
COS 528 Analysis of the Highest-Label Push-Relabel Algorithm
Spring 2013
Tarjan

This version of the push-relabel algorithm maintains an array of buckets indexed by label.
We call a vertex active if it has positive excess and is not the sink. Bucket k contains the
active vertices having label k. The algorithm maintains the index of the highest non-
empty bucket and always does a push or relabel step at a vertex of highest label.
Maintaining the index takes O(n2) time overall, since the index increases only by as much
as a label increases.

Cheriyan and Mehlhorn found a beautiful potential-based analysis of this algorithm. To
count non-saturating pushes, we define the potential of an active vertex to be the number
of vertices (with positive excess or not, and including itself) with its label or a smaller
label. We define the total potential to be the sum of the vertex potentials. A non-
saturating push from a vertex of highest label decreases the potential by at least the
number of vertices with the label. A saturating push can create a new vertex with
positive excess. Such a push increases the potential by at most n. A label increase of 1
can also increase the potential by at most n. The total increase in potential over the entire
algorithm is thus O(n2m), dominated by the increase caused by saturating pushes. Define
a phase to consist of all non-saturating pushes that occur during a maximal interval in
which the maximum label of a positive-excess vertex does not change: a phase ends
either when a vertex is relabeled or when all vertices of highest label push all their excess
to the next lower level. There is at most one non-saturating push per active vertex per
phase, and at most 4n2 phases. (Why?) This gives an O(n3) bound on the number of non-
saturating pushes, but there is a better bound. We call a non-saturating push big if there
are at least k active vertices of maximum label when it occurs, and small otherwise. The
number of small pushes is at most k per phase, at most 4kn2 in total. Each big push
reduces the potential by at least k. Hence there are O(n2m/k) big pushes. To balance
these amounts, we choose k = m1/2. Then the total number of non-saturating pushes, as
well as the running time of the algorithm, is O(n2m1/2)).

