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This version of the push-relabel algorithm maintains an array of buckets indexed by label.  
We call a vertex active if it has positive excess and is not the sink.  Bucket k contains the 
active vertices having label k.  The algorithm maintains the index of the highest non-
empty bucket and always does a push or relabel step at a vertex of highest label.  
Maintaining the index takes O(n2) time overall, since the index increases only by as much 
as a label increases. 
 
Cheriyan and Mehlhorn found a beautiful potential-based analysis of this algorithm.  To 
count non-saturating pushes, we define the potential of an active vertex to be the number 
of vertices (with positive excess or not, and including itself) with its label or a smaller 
label.  We define the total potential to be the sum of the vertex potentials.  A non-
saturating push from a vertex of highest label decreases the potential by at least the 
number of vertices with the label.  A saturating push can create a new vertex with 
positive excess.  Such a push increases the potential by at most n.  A label increase of 1 
can also increase the potential by at most n.  The total increase in potential over the entire 
algorithm is thus O(n2m), dominated by the increase caused by saturating pushes.  Define 
a phase to consist of all non-saturating pushes that occur during a maximal interval in 
which the maximum label of a positive-excess vertex does not change: a phase ends 
either when a vertex is relabeled or when all vertices of highest label push all their excess 
to the next lower level.  There is at most one non-saturating push per active vertex per 
phase, and at most 4n2 phases.  (Why?)  This gives an O(n3) bound on the number of non-
saturating pushes, but there is a better bound.  We call a non-saturating push big if there 
are at least k active vertices of maximum label when it occurs, and small otherwise.  The 
number of small pushes is at most k per phase, at most 4kn2 in total.  Each big push 
reduces the potential by at least k.  Hence there are O(n2m/k) big pushes.  To balance 
these amounts, we choose k = m1/2.  Then the total number of non-saturating pushes, as 
well as the running time of the algorithm, is O(n2m1/2)).  


