
ar
X

iv
:1

20
7.

36
22

v1
 [

cs
.D

S
]

16
 J

ul
 2

01
2

Approximating the diameter of a graph

Liam Roditty∗and Virginia Vassilevska Williams†

Abstract

In this paper we consider the fundamental problem of approximating the diameterD of directed
or undirected graphs. In a seminal paper, Aingworth, Chekuri, Indyk and Motwani [SIAM J. Comput.
1999] presented an algorithm that computes inÕ(m

√
n + n2) time an estimatêD for the diameter of

ann-node,m-edge graph, such that⌊2/3D⌋ ≤ D̂ ≤ D. In this paper we present an algorithm that
produces the same estimate inÕ(m

√
n) expected running time. We then provide strong evidence thata

better approximation may be hard to obtain if we insist on anO(m2−ε) running time. In particular, we
show that if there is some constantε > 0 so that there is an algorithm for undirected unweighted graphs
that runs inO(m2−ε) time and produces an approximation̂D such that(2/3 + ε)D ≤ D̂ ≤ D, then
SAT for CNF formulas onn variables can be solved inO∗((2− δ)n) time for some constantδ > 0, and
the strong exponential time hypothesis of [Impagliazzo, Paturi, Zane JCSS’01] is false.

Motivated by this somewhat negative result, we study whether it is possible to obtain a better approx-
imation for specific cases. For unweighted directed or undirected graphs, we show that ifD = 3h+ z,
whereh ≥ 0 andz ∈ {0, 1, 2}, then it is possible to report iñO(min{m2/3n4/3,m2−1/(2h+3)}) time
an estimateD̂ such that2h + z ≤ D̂ ≤ D, thus giving a better than3/2 approximation whenever
z 6= 0. This is significant for constant values ofD which is exactly when the diameter approximation
problem is hardest to solve. For the case of unweighted undirected graphs we present añO(m2/3n4/3)
time algorithm that reports an estimatêD such that⌊4D/5⌋ ≤ D̂ ≤ D.

∗Bar Ilan University, liamr@cs.biu.ac.il. Work supported by the Israel Science Foundation (grant no. 822/10)
†UC Berkeley and Stanford University, virgi@eecs.berkeley.edu. Partially supported by NSF Grants CCF-0830797 and CCF-

1118083 at UC Berkeley, and by NSF Grants IIS-0963478 and IIS-0904325, and an AFOSR MURI Grant, at Stanford University.

http://arxiv.org/abs/1207.3622v1

1 Introduction

The diameter of a graph is the longest of all distances between vertices in the graph. The diameter is a
natural and fundamental graph parameter, and computing it efficiently has many applications (e.g. [3]).
Essentially, the only known way to determine the diameter ofa graph with arbitrary edge weights is to
compute the distances between all pairs of vertices in the graph, that is, to solve the all-pairs shortest paths
problem (APSP), and then to find the maximum distance. Because of this, some researchers have conjectured
that APSP and diameter in weighted graphs may be equivalent in some sense (e.g. [21] and [5]). The
fastest algorithms for computing APSP and hence for computing the diameter for directed or undirected
graphs onn nodes andm edges with arbitrary edge weights and no negative cycles have a running time of
O(min{n3 log log3 n/ log2 n,mn+ n2 log log n}) [4, 16].

For the special case of dense directed or undirected unweighted graphs, one can compute the diameter
by reducing its computation to fast matrix multiplication,thus obtainingÕ(nω) time algorithms, where
ω < 2.38 is the matrix multiplication exponent [6, 19, 20]. In fact, any known algorithm for diameter in
densen-node unweighted graphs running inT (n) time can also be used to compute the Boolean product of
two n × n Boolean matrices inO(T (n)) time. This lead to conjectures [5, 1] that computing the diameter
in dense unweighted graphs and Boolean matrix multiplication (BMM) may be equivalent.

For the special case of sparse directed or undirected unweighted graphs, the best known algorithm for
both APSP and diameter does breadth-first search (BFS) from every node and hence runs inO(mn) time.
For sparse graphs withm = O(n), the running time isΘ(n2) which is natural for APSP since the algorithm
needs to outputn2 distances. However, for the diameter the output is a single integer, so it is not immediately
clear why one should spendΩ(n2) time to compute it. In this paper, we show somewhat surprisingly, that
breaking this seemingn2 barrier would have major consequences for the complexity ofNP-hard problems
such as SAT.

A natural question is whether one can get substantially faster algorithms for the diameter by settling
for an approximation. Ac-approximation algorithm for the diameterD of a graph forc ≥ 1 provides an
estimateD̂ such thatD/c ≤ D̂ ≤ D. It is well known that a2-approximation for the diameter in directed or
undirected graphs with nonnegative weights is easy to achieve inÕ(m) time using Dijkstra’s algorithm from
and to an arbitrary node. Dor, Halperin and Zwick [8] showed that any(2− ε)-approximation algorithm for
APSP even in unweighted graphs running inT (n) time would imply anO(T (n)) time for BMM, and hence
apriori it could be that(2− ε)-approximating the diameter of a graph may also require solving BMM.

In their seminal paper, Aingworth, Chekuri, Indyk and Motwani [1] showed that it is in fact possible
to get a subcubic(2 − ε)-approximation algorithm for the diameter of graphs with nonnegative weights
without resorting to fast matrix multiplication. In particular, they designed añO(m

√
n+n2) time algorithm

computing an estimatêD that satisfies⌊2D/3⌋ ≤ D̂ ≤ D. Their algorithm has several important and
interesting properties. It is the only known algorithm for approximating the diameter polynomially faster
thanO(mn) for everym that is superlinear inn. It always runs in truly subcubic time even in dense graphs,
and does not explicitly compute all-pairs approximate shortest paths.

A natural question is whether there is an almost linear time approximation scheme for the diameter
problem: an algorithm that for any constantε > 0 runs inÕ(m) time and returns an estimatêD such that
(1 − ε)D ≤ D̂ ≤ D. Such an algorithm would be of immense interest, and has not so far been explicitly
ruled out, even conditionally. In this paper we give strong evidence that a fast(3/2 − ε)-approximation
algorithm for the diameter may be very hard to find, even for undirected unweighted graphs. We show:

Theorem 1 Suppose there is a constant ε > 0 so that, there is a (3/2− ε)-approximation algorithm for the
diameter in m-edge undirected unweighted graphs that runs in O(m2−ε) time for every m. Then, SAT for

1

CNF formulas on n variables can be solved in O∗((2− δ)n) time for some constant δ > 0.

The fastest known algorithm for CNF-SAT is the exhaustive search algorithm that runs inO∗(2n) time
by trying all possible2n assignments to the variables. It is a major open problem whether there is a faster
algorithm. Several other NP-hard problems are known to be equivalent to CNF-SAT so that if one of these
problems has a faster algorithm than exhaustive search, then all of them do [7]. Hence, our result also
implies that if the diameter can be approximated fast enough, then also problems such as Hitting Set, Set
Splitting, or NAE-SAT, all seemingly unrelated to the diameter, can be solved faster than exhaustive search.
The strong exponential time hypothesis (SETH) of Impagliazzo, Paturi, and Zane [10, 11] implies that there
is no improvedO∗((2 − δ)n) time algorithm for CNF-SAT, and hence our result also implies that there is
no (3/2 − ε)-approximation algorithm for the diameter running inO(m2−ε) time unless SETH fails. (We
elaborate on this hypothesis later on in the paper.)

We prove Theorem 1 by showing that anO(n2−ε) time, (3/2 − ε)-approximation algorithm for the
diameter in sparse graphs withm = O(n) would imply anO∗((2 − δ)n) time CNF-SAT algorithm. This
implies that unless SETH fails,O(n2) time is essentially required to get a(3/2−ε)-approximation algorithm
for the diameter in sparse graphs, withinno(1) factors. Hence, withinno(1) factors, the time for(3/2 − ε)-
approximating the diameter in a sparse graph is the same as the time required for computing APSP exactly!

Even more concretely, we prove Theorem 1 by showing that distinguishing whether the diameter of a
given undirected unweighted graph is2 or at least3 fast enough would imply an improved SAT algorithm.
(Any (3/2 − ε)-approximation algorithm for the diameter would be able to distinguish between graphs
of diameter2 and 3.) The fastest algorithms for this special case of the diameter problem still run in
Õ(min{mn,nω}) time, and several papers have asked whether one can do better[5, 1]. In 1987, Chung [5]
actually conjectured that this problem may be equivalent toBMM, so that any subcubic algorithm for it
can be converted to a subcubic algorithm for BMM. Aingworthet al. [1] conjectured that if there is a
polynomially faster thanO(mn) time algorithm for this problem, then one can use it to construct a fast
algorithm that computes the diameter exactly. These conjectures remain open, but Theorem 1 shows that
the2 vs3 diameter problem may be hard to solve very efficiently for a different reason.

Theorem 1 shows that unless SETH fails, the best one can do with anO(m2−ε) time algorithm is a3/2-
approximation. The Aingworthet al. 3/2-approximation algorithm almost achieves anO(m2−ε) runtime,
except for very sparse graphs when it still runs inΩ(n2) time. We notice that with a slight change in
the parameters of the algorithm, the Aingworthet al. running time can be modified to bẽO(m2/3n) ≤
Õ(m2−1/3). We then investigate whether we can obtain a3/2-approximation algorithm that improves upon
these two runtimes of the Aingworthet al. algorithm. We give a new3/2-approximation algorithm with
Õ(m

√
n) expected running time, thus removing then2 additive factor from the original Aingworthet al.

runtime with some randomization, and also beatingÕ(m2/3n). Our algorithm is the first improvement over
the Aingworthet al. diameter algorithm. The improvement is especially noticeable for sparse graphs (with
m = Õ(n)) in which our algorithm runs iñO(n1.5) time. Previously, such a result was known only for
sparseplanar graphs [2]1. We also show that in some special cases our algorithm obtains an approximation
that is better than3/2.

Theorem 2 Let G = (V,E) be a directed or an undirected graph with diameter D = 3h + z, where
h ≥ 0 and z ∈ {0, 1, 2}. In Õ(m

√
n) expected time one can compute an estimate D̂ of D such that

2h+ z ≤ D̂ ≤ D for z ∈ {0, 1} and 2h+ 1 ≤ D̂ ≤ D for z = 2.

For undirected or directed graphs with arbitrary nonnegative weights, we also obtain the following.

1disregarding polylogarithmic factors

2

Theorem 3 Let G = (V,E) be a directed or an undirected graph with nonnegative edge weights and
diameter D. In Õ(m

√
n) expected time one can compute an estimate D̂ of D such that ⌊2D/3⌋ ≤ D̂ ≤ D.

We further investigate whether one can improve the approximation for unweighted graphs obtained in
Theorem 2 by possibly increasing the runtime, while still keeping it subcubic inn. Notice that in Theorem 2,
the estimatêD is at least2h+ z for z ∈ {0, 1} and only at least2h+1 for z = 2. This only guarantees that
D̂ ≥ ⌊2D/3⌋. (This is also the case for the algorithm of Aingworthet al. [1].)

We show that with a slightly larger (but still subcubic) running time it is possible to get an estimatêD of
D such that2h+z ≤ D̂ for any valuez ∈ {0, 1, 2}, thus guaranteeing that̂D ≥ ⌈2D/3⌉. This is significant
whenD is a constant, and also shows that whenz 6= 0, the approximation factor is strictly better than3/2:
(3h+ z)/(2h + z) = 3/2− 1/(4h/z + 2) ≤ 3/2 − 1/(4h + 2) < 3/2.

We note that approximating the diameter is most challengingwhen the diameter is small. When the
input graph has diameterD ≥ nε for someε > 0, one can efficiently find an arbitrarily good approximation
by random sampling: if you randomly sampleCn1−ε/δ log n nodes, then with probability at least1−1/nC ,
one of these nodes is at distance at least(1− δ)D from an endpoint of the diameter path; hence a1/(1− δ)-
approximation can be found iñO(mn1−ε/δ) time by BFS. For sparse enough graphs of diameterno(1)

however, the best known(3/2 − ε)-approximation algorithms still compute the diameter exactly in Õ(mn)
time. Hence, it is quite interesting that we can obtainÕ(m

√
n) time (3/2 − ε)-approximation algorithms

for some constant values of the diameter.
In Section 5 we prove the following Theorem.

Theorem 4 Let G = (V,E) be a directed or undirected unweighted graph with diameter D = 3h + z,
where h ≥ 0 and z ∈ {0, 1, 2}. There is an Õ(m2/3n4/3) time algorithm that reports an estimate D̂ such
that 2h+ z ≤ D̂ ≤ D.

Marginally, we show how to get a better estimate for undirected graphs in the same running time.

Theorem 5 Let G = (V,E) be an undirected unweighted graph with diameter D. There is an Õ(m2/3n4/3)
time algorithm that reports an estimate D̂ such that ⌊4D/5⌋ ≤ D̂ ≤ D.

The running time in Theorem 4 however isΘ̃(n2) for sparse graphs. We hence investigate whether one
can get an estimate⌈2D/3⌉ ≤ D̂ ≤ D in O(m2−ε) time. We show:

Theorem 6 There is an Õ(m2−1/(2h+3)) time deterministic algorithm that computes an estimate D̂ with
⌈2D/3⌉ ≤ D̂ ≤ D for all m-edge unweighted graphs of diameter D = 3h+z with h ≥ 0 and z ∈ {0, 1, 2}.
In particular, D̂ ≥ 2h+ z.

Notation. Let G = (V,E) denote a graph. It can be directed or undirected; this will bespecified in each
context. If the graph is weighted, then there is a function onthe edgesw : E → Q+∪{0}. Unless explicitly
specified, the graphs we consider are unweighted.

For anyu, v ∈ V , letd(u, v) denote the distance fromu to v in G. LetBFS in(v) andBFSout(v) be the
incoming and outgoing breadth-first search (BFS) trees ofv, respectively, that is the BFS trees inG starting
at v and inG with the edges reversed starting atv. Let din(v) be the depth ofBFS in(v), i.e. the largest
distance from a vertex ofBFS in(v) to v. Similarly, letdout(v) be the depth ofBFSout(v).

For h ≤ din(v), let BFS in(v, h) be the vertices in the firsth levels ofBFS in(v). Similarly, for
h ≤ dout(v), letBFSout(v, h) be the vertices in the firsth levels ofBFSout(v).

3

LetN in
s (v) (Nout

s (v)) be the set of thes closest incoming (outgoing) vertices ofv, where ties are broken
by taking the vertex with the smaller id. We assume throughout the paper that for eachv and eachs ≤ n,
|N in

s (v)| = |Nout
s (v)| = s, as otherwise the diameter of the graph would be∞, and this can be checked

with two BFS runs from and to an arbitrary node.
Let din

s (v) be the largest distance from a vertex ofN in
s (v) to v, anddout

s (v) be the largest distance from
v to a vertex ofNout

s (v). Let din
s = maxv∈V din

s (v) anddout
s = maxv∈V dout

s (v).
For a setS ⊆ V and a vertexv ∈ V we definepS(v) to be a vertex ofS such thatd(v, pS(v)) ≤ d(v,w)

for everyw ∈ S, i.e. the closest vertex ofS to v.
For a degree∆ we definep∆(v) to be the closest vertex tov of degree at least∆, that is,d(v, p∆(v)) ≤

d(v,w) for everyw ∈ V of degree at least∆.
We use the following standard notation for running times. For a function ofn, f(n), Õ(f(n)) denotes

O(f(n)poly log n) andO∗(f(n)) denotesO(f(n)poly n).

2 Diameter approximation and the Strong Exponential Time Hypothesis

Impagliazzo, Paturi, and Zane [10, 11] introduced the Exponential Time Hypothesis (ETH) and its stronger
variant, the Strong Exponential Time Hypothesis (SETH). These two complexity hypotheses assume lower
bounds on how fast satisfiability problems can be solved. They have frequently been used as a basis for
conditional lower bounds for other concrete computationalproblems.

Hypothesis 1 ([10, 11]) ETH: There exists a real constant δ > 0 such that 3-SAT instances on n variables
and m clauses cannot be solved in 2δnpoly(m,n) time.

A natural question is how fast can one solver-SAT asr grows. Impagliazzo, Paturi, and Zane define

sr = inf{δ | ∃ O∗(2δn) time algorithm solvingr-SAT instances withn variables}, ands∞ = lim
r→∞

sr.

Clearlysr ≤ sr+1 so that the sequence is nondecreasing. Impagliazzo, Paturi, and Zane show that if ETH
holds, thensr also increases infinitely often. Furthermore, all known algorithms forr-SAT nowadays take
timeO(2n(1−c/r)) for some constantc independent ofn andr (e.g. [9, 12, 15, 14, 17, 18]). Because of this,
it seems plausible thats∞ = 1, and this is exactly the strong exponential time hypothesis.

Hypothesis 2 ([10, 11]) SETH: s∞ = 1.

One immediate consequence of SETH is that CNF-SAT onn variables cannot be solved in2n(1−ε)poly(n)
time for anyε > 0. The best known algorithm for CNF-SAT is theO∗(2n) time exhaustive search algorithm
which tries all possible2n assignments to the variables, and it has been a major open problem to obtain an
improvement. Cygan et al. [7] showed that SETH is also equivalent to the assumption that several other NP-
hard problems cannot be solved faster than by exhaustive search, and the best algorithms for these problems
are the exhaustive search ones.

Assuming SETH, one can prove tight conditional lower boundson the complexity of some problems in
P as well. The problem that we will look at isk-dominating set for constantk: given an undirected graph
G = (V,E), is there a setS of k vertices so that every vertexv ∈ V is either inS or has an edge to
some vertex inS? The best known algorithm fork-dominating set fork ≥ 7 runs innk+o(1) time and uses
rectangular matrix multiplication [13]. Pǎtraşcu and Williams [13] showed that improving on this runtime
may be hard as it would imply faster algorithms for CNF-SAT.

4

Theorem 7 ([13]) Suppose there is a k ≥ 3 and function f such that k-Dominating Set in an N -node graph
is in O(Nf(k)) time. Then CNF-SAT on n variables and m clauses is in O∗((m+ k2n/k)f(k)) time.

If f(k) = k − ε for some constantε > 0, then the above implies that SETH is false.
We show a strong relationship between the diameter problem in undirected unweighted graphs andk-

dominating set.

Theorem 8 Suppose one can distinguish between diameter 2 and 3 in an m-edge undirected unweighted
graph in time O(m2−ε) for some constant ε > 0. Then for all integers k ≥ 2/ε, 2k-dominating set can
be solved in O∗(n2k−ε) time. Moreover, CNF-SAT on n variables and m clauses is in O∗(2n(1−ε2/4)) time,
and SETH is false.

Theorem 8 immediately implies Theorem 1 in the introduction, as any(3/2 − ε)-approximation algo-
rithm can distinguish between diameter2 and3.

Proof. Given an instanceG = (V,E) of 2k-Dominating set for constantk, we construct an instance
of the 2 vs 3 diameter problem and we show that2k-Dominating set inn-node graphs can be solved in
O∗(n2k−δ) time for some constantδ > 0 depending onε.

Take allk-subsets of the vertices inV and add a node for each of them to the2 vs3 instanceG′. Add a
node for every vertex inV – call this set of nodesV ′ and makeV ′ into a clique.

For everyk-subsetS of vertices ofV , connectS to v ∈ V ′ in G′ iff S does not dominate v in G. While
we do this we check whether eachS is ak-dominating set inG, and if so, we stop. From now on we can
assume that none of thek-subsetsS are dominating sets inG.

Now, notice that ifS andT are twok-subsets so that their union is not a(≤ 2k)-dominating set inG,
then the distance inG′ betweenS andT is 2: there is someu that is dominated by neitherS norT and so
S − u− T is a path of length2. If, on the other hand,S ∪ T is a dominating set inG, then there is no such
path and the shortest path betweenS andT in G′ is to go fromS to somev thatS doesn’t dominate, then to
someu thatT doesn’t dominate (V ′ is a clique) and then fromu to T .

The distance between anyu andv in V ′ is 1, and the distance between anyu and anyS is at most2: go
from u to some nodev thatS doesn’t dominate and then toS.

Hence, if there is no2k-dominating set inG, then the diameter ofG′ is 2, and if there is one, then the
diameter ofG′ is 3. G′ has

(n
k

)
+ n nodes and at mostO(n ·

(n
k

)
) ≤ O(nk+1) edges.

Since we can solve the diameter problem inO(m2−ε) time, applying that algorithm toG′ solves2k-
dominating set inG for anyk ≥ 2 in timeO(n2k+2−εk−ε).

We want this to beO(n2k−δ) for someδ > 0, so it suffices to pickk so that−δ ≥ 2 − ε(k + 1). If we
wantδ = ε, thenk ≥ 2/ε suffices. ✷

3 The algorithm of Aingworth et al.

In this section we revisit the algorithm of Aingworth, Chekuri, Indyk and Motwani [1], that computes a3/2-
approximation of the diameter of a directed (or undirected)graph inÕ(m

√
n + n2) time. (The algorithm

can also be made to work for graphs with nonnegative weights with roughly the same running time and
approximation factor. In this section we only focus on the algorithm for unweighted graphs.)

Lets be a given parameter in[1, n]. The algorithm works as follows. First, it computesNout
s (v) for every

v ∈ V . Then, for a vertexw, wheredout
s (w) = dout

s it computesBFSout(w) and for everyu ∈ Nout
s (w) it

computesBFS in(u). Next, it computes a setS that hitsNout
s (v) for everyv ∈ V and for everyu ∈ S it

computesBFSout(u). As an estimate, the algorithm returns the depth of the deepest computed BFS tree.

5

The next lemma appears in [1]. We state it for completeness.

Lemma 1 The running time of the algorithm is Õ(ns2 + (n/s + s)m).

Aingworth et al. sets =
√
n and obtain their running time. We note that if one setss = m1/3 instead,

one can get a runtime of̃O(m2/3n) that is better for sparse graphs; we later show that both of these runtimes
can be improved with randomization.

We now analyze the quality of the estimate returned by the algorithm. Aingworthet al. [1] proved that
this estimate is at least⌊2D/3⌋ in graphs of diameterD. Here we present a tighter analysis.

Lemma 2 Let G = (V,E) be a directed graph with diameter D = 3h+ z, where h ≥ 0 and z ∈ {0, 1, 2}.
Let D̂ be the estimate returned by the algorithm. For z ∈ {0, 1}, we have 2h+ z ≤ D̂ ≤ D. For z = 2, we
have that 2h+ 1 ≤ D̂ ≤ D.

Proof. Let a, b ∈ V such thatd(a, b) = D. First notice that the algorithm always returns a depth of some
shortest paths tree and henceD̂ ≤ D.

Now, if dout
s (w) ≤ h then alsodout

s (a) ≤ h and asS hits Nout
s (a), one of the BFS trees computed

for vertices ofS has depth at least2h + z. Hence, assume thatdout
s (w) > h. We can also assume that

dout(w) < 2h+ z as otherwise when we computeBFSout(w), we’d return a depth at least2h+ z.
As dout(w) < 2h + z, alsod(w, b) < 2h + z. Sincedout

s (w) > h, we have thatBFSout(w, h) ⊆
Nout

s (w). Hence there is a vertexw′ ∈ Nout
s (w) on the path fromw to b such thatd(w,w′) = h and hence

d(w′, b) < h+ z. Sinced(a, b) = 3h+ z, we must have thatd(a,w′) ≥ 2h+1. As the algorithm computes
BFS in(u) for everyu ∈ Nout

s (w), in particular, it computesBFS in(w′), and returns an estimate≥ 2h+1.
Forz ∈ {0, 1}, d(a,w′) ≥ 2h+ 1 ≥ 2h+ z and hence the final estimate returned is always at least2h+ z.
For z = 2 we only have thatd(a,w′) ≥ 2h + 1 and if the algorithm returnsd(a,w′) as an estimate, it may
return2h+ 1 instead of2h+ z. ✷

4 Improving the running time

The algorithm of Aingworthet al. [1] runs in Õ(ns2 + (n/s + s)m). In this section we show that it
is possible to get rid of thens2 term, while keeping the quality of the estimate unchanged. By choosing
s =
√
n, we get an algorithm running iñO(m

√
n) time.

The term ofns2 in the running time comes from the computation ofNout
s (v) for everyv ∈ V . This

computation is done to accomplish two tasks. One task is to obtain dout
s (v) for everyv ∈ V and then to use

it to find a vertexw such thatdout
s (w) = dout

s . A second task is to obtain, deterministically, a hitting set S of
sizeÕ(n/s) that hits the setNout

s (v) of everyv ∈ V .
Our main idea is to accomplish these two tasks without explicitly computingNout

s (v) for everyv ∈
V . The major step in our approach is to completely modify the first task above by picking a different
type of vertex to play the role ofw. Making the second task above fast can be accomplished easily with
randomization. We elaborate on this below.

Our algorithm works as follows. First, it computes a hittingset by using randomization, that is, it picks
a random sampleS of the vertices of sizeΘ(n/s log n). This guarantees that with high probability (at least
1 − n−c, for some constantc), S ∩ Nout

s (v) 6= ∅, for everyv ∈ V . This accomplishes the second task
above inÕ(n) time, with high probability. Similarly to the algorithm of Aingworthet al. [1], our algorithm
computesBFSout(v), for everyv ∈ S.

6

We now explain the main idea of our algorithm, i.e. how we are able replace the first task from before
with a much faster step. First, for everyv ∈ V our algorithm computes the closest node ofS, pS(v), to
v, by creating a new graph as follows. It adds an additional vertex r with edges(u, r), for everyu ∈ S.
It computesBFS in(r) in this graph. It is easy to see that for everyv ∈ V the last vertex beforer on the
shortest path fromv to r is pS(v). This step takesO(m) time.

Now, as opposed to the algorithm of Aingworthet al. that picks a vertexw such thatdout
s (w) = dout

s ,
our algorithm finds a vertexw ∈ V that is furthest away fromS: i.e. such thatd(w, pS(w)) ≥ d(u, pS(u)),
for everyu ∈ V . The vertexw plays the same role as its counterpart in [1]: Our algorithm computes
BFSout(w) and obtainsNout

s (w) from it. Finally, it computesBFS in(u) for everyu ∈ Nout
s (w). As an

estimate, the algorithm returns the depth of the deepest BFStree that it has computed.
In the next Lemma we analyze the running time of the algorithm.

Lemma 3 The running time of the algorithm is Õ((n/s + s)m).

Proof. A hitting setS is formed inO(n) time. With a single BFS computation, inO(m) time, we find
pS(v) for everyv ∈ V , and hence also findw. The cost of computing a BFS tree for everyv ∈ S ∪Nout

s (w)
is Õ((n/s + s)m). ✷

Next, we show that the estimate produced by our algorithm is of the same quality as the estimate pro-
duced by Aingworthet al. algorithm, with high probability.

Lemma 4 Let G = (V,E) be a directed (or undirected) graph with diameter D = 3h + z, where h ≥ 0
and z ∈ {0, 1, 2}. Let D̂ be the estimate returned by the above algorithm. With high probability, 2h + z ≤
D̂ ≤ D whenever z ∈ {0, 1}, and 2h+ 1 ≤ D̂ ≤ D whenever z = 2.

Proof. Let a, b ∈ V such thatd(a, b) = D. Letw be a vertex that satisfiesd(w, pS(w)) ≥ d(u, pS(u)), for
everyu ∈ V .

If d(w, pS(w)) ≤ h then alsod(a, pS(a)) ≤ h. As the algorithm computesBFSout(v) for everyv ∈ S,
it follows that BFSout(pS(a)) is computed as well and its depth is at least2h + z as required. Hence,
assume thatd(w, pS(w)) > h. We can assume also thatdout(w) < 2h + z since the algorithm computes
BFSout(w) and ifdout(w) ≥ 2h+ z then it computes a BFS tree of depth at least2h+ z as required.

Sincedout(w) < 2h + z it follows that d(w, b) < 2h + z. Moreover, sinced(w, pS(w)) > h and
S hits Nout

s (w) whp, we must have thatNout
s (w) contains a node at distance> h from w, and hence

BFSout(w, h) ⊆ Nout
s (w). This implies that there is a vertexw′ ∈ Nout

s (w) on the path fromw to b such
thatd(w,w′) = h and henced(w′, b) < h+ z. Sinced(a, b) = 3h+ z, we also have thatd(a,w′) ≥ 2h+1.

The algorithm computesBFS in(u) for everyu ∈ Nout
s (w), and in particular, it computesBFS in(w′),

thus returning an estimate at leastd(a,w′) ≥ 2h + 1. Hence forz ∈ {0, 1} the final estimate is always
≥ 2h+ z, and forz = 2 the estimate could be2h+ 1 but no less. ✷

We now turn to prove Theorem 2 from the introduction.

Reminder of Theorem 2 Let G = (V,E) be a directed or an undirected graph with diameter D = 3h+ z,
where h ≥ 0 and z ∈ {0, 1, 2}. In Õ(m

√
n) expected time one can compute an estimate D̂ of D such that

2h+ z ≤ D̂ ≤ D for z ∈ {0, 1} and 2h+ 1 ≤ D̂ ≤ D for z = 2.
Proof. From Lemma 3 we have that if we sets =

√
n the algorithm runs iñO(m

√
n) worst case time.

From Lemma 4 we have that with high probability, that is1−n−c for some constantc, the algorithm returns
an estimate of the desired quality. We now show how to convertthe algorithm into a Las-Vegas one so that
it always returns an estimate of the desired quality but the running time isÕ(m

√
n) in expectation.

7

Randomization is used only in order to obtain a set that hitsNout
s (v) for everyv ∈ V . The only place

that the hitting set affects the quality of the approximation is in Lemma 4 where we used the fact that, whp,
S contains a node ofNout

s (w), so that ifd(w,S) > h, Nout
s (w) contains a node at distance> h from w.

Note that we computeNout
s (w) and we can check whetherS intersects it inÕ(s) time. If it doesn’t, we

can rerun the algorithm until we have verified thatS ∩ Nout
s (w) 6= ∅. SinceS ∩ Nout

s (w) = ∅ holds with
very small probability, the expected running time of the algorithm isÕ(m

√
n) and its estimate is guaranteed

to have the required quality. ✷

Just as in [1], we can make our algorithm work for graphs with nonnegative weights as well by replacing
every use of BFS with Dijkstra’s algorithm. The proofs are analogous, and the running time is increased by
at most alog n factor. We obtain

Reminder of Theorem 3 Let G = (V,E) be a directed or an undirected graph with nonnegative edge
weights and diameter D. In Õ(m

√
n) expected time one can compute an estimate D̂ of D such that

⌊2D/3⌋ ≤ D̂ ≤ D.

5 Improving the approximation for unweighted graphs

In this section we show that in some cases it is possible to improve the approximation of the algorithm of
Aingworth et al. for unweighted graphs. Recall that for a graph with diameterD = 3h + 2 their algorithm
returns an estimatêD such that2h + 1 ≤ D̂ ≤ D. We show that for such a case it is possible to return an
estimateD̂ such that2h + 2 ≤ D̂ ≤ D. This is significant for small diameter values. For example,for a
graph of diameter5 our estimate is at least4, while the previous estimate was at least3.

We present two algorithms that obtain this improved approximation, one works well for dense graphs
and the other for sparse graphs.

5.1 Dense graphs

Our algorithm Approx-Diam(G) works as follows. (The pseudocode is in the appendix.) First, it runs the
Aingworth et al. algorithm both on the input graphG and on the input graph with the edge directions re-
versed,GR. Let D̂ be the maximum value returned by these two runs. A byproduct of this step is that for
everyv ∈ V we have computedBFSout(v, dout

s (v) − 1) andBFS in(v, din
s (v) − 1). Next, our algorithm

scans all pairs of verticesu andv and checks whether the following condition holds:BFSout(u, dout
s (u)−

1) and BFS in(v, din
s (v) − 1) are disjoint and there is no edge betweenBFSout(u, dout

s (u) − 1) and
BFS in(v, din

s (v)− 1). Given a pair of verticesu andv for which the condition holds, the algorithm updates
D̂ to be the maximum between its current value anddout

s (u) + din
s (v).

We start by showing that the estimate reported by the algorithm is upper-bounded by the graph diameter.

Lemma 5 Let G = (V,E) be a graph of diameter D. If D̂ = Approx-Diam(G), then D̂ ≤ D.

Proof. If Approx-Diam(G) returns the value that it gets from one of the runs of Aingworth et al. algorithm
then the claim follows from Lemma 2. If the algorithm reportsdout

s (u) + din
s (v) for some pair of vertices

u, v ∈ V it is because there is no edge fromBFSout(u, dout
s (u)−1) toBFS in(v, din

s (v)−1), and no vertex
in common between the two trees. This means that there is no path of length at mostdout

s (u) + din
s (v) − 1

from u to v, and hence, any path fromu to v, and in particular the shortest one, is of length at least
dout
s (u) + din

s (v) ≤ D as required. ✷

Next, we lower-bound the estimate reported by the algorithm.

8

Lemma 6 Let G = (V,E) be a graph of diameter D = 3h + z, where h ≥ 1 and z ∈ {0, 1, 2}. If D̂ =
Approx-Diam(G) then 2h+ z ≤ D̂ ≤ 3h+ z.

Proof. Let a, b ∈ V such thatd(a, b) = D. Running the algorithm of Aingworthet al. for G and the
reverseGR of G implies that we get an approximation of2h+ z in the following cases.

Case 1: [z 6= 2]. From Lemma 2, we have that the estimate is at least2h+ z.
Case 2: [dout

s (a) ≤ h or din
s (b) ≤ h]. If dout

s (a) ≤ h then the hitting set computed by the Aingworthet
al. algorithm contains a vertex at distance at mosth from a and hence one of the BFS trees that it computes
has depth at least2h+ z. Running the algorithm onGR guarantees that the same holds whendin

s (b) ≤ h.
Case 3: [∃w ∈ V s.t. dout

s (w) ≥ h + 2]. In this case letw be the vertex with the largestdout
s (w)

value. The Aingworthet al. algorithm computesBFSout(w). If dout(w) ≥ 2h + 2 then the claim holds so
assume thatdout(w) ≤ 2h + 1. The algorithm computesBFS in(v) for everyv ∈ BFSout(w, h + 1) and
sinced(w, b) ≤ 2h + 1 there is a vertexw′ ∈ BFSout(w, h + 1) such thatd(w′, b) ≤ h. As the algorithm
computesBFS in(w′) andd(a,w′) ≥ 2h+ z the claim holds.

For the rest of the proof we assume that the three cases above do not hold, hence,z = 2, dout
s (a) = h+1

anddin
s (b) = h+1. The second part of our algorithm searches for a pair of verticesu, v ∈ V such that there

is no edge fromBFSout(u, dout
s (u) − 1) to BFS in(v, din

s (v) − 1) (and no vertex in common between the
two trees). AsD = d(a, b) = 3h + 2 > 2h + 1, anddout

s (a) − 1 = h anddin
s (b) − 1 = h, we have that

there is no edge fromBFSout(a, dout
s (a)− 1) to BFS in(b, din

s (b)− 1) (and no vertex in common between
the two trees). Since the estimate reported by the algorithmis the maximum among values that also include
dout
s (a) + din

s (b) = 2h+ 2, we get thatD̂ ≥ 2h+ 2, as required. ✷

Reminder of Theorem 4 Let G = (V,E) be a directed or undirected unweighted graph with diameter
D = 3h + z, where h ≥ 0 and z ∈ {0, 1, 2}. There is an Õ(m2/3n4/3) time algorithm that reports an
estimate D̂ such that 2h+ z ≤ D̂ ≤ D.

Proof. The bounds on the estimate follow from Lemma 6 and Lemma 5. Running the algorithm of
Aingworthet al. takesÕ(m(s+n/s)+ns2) time. Searching for a pair of verticesu, v ∈ V such that there is
no edge fromBFSout(u, dout

s (u)− 1) toBFS in(v, din
s (v)− 1) takesO(n2s2) time. Settings = (m/n)1/3

gives us the running time. ✷

We can use Theorem 4 to obtain an even better approximation for undirected graphs.

Reminder of Theorem 5 Let G = (V,E) be an undirected unweighted graph with diameter D. There is
an Õ(m2/3n4/3) time algorithm that reports an estimate D̂ such that ⌊4D/5⌋ ≤ D̂ ≤ D.

Proof. Using [8] we compute the distances between every pair of vertices in the graph, with an additive
error of2 in O(min(n3/2√m,n7/3)) time. If D̂ is the maximum distance minus2 thenD − 2 ≤ D̂ ≤ D.
For everyD ≥ 6 we have thatD− 2 ≥ ⌊4/5D⌋. Thus, whenD̂ ≥ 4 we get an estimate of at least⌊4D/5⌋.
If D̂ = 3 thenD might be either3, 4 or 5, that is,D = 3+ z, wherez ∈ {0, 1, 2}. If D = 5, an estimate of
3 is not good enough, thus we run Approx-Diam(G). LetD′ be the estimate reported by Approx-Diam(G).
From Lemma 6 it follows that ifD = 5 thenD′ ≥ 4 and we have the required approximation. IfD̂ = 2
thenD might be either2, 3 or 4, and for this case we can just use the Aingworthet al. algorithm to get an
estimate of3 wheneverD = 4 which gives the desired approximation. ✷

5.2 Sparse graphs

We now show that it is possible to obtain the better approximation also inÕ(m2−ε) time for constantε > 0
when the diameter of the given graph is constant.

Our algorithm, Approx-Diam-Sparse(G, h̃) is given an estimatẽh of h so thath̃ ≥ h and works as
follows. (The pseudocode can be found in the appendix.) Let∆ be a parameter and letH be the set of

9

vertices of outdegree at least∆. For every vertex ofH, the algorithm computes an outgoing BFS tree.
Then, it computes the distance from every node inV \H toH. This is done by adding an extra noder to the
graph with edges from each node ofH to r and then computing an incoming BFS tor in O(m) time. The
distance of a nodev toH is its distance tor, minus1. The algorithm then picks the vertexw that is furthest
from H and computesBFSout(w). Let h′ = min{h̃ + 1, d(w,H)}. The algorithm computesBFS in(v)
for everyv ∈ BFSout(w, h′). Finally, it returns the maximum depth of all computed BFS trees.

We now analyze the quality of the approximation.

Lemma 7 Let G = (V,E) be a graph of constant diameter D = 3h+ z, where h ≥ 0 and z ∈ {0, 1, 2}. If
D̂ = Approx-Diam-Sparse(G, h̃) for h̃ ≥ h, then 2h+ z ≤ D̂ ≤ D.

Proof. First notice, that in any case the algorithm returns a depth of some BFS tree in the graph, thus
D̂ ≤ D.

Now, leta, b ∈ V such thatd(a, b) = D and letH ⊆ V be the set of vertices of outdegree at least∆. Let
yo ∈ H be the vertex with the deepest outgoing BFS inH. Let yi be the vertex with the deepest incoming
BFS among the vertices ofBFSout(w, h′), whereh′ = min{h̃ + 1, d(w,H)}. The algorithm returns as an
estimatemax(dout(yo), dout(w), din(yi)).

If d(a,H) ≤ h, thendout(yo) is at least2h + z and the estimate is of the desired quality. So assume
thatd(a,H) > h, and henced(w,H) ≥ d(a,H) ≥ h + 1. Thush′ ≥ h + 1, as we also havẽh ≥ h by
assumption. Assume also thatBFSout(w) is of depth at most2h+ z − 1 as if it is of depth at least2h + z
then the estimate is of the desired quality. Then, there is a vertexw′ ∈ BFSout(w, h′) on the shortest path
from w to b with d(w,w′) = h + 1 and henced(w′, b) ≤ h + z − 2. As d(a, b) = 3h + z, we must also
haved(a,w′) ≥ 2h+ 2 and asdin(yi) ≥ d(a,w′), the estimate is of the desired quality. ✷

Next, we analyze the running time of the algorithm.

Lemma 8 Let G = (V,E) be a graph of diameter D = 3h + z, where h ≥ 0 and z ∈ {0, 1, 2}. If h̃ ≥ h,

Approx-Diam-Sparse(G, h̃) runs in O(m2/∆+∆h̃+1m) time.

Proof. The algorithm computes a BFS tree for every vertex ofH. |H| = O(m/∆) since there are at most
that many vertices of outdegree at least∆. Hence the BFS computation fromH takesO(m2/∆) time.

Computing the distances of the nodes inV \ H to H takes onlyO(m) time. Picking the nodew at
largest distance toH takesO(n) time. The algorithm computesBFSout(w) in O(m) time. It then computes
BFS in(v) for everyv ∈ BFSout(w, h′) whereh′ ≤ h̃ + 1. Since we also have thath′ ≤ d(w,H), every
v ∈ BFSout(w, h′ − 1) has outdegree at most∆. Thus,|BFSout(w, h′)| ≤ ∆h′ ≤ ∆h̃+1. The running
time of computingBFS in(v) for everyv ∈ BFSout(w, h′) is hence at mostO(m∆h̃+1). ✷

We now prove Theorem 6 from the introduction.

Reminder of Theorem 6 There is an Õ(m2−1/(2h+3)) time deterministic algorithm that computes an
estimate D̂ with ⌈2D/3⌉ ≤ D̂ ≤ D for all m-edge unweighted graphs of diameter D = 3h+ z with h ≥ 0
and z ∈ {0, 1, 2}. In particular, D̂ ≥ 2h+ z.

Proof. In O(m) time we can get a2-approximation to the diameter, i.e. an estimateE with D/2 ≤
E ≤ D. SinceD = 3h + z, we have that(E − 2)/3 ≤ h ≤ 2E/3. Settingh̃ = 2E/3 guarantees that
h ≤ h̃ ≤ 2h+ 4/3 < 2h+ 2, and henceh ≤ h̃ ≤ 2h+ 1.

The quality of the estimate follows from Lemma 7 and by Lemma 8, the runtime isO(m2/∆+m∆2h+2).
Picking∆ = m1/(2h+3) minimizes the running time atO(m2−1/(2h+3)). ✷

10

Acknowledgements The first author wants to thank Edith Cohen, Haim Kaplan and Yahav Nussbaum for
fruitful discussions on the problem. The second author wants to thank Bob Tarjan for asking whether there
is an almost linear time approximation scheme for the diameter.

References

[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and shortest paths
(without matrix multiplication).SIAM J. Comput., 28(4):1167–1181, 1999.

[2] P. Berman and S. P. Kasiviswanathan. Faster approximation of distances in graphs. InProc. WADS,
pages 541–552, 2007.

[3] D. Chakrabarti, C. Faloutsos, and M. McGlohon. Graph mining: Laws and generators. InManaging
and Mining Graph Data, pages 69–123. 2010.

[4] T. M. Chan. More algorithms for all-pairs shortest pathsin weighted graphs. InProc. STOC, pages
590–598, 2007.

[5] F. R. K. Chung. Diameters of graphs: Old problems and new results. Congr. Numer., 60:295–317,
1987.

[6] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.J. Symbolic
Computation, 9(3):251–280, 1990.

[7] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y.Okamoto, R. Paturi, S. Saurabh, and
M. Wahlstrom. On problems as hard as CNFSAT. InProc. CCC, page to appear, 2012.

[8] D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths.SIAM J. Comput., 29(5):1740–
1759, 2000.

[9] E. A. Hirsch. Two new upper bounds for SAT. InProc. SODA, pages 521–530, 1998.

[10] R. Impagliazzo and R. Paturi. On the complexity ofk-SAT. J. Comput. Syst. Sci., 62:367–375, 2001.

[11] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?J.
Comput. Syst. Sci., 63:512–530, 2001.

[12] B. Monien and E. Speckenmeyer. Solving satisfiability in less than2n steps.Discrete Applied Mathe-
matics, 10(3):287 – 295, 1985.

[13] M. Patrascu and R. Williams. On the possibility of faster SAT algorithms. InProc. SODA, pages
1065–1075, 2010.

[14] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time algorithm fork-SAT. J.
ACM, 52(3):337–364, 2005.

[15] R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma.Chicago J. Theor. Comput. Sci., 1999,
1999.

[16] S. Pettie. A new approach to all-pairs shortest paths onreal-weighted graphs.Theor. Comput. Sci.,
312(1):47–74, 2004.

11

[17] I. Schiermeyer. Solving 3-satisfiability in less then1.579n steps. InCSL, pages 379–394, 1992.

[18] U. Schöning. A probabilistic algorithm fork-SAT and constraint satisfaction problems. InProc. FOCS,
pages 410–414, 1999.

[19] A. Stothers.Ph.D. Thesis, U. Edinburgh, 2010.

[20] V. Vassilevska Williams. Multiplying matrices fasterthan Coppersmith-Winograd. InProc. STOC,
2012. To appear.

[21] V. Vassilevska Williams and R. Williams. Subcubic equivalences between path, matrix and triangle
problems. InProc. FOCS, pages 645–654, 2010.

12

6 Appendix

Algorithm 1: Approx-Diam(G)

X1 ← Aingworth(G);
X2 ← Aingworth(GR);

D̂ ← max(X1,X2);
foreach v ∈ V do

foreach u ∈ V \ {v} do
if BFSout(u, dout

s (u)− 1) ∩BFSin(v, din
s (v)− 1) = ∅ ∧ ∄(u′, v′) ∈ E s.t.

u′ ∈ BFSout(u, dout
s (u)− 1) ∧ v′ ∈ BFSin(v, din

s (v)− 1) then
D̂ ← max(D̂, dout

s (u) + din
s (v))

return D̂;

Algorithm 2: Approx-Diam-Sparse(G, h̃)

H ← {v | deg(v) ≥ ∆};
foreach v ∈ H do ComputeBFSout(v);
yo ← argmaxx∈H dout(x);

D̂ ← dout(yo);
Computed(v,H) for all v ∈ V with a single BFS;
w ← vertex of largestd(w,H);
ComputeBFSout(w);

D̂ ← max{D̂, dout(yo)};
h′ ← min{h̃+ 1, d(w,H)};
foreach v ∈ BFSout(w, h′) do ComputeBFS in(v);
yi ← argmaxx∈BFSout(w,h′) d

in(x);

D̂ ← max{D̂, din(yi)};
return D̂;

13

	1 Introduction
	2 Diameter approximation and the Strong Exponential Time Hypothesis
	3 The algorithm of Aingworth et al.
	4 Improving the running time
	5 Improving the approximation for unweighted graphs
	5.1 Dense graphs
	5.2 Sparse graphs

	6 Appendix

