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In these notes, we introduce some basic concepts in game theory and linear programming
(LP). We show a connection between equilibrium strategies in a certain kind of two player
game and LP duality and connect this to the multiplicative weights update algorithm we
saw earlier in the context of learning with experts.

1 Game Theory

1.1 Introduction

A two player game (or more correctly, a two player normal-form game) is specified by two
m × n payoff matrices R and C corresponding to the row and column player respectively.
Each of these matrices has m rows corresponding to the m strategies of the row player and
n columns corresponding to the n strategies of the column payer. The row player picks a
row i ∈ [m], and the column player picks a column j ∈ [n]. We say that the outcome of the
game is (i, j). The payoff to the row player is Ri,j and the payoff to the column player is
Ci,j. The goal of each player is to maximize their own payoff.

The strategies for the row and column player described so far are referred to as pure
strategies. Both the row and column player may also pick a distribution over rows and
columns respectively, referred to as mixed strategies. A mixed strategy for the row player
can be specified by a vector x = (x1, . . . , xm) such that xi ≥ 0 and

∑
i xi = 1. Here the

ith coordinate xi specifies the probability that the (pure) strategy i ∈ [m] is picked by the
row player. The space of mixed strategies for the row player is denoted by ∆m. This is just
the set of vectors x = (x1, . . . , xm) such that xi ≥ 0 and

∑
i xi = 1. Similarly, a mixed

strategy for the column player is specified by a vector y = (y1, . . . , yn) such that yj ≥ 0 and∑
j yj = 0. The space of mixed strategies for the column player is denoted by ∆n.
If the row and column player play mixed strategies x,y respectively, then the interpre-

tation is that both players pick independently from the probability distributions specified
by x and y, i.e. the probability that the outcome is (i, j) is xiyj. The expected payoff to
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the row player is
∑

i,j Ri,jxiyj = xTRy and the expected payoff to the column player is∑
i,j Ci,jxiyj = xTCy. In this vector notation, a pure strategy for the row player can be

represented by a vector ei, i ∈ [m], where ei is a m-dimensional vector such that the ith
coordinate is 1 and all other coordinates are zero. Similarly, a pure strategy for the column
player can be represented by a vector ej, j ∈ [m], where ej is a n-dimensional vector such
that the jth coordinate is 1 and all other coordinates are zero. In these notes, we will reserve
x, ei and i to refer to strategies of the row player and y, ej and j to refer to strategies of
the column player.

Given a game, what strategies should we expect the players to play ? This is a funda-
mental question in game theory. Given full information about the other player’s strategy,
each player attempts to pick a strategy that maximizes his/her payoff.

We say that a pair of (pure) strategies i and j are in equilibrium if, when the row player
plays i and the column player plays j, neither can get better payoff by unilaterally switching
to a different strategy. i.e. Ri′,j ≤ Ri,j for all i′ ∈ [m] and Ci,j′ ≤ Ci,j for all j′ ∈ [n].

If we have a two player game with a pair of strategies i and j in equilibirium, then it is
reasonable to expect that one possible outcome of the game is (i, j). Unfortunately, not all
two player games have such an equilibrium. However, if we broaden our notion of equilibrium
to include mixed strategies, then we always have a pair of mixed strategies in equilibrium.
This is a consequence of a famous theorem of John Nash which shows that such equilibrium
strategies exist in the more general multi-player setting – this is part of the work for which
he was awarded the Nobel Prize in Economics in 1994.

We say that a pair of mixed strategies x and y are in Nash equilibrium if, when the row
player plays x and the column player plays y, neither can get better payoff by unilaterally
switching to a different strategy, i.e.

xTRy ≥ (x′)TRy for all x′ ∈ ∆m, and (1)

xTCy ≥ xTCy′ for all y′ ∈ ∆n (2)

An equivalent definition is the following: A pair of mixed strategies x,y are in Nash
equilibrium if neither player can unilaterally switch to a pure strategy that gives better
payoff:

xTRy ≥ eTi Ry for all i ∈ [m], and (3)

xTCy ≥ xTCej for all j ∈ [n] (4)

Note that eTi Ry is the expected payoff when the row player plays pure strategy i and
the column player plays mixed strategy y. Thus eTi Ry =

∑
j Ri,jyj. Similarly xTRej is the

expected payoff when the row player plays mixed strategy x and the column player plays
pure strategy j. Thus xTRej =

∑
iRi,jxi.

It is a good exercise to prove that the above two definitions are equivalent – we highly
recommend this as a way to test your understanding of these definitions!

A game could have multiple such Nash equilibria (x,y), but at least one is guaranteed to
exist by Nash’s theorem. Given a two player game, we do not know an efficient (polynomial
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time) algorithm to find a Nash equilibrium. Designing such an algorithm (or proving that it
does not exist) is a significant open problem in theoretical computer science. We have some
evidence that suggests that finding equilibrium strategies is a hard problem, however it is
not known whether the problem is NP-hard.

1.2 Zero sum games

Two player zero sum games are a special class of two player games where R + C = 0, i.e.
Ri,j + Ci,j = 0 for all i, j. In this case, the payoffs can be viewed as a payment from one
player to the other. The goal of the column player is to maximize the payoff xTCy. On the
other hand, the goal of the column player is to maximize the payoff xTRy = −xTCy. In
other words, the goal of the row player is to minimize xTCy.

Let’s think about the optimization problem faced by the row player: If the row player
picks (mixed) strategy x, the column player will pick (mixed) strategy y that maximizes
xTCy. In other words, for a fixed x, the value to the row player is maxy x

TCy. Since the
goal of the row player is to minimize xTCy, the optimization problem that the row player
should attempt to solve is

min
x

max
y

xTCy (5)

By similar reasoning, the optimization problem that the column player should attempt to
solve is

max
y

min
x

xTCy (6)

In fact, it turns out that the values of the two optimization problems are exactly the same,
and this was proved by Von Neumann:

Theorem 1.1 (Von Neumann minimax theorem).

min
x

max
y

xTCy = max
y

min
x

xTCy (7)

We will prove this theorem later by appealing to linear programming duality, a concept we
will introduce shortly. Before we do this, we first discuss the implication for Nash Equilibrium
in 2 player zero sum games.

Corollary 1.2. Every 2 player zero sum game has a Nash equilibrium.

Proof. This proof looks heavy on notation, but is conceptually quite simple. The main point
is that the strategies x∗ and y∗ that optimize the LHS and RHS of the equality (7) are in
Nash equilibrium.
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Consider a 2 player zero sum game where C is the payoff matrix for the column player.
By Theorem 1.1,

min
x

max
y

xTCy = max
y

min
x

xTCy (8)

Let λ∗ be the value of the optimization problem on the LHS and RHS above. Further, let x∗

be the value of x that achieves maxy x
TCy = λ∗ and let y∗ be the value of y that achieves

minx x
TCy = λ∗. Hence

(x∗)TCy ≤ λ∗ for all y ∈ ∆n (9)

xTCy∗ ≥ λ∗ for all x ∈ ∆m (10)

This implies that (x∗)Cy∗ = λ∗. We claim that the pair of strategies (x∗,y∗) are in Nash
equilibrium. Since xTCy∗ ≥ (x∗)Cy∗ for all strategies x ∈ ∆m, the row player has no
incentive to deviate from x∗. Since (x∗)TCy ≤ (x∗)Cy∗ for all strategies y ∈ ∆n, the
column player has no incentive to deviate from y∗. Hence the pair of strategies x∗,y∗ are
in Nash equilibrium.

In order to prepare for the proof of the minimax theorem, we restate the equality (7)
in an equivalent form. This is similar to the alternate definition of Nash equilibrium we
mentioned earlier.

First, we claim that for a fixed x, xTCy is maximized at y = ej for j ∈ [n]. In
other words, maxy x

TCy = maxj x
TCej. Thus the optimization for the row player can be

expressed as minx maxj x
TCej. Similarly, for a fixed y, xTCy is minimized at x = ei for

i ∈ [m]. In other words, minx x
TCy = mini ei

TCy. Thus the optimization for the column
player can be expressed as maxy mini ei

TCy. Hence the minimax theorem can be rephrased
in the following equivalent form:

min
x

max
j

xTCej = max
y

min
i
ei

TCy (11)

Alternately:

min
x

max
j

{∑
i

Ci,jxi

}
= max

y
min

i

{∑
j

Ci,jyj

}
(12)

The minimax theorem finds many uses in theoretical computer science. In particular, it is
the basis of a technique to show lower bounds on the competitive ratio for randomized online
algorithms, and lower bounds for randomized algorithms in general. We next introduce linear
programming (LP) and then use LP duality to prove the minimax theorem.

2 Linear Programming

A linear program (LP) is a particular kind of optimization problem. Linear programs are
very useful because they arise in many different applications and we have efficient algorithms
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to solve them. A linear program consists of a set of variables with linear constraints on them
(either equalities or inequalities where both sides are linear functions of the variables). The
objective function is a linear function of the variables. The goal is to assign real values to
the variables so as to optimize (either minimize or maximize) the objective function. Linear
programming is a very useful tool in optimization because many problems can be phrased as
linear programming problems. The optimum solution to a linear program can be computed
in time polynomial in the size of the input. We will not actually discuss any algorithms to
solve linear programs in these notes (and indeed such algorithms are outside the scope of the
course) but we mention that the first polynomial time algorithm to solve linear programs
optimally was developed by Khachiyan in 1979.

Here is an example of a linear program

max 3y1 + 4y2 + y3 (13)

subject to

y1 + y2 ≤ 5 (14)

y2 + y3 ≤ 4 (15)

yi ≥ 0 (16)

A feasible solution for this linear program is a setting of values to the variables such that
all the constraints are satisfied. An optimum solution to the linear program is a feasible
solution that optimizes the value of the objective function. Note that the optimum solution
need not be unique.

Given a solution to this particular linear program, how do we prove that it is optimum?
We can do that by exhibiting an upper bound on the value of the objective function for any
feasible solution to the LP. One way to obtain such an upper bound is to multiply the first
inequality by 3 and the second by 1 and add them up.

3× (y1 + y2) + (y2 + y3) ≤ 3× 5 + 4 (17)

3y1 + 4y2 + y3 ≤ 19 (18)

This gives an upper bound of 19 on the objective function of the LP without actually solving
it. In fact this bound is tight. Consider the solution y1 = 5, y2 = 0, y3 = 4. It is easy to check
that this satisfies the constraints and the value of the objective function for this solution is
19. We have just proved that 19 is in fact the optimum value of this LP.

Consider now a slight modification of the LP we started out with where we change one
coefficient in the objective function:

max 2y1 + 4y2 + y3 (19)

subject to

y1 + y2 ≤ 5 (20)

y2 + y3 ≤ 4 (21)

yi ≥ 0 (22)
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How can we obtain an upper bound for the modified LP? The same bound of 19 derived
earlier still holds:

2y1 + 4y2 + y3 ≤ 3× (y1 + y2) + (y2 + y3) ≤ 3× 5 + 4 ≤ 19 (23)

Can we do better? Suppose we multiply the first inequality by x1 ≥ 0 and the second
inequality by x2 ≥ 0 where x1 and x2 are unknowns to be determined. (We insist that x1, x2
be nonnegative to ensure that multiplying by these values does not reverse the direction of
the inequality). What conditions are needed to ensure that we have a valid upper bound on
the value of the LP? Here is what we need:

2y1 + 4y2 + y3 ≤ x1 × (y1 + y2) + x2 × (y2 + y3) ≤ 5x1 + 4x2 (24)

For this to be correct, note that the first inequality should hold for every y1, y2, y3 ≥ 0.
One way to guarantee this is to make sure that the coefficient of y1 on the LHS of the first
inequality is ≤ then coefficient of y1 on the RHS and similarly for the coefficients of y2 and
y3. This gives three linear inequalities for x1 and x2. The bound that we get from this is
5x1 + 4x2 and the best bound from this method is obtained by minimizing this expression.
This gives a (new) linear program on the variables x1 and x2:

min 5x1 + 4x2 (25)

subject to

x1 ≥ 2 (26)

x1 + x2 ≥ 4 (27)

x2 ≥ 1 (28)

xj ≥ 0 (29)

Setting x1 = 2, x2 = 2 gives a solution that satisfies all the constraints of this new LP. The
value of the solution is 5× 2 + 4× 2 = 18, which is an upper bound on the value of the LP
(19)-(22). In fact, this bound is tight. Consider the following solution to the LP (19)-(22):
y1 = 1, y2 = 4, y3 = 0. The value of this solution is 2y1 + 4y2 + y3 = 18. Thus we have
proved that 18 is the optimal value of this LP.

In fact, what we have just seen are simple examples of LP duality that we now proceed
to discuss. The two LPs (19)-(22) and (25)-(29) are duals of each other.

More generally, any linear program can be expressed in the following form:

max bTy (30)

Ay ≤ d (31)

y ≥ 0 (32)

Here y = (y1, . . . yn) is a column vector of variables and b = (b1, . . . , bn) is a column vector
of coefficients (i.e. real numbers). The objective function is min

∑
j bjyj. A is an m × n

matrix of coefficients and b = (b1, . . . bm) is a column vector whose entries are real numbers.
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The linear program has n constraints – the ith constraint is given by
∑

iAi,jyj ≥ bi. All
variables yj are constrained to be non-negative.

We mentioned earlier that linear programs can be solved in polynomial time. In fact,
there are three possibilities for a linear program:
(1) the optimum value is bounded,
(2) the optimum value is unbounded, or
(3) there is no feasible solution.
In time polynomial in the size of a given LP, we can decide which of the three cases this LP
falls into. In case the optimum is bounded, we can obtain an optimal solution in polynomial
time.

We refer to the original linear program as the primal LP. The dual of this linear program
is the following:

min dTx (33)

ATx ≥ b (34)

x ≥ 0 (35)

Here x = (x1, . . . xm) is a vector of variables. A is the same matrix and b, d are the column
vectors that appear in the description of the primal LP. Note that we have a variable xi
in the dual corresponding to the ith constraint in the primal. Think of the xi variables as
multipliers for the constraints in the primal LP. We would like to multiply the ith constraint
of the primal by xi and sum over all constraints to obtain a valid upper bound on the value
of the primal. The bound that we obtain thus is

∑
i dixi which is the objective function of

the dual LP. We have a constraint in the dual corresponding to every variable in the primal.
Since we multiply the ith primal constraint by xi and add up over all i, the coefficient of yj
in this linear combination is

∑
iAi,jxi This ought to be ≥ the coefficient of yj in the primal

objective, which is bj. This gives the following constraint:
∑

iAi,jxi ≥ bj which is exactly
the ith constraint in the dual LP. The dual consists of all such constraints for i ∈ [n].

We state two lemmas that relate the values of the primal and dual LPs:

Lemma 2.1 (Weak Duality). For any feasible solution x to the LP (33)-(35) and y to the
LP (30)-(32), we have bTy ≤ dTx.

In fact, we have already presented all the ideas needed to prove this lemma. Prove this
as an exercise to test your understanding!

Lemma 2.2 (Strong Duality). For any optimal solution x∗ to the LP (33)-(35) and optimal
solution y∗ to the LP (30)-(32), we have bTy∗ = dTx∗.

Duality is a very useful property of linear programs. We have already seen how to exploit
duality to prove that a solution to a linear program is optimal: simply exhibit an optimal
solution to the dual linear program. We will establish LP duality later. For now, we will use
it to prove the minimax theorem stated earlier.

In general, the form of LP duality we have stated here is general enough to write down
the dual for any linear program. However, it is convenient to remember a few more rules
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that make the job of writing the dual easier in some cases – these can be derived from the
form that we described earlier. Suppose the the primal LP has some equality constraints. In
principle, each equality constraint

∑
iAi,jyj = di can be written down as two inequalities:∑

j Ai,jyj ≥ di and −
∑

j Ai,jyj ≥ −di. Let x
(+)
i and x

(−)
i be the two corresponding dual

variables. It is easier to write down the dual directly by using the variable xi = x
(+)
i −x

(−)
i . In

this case however, the dual variable xi is unconstrained, i.e. can be either positive, negative
or zero. Let’s try to get some intuition for why this makes sense. Recall the motivation for
the dual LP. The xi variable is a multiplier for the ith constraint in the dual. The reason
why we insisted on xi ≥ 0 earlier is to ensure that multiplying by xi does not reverse the
inequality. However, if the ith constraint is an equality, we can multiply it by any value –
positive or negative – and we still have an equality. Hence the dual variable corresponding
to an equality is unconstrained.

Similarly, if we had an unconstrained variable yj in the primal LP, the corresponding jth
constraint in the dual LP is an equality constraint. One way to see this is to convert to an LP
where all variables are nonnegative by replacing yj by y

(+)
j −y

(−)
j where the two new variables

y
(+)
j , y

(−)
j ≥ 0. If we go through the calculations, we will see that that the dual constraints

corresponding to y
(+)
j and y

(−)
j are of the form

∑
iAi,jxi ≥ bj and −

∑
iAi,jxi ≥ −bj.

Together they imply the following constraint:
∑

iAi,jxi = bj, which is easier to write down
directly. Again intuitively, it makes sense that the dual constraint corresponding to an
unconstrained variable is an equality constraint. Recall the motivation for the dual LP and
constraints. Suppose for i ∈ [n], we multiply the ith constraint in the primal LP by xi and
add them up. The goal is to ensure that the LHS of this linear combination of constraints
is an upper bound on the objective function of the primal LP. Then the jth constraint of
the dual is obtained by examining the coefficient of primal variable yj on the LHS of this
linear combination and in the objective function of the primal LP. If the primal variable yj
is unconstrained, the only way we can guarantee that the value of the linear combination
is an upper bound on the objective function is to ensure that the coefficients of yj in the
linear combination and the objective function match exactly. In other words, the constraint
corresponding to the yj should be an equality.

To summarize, we state the primal and dual LPs again allowing for unconstrained vari-
ables and equality constraints in addition to inequality constraints. It is convenient to
remember the primal and dual LPs in this form. The primal LP is as follows: (Here
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S ⊆ [m], T ⊆ [n]).

max
∑
j

bjyj (36)

∀i ∈ S
∑
j

Ai,jyj ≤ di (37)

∀i ∈ [m] \ S
∑
j

Ai,jyj = di (38)

∀j ∈ T yj ≥ 0

∀j ∈ [n] \ T yj unconstrained

The dual LP is as follows:

min
∑
i

dixi (39)

∀j ∈ T
∑
i

Ai,jxi ≥ bj (40)

∀j ∈ [n] \ T
∑
i

Ai,jxi = bj (41)

∀i ∈ S xi ≥ 0

∀i ∈ [m] \ S xi unconstrained

Note that unconstrained variables in the primal correspond to equality constraints in
the dual, and unconstrained variables in the dual correspond to equality constraints in the
primal. We also remark that the dual of the dual is the primal LP.

2.1 Proof of minimax theorem

Recall the equivalent formulation of the minimax theorem we derived earlier:

min
x

max
j

{∑
i

Ci,jxi

}
= max

y
min

i

{∑
j

Ci,jyj

}
(42)

In this section, we will prove the above equality. The LHS is the value of the optimization
problem faced by the row player and the RHS is the value of the optimization problem faced
by the column player. We will formulate both these problems as linear programs and show
that they are duals of each other.

First we claim that the following linear program exactly captures the optimization prob-
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lem for the row player:

min z (43)

∀j ∈ [n]
m∑
i=1

Ci,jxi ≤ z (44)∑
i

xi = 1 (45)

∀i ∈ [m] xi ≥ 0

z unconstrained

Note that the xi variables are the coordinates of the mixed strategy vector x used by the
row player. For any fixing of the xi variables, the minimum value of the objective function
is achieved for z = maxj {

∑
iCi,jxi}, so the optimum value of the linear program is indeed

the minimum of maxj {
∑

iCi,jxi} over all choices of mixed strategies x.
By similar reasoning, we claim that the following linear program exactly captures the

optimization problem for the column player:

max w (46)

∀i ∈ [m]
n∑

j=1

Ci,jyj ≥ w (47)∑
j

yj = 1 (48)

∀j ∈ [n] yj ≥ 0

w unconstrained

Here the yj variables are the coordinates of the mixed strategy vector y used by the row
player. For any fixing of the yj variables, the maximum value of the objective function is

achieved for w = mini

{∑
j Ci,jyj

}
, so the optimum value of the linear program is indeed

the maximum of mini

{∑
j Ci,jyj

}
over all choices of mixed strategies y.

Let’s reformulate the linear program (46)-(48) in the form of the LP (36)-(38):

max w (49)

∀i ∈ [m] w −
n∑

j=1

Ci,jyj ≤ 0 (50)∑
j

yj = 1 (51)

∀j ∈ [n] yj ≥ 0

w unconstrained
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Now, let’s write down the dual of this LP, using variables xi, i ∈ [m], for the constraints
(50), and variable z for the constraint (51). Corresponding to each yj, j ∈ [n], we have a
dual constraint which is an inequality. Corresponding to w, we have a dual constraint which
is an equality. The dual LP is

min z (52)

∀j ∈ [n] z −
m∑
i=1

Ci,jxi ≥ 0 (53)∑
i

xi = 1 (54)

∀i ∈ [m] xi ≥ 0

z unconstrained

It is easy to see that the dual LP we derived above is exactly the same as the LP (43)-
(45) we wrote down earlier to capture the optimization problem for the row player. Thus
the linear programs we wrote down for the row and column player are duals of each other.
By strong duality, the values of their optimum solutions are equal. Now let’s go back to
the reformulation (42) of the minimax theorem we stated at the beginning of this section.
The optimum value of the row player’s LP is the LHS of (42) and the optimum value of the
column player’s LP is the RHS of (42). Hence we have proved that both sides are equal,
establishing the minimax theorem.

3 Multiplicative Weights

To Be Completed
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