, 1024Kb L2 cache size and 6GB RAM.

4.2 Experimental results

4.2.1 Success probability criterion comparison
Although all multi-probe LSH approaches visit multiple

buckets for each hash table, they are very different in
terms of how they probe multiple buckets. In [17], Lv
et al. already showed that their query directed probing
algorithm based on a likelihood relevance criterion did
require substantially fewer number of probes than the
entropy-based method of [19] or than a simple step-wise
probing. We thus only compare their likelihood relevance
criterion to our probabilistic filtering algorithm within our
own implementation of the technique.
To compare the two approaches in detail, we measure the
number of visited hash buckets for varying recall values. As
the likelihood-based method does not enable any control of
the search quality, we vary directly the number of visited
buckets (since it is the main parameter of this technique)
and measure the resulting recall. For our method, we vary
the value of the search quality parameter α and measure
the resulting average number of visited buckets and the
resulting recall.
We first did this experiment for a single hash function
(L = 1). The results (number of visited buckets and recall)
are then averaged over 10 randomly picked hash functions
gj . Figure 2 plots the results obtained for the HSV dataset.
It shows that our method requires substantially fewer
number of probes to achieve the same recall. The ratio is
increasing with the recall value and is about 5 for a typical
recall equal to 0.44 (related to the optimal theoretical value
αmin=0.44, cf. section 3.3.4). Similar curves are obtained
for the two other datasets: For SIFT dataset, the gain is
about 6 for a recall equal to 0.57 (related to αmin=0.57);
For DIPOLE dataset, the ratio is about 18 for a recall equal
to 0.78 (related to αmin=0.78).

In a second step, we did the same experiment using
multiple hashing functions with the values of L derived
from the optimization procedure described in section 3.3.4.
Table 2 summarizes the results obtained using αT = 0.95 for
our technique and at similar recall for the likelihood-based
method. It shows that our a posteriori success probability
criterion requires substantially fewer number of probes to
achieve similar recall. The reduction ratio is equal to 6.17
for HSV dataset, 2.38 for SIFT dataset and 8.9 for DIPOLE
dataset.

To illustrate why our a posteriori method allows a more
accurate selection of the probes, we did compute some statis-
tics on the key values of the nearest neighbours of 60,000
sample queries. Figure 3 plots the experimental distribution
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Figure 2: Number of probes required by likeli-
hood multi-probe LSH and a posteriori multi-probe
LSH to achieve certain search quality (HSV dataset,
L=1)

dataset method L recall nb of probes

HSV
a posteriori 5 0.94 31,813
likelihood 5 0.92 196,500

SIFT
a posteriori 4 0.92 2,689
likelihood 4 0.92 6,400

DIPOLE
a posteriori 2 0.96 5,752
likelihood 2 0.95 51,200

Table 2: Search performance comparison of a poste-
riori probabilistic probing vs. likelihood probing

of key differences between a query and its nearest neigh-
bours for two different hash functions, on the SIFT dataset.
It first shows that the neighbours of a query are not sys-
tematically contained in hash buckets adjacent to the query
bucket, justifying the extension of our query-directed prob-
ing algorithm to non-adjacent buckets. It also illustrates the
variability of the neighbours distribution between different
hash functions.
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Figure 3: Hash key difference distribution (between
query hash key and neighbours hash keys) for two
hash functions on the SIFT dataset

4.2.2 Search quality control
To evaluate the search quality control of our method, we

vary the control quality parameter αT for the three datasets

and measure the resulting recall. The number of hash tables
L is set to the default settings (L = 5 for HSV, L = 4 for
SIFT and L = 2 for DIPOLE). The parameter α of the
Probabilistic Query-directed probing algorithm in each hash
table is deduced from αT through:

α = 1 − (1 − αT )
1
L (24)

The results are summarized in Table 3. They show that
despite the independence hypothesis of the a posteriori
probability, the quality control is fairly good and might be
accurate enough for most applications. Note that the other
multi-probe techniques do not allow such control at all and
that the quality control of the basic LSH technique gives
similar errors while using range queries.

dataset
αT

0.30 0.50 0.70 0.80

Recall
HSV 0.4634 0.6108 0.7684 0.8320
SIFT 0.3581 0.4953 0.6426 0.7493

DIPOLE 0.5233 0.6914 0.8115 0.8932

αT

0.85 0.90 0.95 0.97 0.99 0.999

0.8736 0.9098 0.9392 0.9512 0.9679 0.9880
0.8023 0.8554 0.9226 0.9494 0.9775 0.9965
0.9016 0.9403 0.9568 0.9694 0.9864 0.9947

Table 3: Experimental recall of 100-NN search for
different values of the search quality control param-
eter αT

4.2.3 Comparison to LSH
We compared our method to the Euclidean LSH method

described in [6]. The code source of this method is kindly
provided by the authors in the E2LSH package 2. Since
this method is dedicated to range queries, we used this kind
of queries. The radius R of the query for each dataset is set
to the average distance of the exact 100-nearest neighbors.
It was estimated on a set of 1000 queries sampled from the
datasets using an exhaustive scan.
Note that the provided LSH code includes a script that com-
putes automatically the main parameters of LSH in the first
stage of data structure construction, for a given dataset, a
given set of queries, a given range R and a given quality con-
trol parameter αT . The parameters are chosen so that to op-
timize the estimated query time. Since the E2LSH method
requires a large amount of memory, the optimal parame-
ters for large datasets might require an amount of memory
which is greater than the available physical memory. There-
fore, when choosing the optimal parameters, E2LSH takes
into consideration the upper bound on memory it can use.
Results obtained at constant recall on the three datasets
are given in Table 4. They show that our method allows
to drastically reduce the space requirement (L is 18 to 63
times smaller) while reducing significantly the search time.
The time efficiency of LSH on the DIPOLE dataset is very
bad due to its larger size and memory limitation. The links
between space requirement and time efficiency are discussed
further through two more detailed experiments.

2http://www.mit.edu/ andoni/LSH/
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dataset method L recall query time (s)

HSV
exh scan 1.00 0.1590

LSH 253 0.98 0.0041
a posteriori LSH 5 0.98 0.0020

SIFT
exh scan 1.00 0.2000

LSH 253 0.98 0.0046
a posteriori LSH 4 0.98 0.0026

DIPOLE
exh scan 1.00 0.4350

LSH 36 0.95 0.0512
a posteriori LSH 2 0.95 0.0016

Table 4: Search performance comparison between
our a posteriori LSH method, basic LSH and Ex-
haustive scan

Space requirement vs Time efficiency Since the main
objective of multi-probe LSH methods is to drastically re-
duce the large space requirements of LSH, it is interesting to
compare the time efficiency of both techniques according to
the space requirements. To do that, we artificially vary the
amount of available memory passed to the LSH optimiza-
tion script and recompute the LSH parameters and struc-
tures for each upper bound on memory. We then re-apply
our benchmarking procedure on each derived structure. For
our technique, we only consider the single result obtained
with default parameters.
Space requirement of LSH is measured by the ratio between
the index size and the data size. Comparative time effi-
ciency is measured by the ratio between LSH query time
and the query time of our method. Figure 4 plots this time
ratio according to the space requirement of LSH, for the
HSV dataset. Note that the space ratio of our technique for
this dataset is equal to 0.125, which means that the index
is almost 10 times smaller than the data itself. The results
show that our method is always faster than LSH since the
Time ratio is always larger than 1. For a reasonable space
requirement of 1 (index size equal to data size), our method
is about 15 times faster than LSH. Since the curve is con-
verging for large space ratio, we can also estimate that our
method is about 2 times faster for unlimited memory space.
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Figure 4: Search time ratio (LSH / our method)
according to LSH space requirement (normalized by
dataset space)

Influence of dataset size
To evaluate the influence of dataset size, we vary the size
of the DIPOLE dataset which is the larger one. Each
sub-dataset is built by randomly picking objects in the
full dataset and is then indexed by . The quality control
parameter of both techniques was set to αT = 0.95. The
script optimizing LSH parameters was applied to each
sub-dataset. The parameters of our method for each dataset
were computed according to the procedure described in
section 3.3.4.
We also applied an exhaustive scan on each sub-dataset to
have a baseline linear reference.
The results are plotted on Figure 5 in normal and loga-
rithmic coordinates. It shows that at constant available
memory, the increase of LSH search speed over dataset
size is supra-linear whereas the one of our method is sub-
linear. Note that the number of hash tables used by LSH
(optimized by LSH script according to available memory)
decreases from L = 378 to L = 36 when the dataset
sizeincreasess from N = 100, 000 objects to N = 5, 405, 324
objects. This is due to the fact that the ideal dimension
k of the hash functions is increasing with the size of the
dataset and since L increases with k, an upper limit on
memory imposes an upper limit on k and L.
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varying the size of the dataset - the bottom graph
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5. CONCLUSION AND FUTURE WORKS
In this paper, we presented a new similarity search tech-

nique that can be used to build efficient content-based search
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systems on feature-rich multimedia data. The technique is
inspired by previous theoretical works on multi-probe Local-
ity Sensitive Hashing and improve them by taking account
a prior knowledge about the searched objects through an ef-
ficient probabilistic query directed probing algorithm. This
technique allows a better quality control of the search and
a more accurate selection of the most probable buckets. We
did show in the experiments that the number of required
probes can be reduced significantly compared to commonly
used likelihood based success criterion. Comparisons to the
basic LSH technique show that our method allows consistent
improvements both in space and time efficiency. Furtermore,
we think that this technique has a high potential regarding
new multimedia systems involving context-aware or person-
alized retrieval mechanisms. The prior knowledge used by
our filtering algorithm can indeed be easily adapted to differ-
ent contextual or personalized knowledge. The retrieval will
be therefore automatically focused on the context-aware or
personalized targeted objects while making the search more
efficient. Future works could address two improvements of
the proposed technique. The first one is to model more
reliable prior knowledge, e.g. by deriving more reliable con-
ditional prior distribution pv|q in the original feature space.
The second one is to use the prior knowledge not only for
the similarity search but also for the index construction.
The hash functions of common LSH techniques are indeed
randomly selected independently of the dataset and the tar-
geted objects. Consistent improvements could be achieved
by generating the hash functions according to data depen-
dent distributions.
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