COS 528
Depth-First Search

© Robert E. Tarjan 2013

An undirected graph

4 connected components

OO
O—0 O

Vertex j is isolated: no incident edges

Undirected graph search

G =(V, E) V=vertex set, E = edge set
n=|V[,m=|E|
Each edge (v, w) € E connects two vertices v, w;

can be traversed in either direction: from v to w,
or from w to v.

Graph search: From a given start vertex v, visit all
vertices and edges reachable from v, once each.

Graph exploration: while some vertex is unvisited,
choose a start vertex v, search from v.

Connected components: subgraphs induced by
maximal sets of mutually reachable vertices: x
and y are in the same component iff there is a
path from x to y (and back).

To find components, do an exploration: each
search visits the vertices and edges of one
component.

Edge-guided search

Maintain a set S of traversable edges (one end
visited), generate a set T of tree arcs

explore(V, E):
{for v € V do mark v unvisited;
S—{hT<{}
for veE Vdo if v unvisited then search(v)}

search(v):
{visit(v);
while d(x, y) €S do
{S<=S-(x,y);
if (x, y) untraversed then traverse(x, y);
if y unvisited then

{T<=TU{(x, y)}; visit(y)}}

visit(v):{ mark v visited; S < {(v, w) € E}}
traverse(v, w): mark (v, w) traversed

Exploration traverses each edge once in each
direction, generates a set of tree arcs that
form rooted trees, one spanning each
connected component; roots are start
vertices. These trees form a spanning forest.

Graph representation:
For each vertex v, set of edges (v, w), stored in
a list or in an array
Each edge is in two incidence sets
Exploration time: O(n + m)

Types of search

Can find connected components using any
search order. For harder problems, specific
search orders give efficient algorithms

Breadth-first (BFS): S is a queue
Depth-first (DFS): S is a stack

Recursive implementation of DFS

explore(V, E):
{for v € V do mark v unvisited;
for vE V do if v unvisited then search(v)}

search(v):
{previsit(v) [visit(v)];
for (v, w) € Edo
if (v, w) untraversed then
{advance(v, w) [traverse(v, w)];
if w unvisited then
{T < TU{(v, w)}; search(w)};

retreat(v, w)};

postvisit(v)}

previsit(v): mark v visited
traverse(v, w): mark (v, w) traversed

DFS is local: each advance or retreat moves to
an adjacent vertex

Origins: maze traversal

preorder numbering pre(v): number vertices
from 1 to n as they are previsited

postorder numbering post(v): number vertices
from 1 to n as they are postvisited

Nesting lemma: v is an ancestor of w in the DFS
forest iff pre(v) < pre(w) and post(v) = post(w)

Proof: For any vertex v, the preorder numbers
of the descendants of v are consecutive, with
v numbered smallest; the postorder numbers
of the descendants of v are also consecutive,
with v numbered largest.

Can implement DFS non-recursively using a
stack of current arcs: the current arc into a
vertex is its entering tree arc. The current arcs
define the current path from the start vertex
of the search to the current vertex of the
search. The vertices on the current path are
exactly those that have been previsited but
not postvisited.

Graph structure imposed by search

Convert each edge into an arc by directing it in
the direction it is first traversed.

In addition to generating spanning trees of the
connected components, exploration imposes
a structure on the non-tree arcs, depending
on the type of search.

DFS

If (v, w) is a non-tree arc, w is an ancestor of vin
the DFS forest. Any edge connects two related
vertices

Proof: Let (v, w) be a non-tree arc. Then (v, w) is
first traversed from v, between previsit(v) and
postvisit(v). Since (v, w) is not a tree arc,
previsit(w) precedes traverse(v, w). Since (v, w)
was not traversed from w, postvisit(w) follows
traverse(v, w). Thus w must be on the current
path, and hence an ancestor of v.

Path lemma: Any path between v and w contains a
common ancestor of vand w in the DFS forest.

Proof: Let u be a vertex of smallest depth on the
path. Claim: uis an ancestor of every vertex on
the path. Let x be a vertex that violates the
claim. Consider the part of the path between u
and x. It must contain an edge (y, z) with y but
not z a descendant of u. Vertex z must be an
ancestor of y, and hence must be a proper
ancestor of u. But d(z) < d(u), a contradiction.

Among the vertices on the path, u is smallest in
preorder and largest in postorder.

A directed graph

Directed graph search

Each arc (v, w) € E can be traversed in only one
direction, from vto w

Directed graph search (forward) is just like
undirected graph search, except that each arc
is already directed, and is in only one incident
arc set: (v, w) is in the set of arcs out of v

Backward search: for each vertex, store the set
of incoming arcs; to search, (conceptually)
reverse the arc directions

Exploration of a digraph generates a set of tree
arcs that form trees spanning the sets of
vertices reached from the start vertices of the
searches. Arcs can lead between trees (but
only from later to earlier visited vertices). The
exploration imposes a structure on the non-
tree arcs, depending on the type of search.
The imposed structure is weaker than in

undirected graph search, but the nesting
lemma holds.

DFS (digraph)

Arc Lemma: Each arc (v, w) is of one of four
types:

tree arc: pre(v) < pre(w), post(v) > post(w), w
unvisited when (v, w) is traversed

forward arc: pre(v) < pre(w), post(v) > post(w),
w visited when (v, w) is traversed

back arc: pre(v) > pre(w), post(v) < post(w)

cross arc: pre(v) > pre(w), post(v) > post(w)

Proof: We show that the excluded case, pre(v) <
pre(w) and post(v) < post(w), cannot happen.
If wis unvisited when (v, w) is traversed, then
(v, w) is a tree arc, and post(v) > post(w). If w
is visited when (v, w) is traversed, but pre(v) <
pre(w), w must be previsited between the
previsit and the postvisit of w. This implies w
is a descendant of v; hence post(v) > post(w).

Preorder lemma: Let P be a path whose first
vertex u has pre(u) = min{pre(x)| x on P}.
Then u is an ancestor of every vertex on P.

Proof: Suppose the lemma is false. Let (y, z) be
the first arc on the path with z not a
descendant of u. Then pre(z) < pre(y).
(Otherwise, z is a descendant of y and hence
of u. But pre(z) > pre(u). Thus z is previsited
between the previsit to u and the previsit to y,
which implies z is a descendant of u.

Postorder lemma: Let P be a path whose last

vertex u has post(u) = max{post(x)| x on P}.
Then u is an ancestor of every vertex on P.

Proof: Suppose the lemma is false. Let (y, z) be
the last arc on P such that y is not a
descendant of u. Since post(y) < post(u), y is
not an ancestor of u; hence it is unrelated to
u, and to z. Thus (y, z) is a cross arc, so pre(y)
> pre(z). But pre(z) =2 pre(u), so pre(y) > pre(u),
which implies y is a descendant of u.

Path Lemma (digraph): If pre(v) < pre(w) or
post(v) < post(w), any path P from vto w
contains a common ancestor of vand w.

Proof: Let x = argmin{pre(u)|uon P} and y =

argmin{post(u)|u on P}. By the preorder
emma, X is an ancestor of w; by the postorder
emma, y is an ancestor of v. If x =y, the
emma holds. Suppose x = y. Since pre(x) <
pre(y) and post(x) < post(y), x and y are
unrelated. But w a descendant of x and v a
descendant of y implies pre(w) < pre(v) and
post(w) < post(v), contradicting the hypothesis
of the lemma.

Finding a topological order or a cycle

Number the vertices from n to 1 in postorder.
This is reverse postorder, rpost(v). If no arc (v,
w) has rpost(v) = rpost(w), then reverse
postorder is a topological order: every arc
leads from a smaller to a larger vertex. If
some arc (v, w) has rpost(v) > rpost(w), then w
is an ancestor of v, and there is a cycle
consisting of (v, w) and the path from wto vin
the DFS forest

—>DFS gives an O(n + m)-time algorithm to find
either a topological order or a cycle

Depth-first exploration: search from a visits a, d,
h, g, c; search from b visits b, e, f; search from
| visits i; search from j visits |

preordera,d, h,g,c; b, e, f;i;j
postorder h,c, g, d, a; f, e, b; i; j
tree arcs in blue

cycle arcs in red

Alternative topological order
algorithm
while there is a vertex v with no incoming arcs

do {give v the next number;

delete v and its outgoing arcs}

If this algorithm successfully numbers all the
vertices, the numbering is topological. If not,
every remaining vertex has at least one

incoming arc, can find a cycle by doing a
backward DFS from any vertex.

Efficient implementation

For each vertex x, compute in(x), the number of
arcs into x:

{initialize in(x) <= O for all x;
for arc (v, w) € E do add 1 to in(w)}

Initialize a set Z containing all vertices x with in(x)
= 0.

while dx& Zdo
{delete x from Z; number x;
for (x, y)€ E do
{subtract 1 from in(y);
if in(y) = 0 then insert y in Z}}

Topological order via alternate algorithm, with Z
implemented as a queue:

a,b,j,d,eighfc

Running time = O(n + m)

By choosing each candidate vertex in all possible
ways, the alternate algorithm can generate all
possible topological orders

Not true of the DFS algorithm: some acyclic
graphs have topological orders that cannot be
generated by DFS

