
Advanced Algorithm Design: Marking Algorithm

Lectured by Prof. Moses Charikar
Transcribed by Borislav Hristov∗

February 20th, 2013

1 Marking Algorithm
At the end of the last lecture we briefly sketched a probabilistic algorithm for caching which is
log k comparative. Here is the algorithm in details; we assume there is an extra bit per every page
which we will use as indicator if the page has been recently requested.

• initially all pages are unmarked

• when page p is requested if p is in the cache mark it (set the bit);otherwise:

• if @ unmarked page, then unmark all pages

• evict random unmarked page

• bring p into cache and mark it

Let’s examine more closely the ”unmark all pages” step. We can divide the request sequence
σ into phases based on when this unmarking happens. The idea is similar to the one we used in
last class to divide the requested sequence for the deterministic algorithm into groups of k distinct
pages. Here, we make the following

Claim 1. Deterministic marking algorithm is k−comparative.

The proof is pretty straightforward. For all pages to be marked at the end of the phase it means
that we have k distinct pages in the cache, all marked, and now the first element x of the next
phase is a different one and we have to unmark it (deterministically). But that page x is certainly

∗borislav@cs.princeton.edu

1

a miss for the optimal algorithm as well. Therefore, any deterministic marking algorithm is k-
comperative.

However, this is a very crude bound. If we use some probabilistic reasoning for the ramdom-
ized algortihm we can derive a better bound.

Claim 2. The marking algorithm is log k−comparative.

Let’s consider the union of two consecutive phases i− 1 and i and denote with mi the number
of misses the optimal algorithm makes in those two phases. Therefore, we have the following two
lower bounds for OPT:

Ω(OPT) ≥ m2 +m4 +m6 + ...+m2r

Ω(OPT) ≥ m3 +m5 +m7 + ...+m2r+1 which combined give us
2Ω(OPT) ≥

∑
i

mi

Now, consider phase i, phase i− 1 just happened. The worst case scenario for the probabilistic
algorithm is if all mi evicts happen at the beginning of phase i and they evict pages we will request
later. Let x1 be the first distinct page we request after the mi evicts. The probability that x1 is in
the cache is k−mi

k
because we evicted randomly mi pages and x1 could have been one of them.

Thus, the probability of faulting on the request for x1 is mi

k
. Similarly, the probability of faulting

on the request for the next distinct page x2 (x1 6= x2) is mi

k−1 and so on. Thus, for phase i

E[#faults] = mi + mi

k
+ mi

k−1 + mi

k−2 + ...+ mi

k−mi
≤ mi(1 + 1

k
+ 1

k−1 + ...+ 1
k−mi

) ≤ miHk

E[total#faults] ≤
∑
i

miHk ≤ 2Ω(OPT)Hk

Therefore the marking algorithm is 2Hk−comparative.

2 Yao’s principle
Let’s discuss a general mechanism to prove lower bounds for randomized algorithms against obliv-
ious adversaries known as Yao’s principle. Let R be a randomized algorithm and Cr its compara-
tive ratio against oblivious adversaries. Let P be a probability distribution over an input (request
sequence) σ and let CP

A be the expected comparative ratio of a deterministic algorithm A on distri-
bution P . Then, Yao’s principle states that:

inf
R
CR = sup

P
inf
A
CP
A

The right side means to take the worst possible distribution and have the best possible deter-
ministic algorithm do it. From the above we can also derive:

inf
R
CR ≥ inf

A
CP
A

Now, let’s use this principle to analyze the lower bound for the marking algorithm. Construct
σ at random, uniformly from {1, 2, ..., k + 1} where k is the size of the cache. We claim that this
distribution of k+ 1 pages is bad and any deterministic algorithm looks bad on it. Observe that the

2

probability of faulting on the i − th request is 1
k+1

. Thus, E[#faults] = ‖σ‖
k+1

. Suppose we have
seen i pages. The probability of seeing a new page is exactly Pr[new page] = k+1−i

k+1
and therefore

the number of steps to see the i-th new page is:
E[#steps to see ith new page] = 1/Pr[new page] = k+1

k+1−i
Therefore:
E[#steps to see all pages] =

∑
i

k+1
k+1−i = (k + 1)Hk+1 = Θ(k log k) (Note: this is how you do

the coupon collector problem)

So, we have E[OPT] ≤ O(‖σ‖
k log k

) and E[#faults any det alg] = ‖σ‖
k+1

which give us a lower
bound of Ω(log k).

3 Experts’ advice
Now, in the second part of the lecture, we will consider a different problem. Let n be the number
of experts predicting whether a given stock will go up or down. The goal is to use their input
and construct an algorithm so that we minimize the difference in the number of mistakes we do
compared to the best performing expert. Here is one algorithm which uses weighted majority:

• initialize all experts’ weights to 1

• given prediction xi ∈ (0, 1) choose the weighted majority, that is:

if
∑
i xi=1

wi >
∑
i xi=0

wi then choose 1; otherwise choose 0.

• if an expert is wrong, reduce its weight by a half, i.e:
if the correct answer is l and xi 6= l then wi ← wi/2

Analysis. Suppose our algorithm makes M mistakes and the best expert makes m. Let w be
the sum of all weights. Initially w = n. When we make a mistake it must be the case that at least
half of the mass was on the wrong side. But every expert on the wrong side will have its weight
halved so the total weight will decrease by a factor of at least 3

4
. Thus, at the end the final weight

will be ≤ n(3
4
)M . The best expert’s weight at the end will be (1

2
)m because he made m mistakes.

So, we have:

(1
2
)m ≤ n(3

4
)M ⇔ n2n ≥ (4

3
)M ⇔ log2n+m ≥Mlog2

4
3

which gives us:

M ≤ 2.4(m+ log2n)

It is true that this resembles a learning problem and perhaps different learning approaches may
yield better performance. But the paradigm will be useful in other settings, i.e when ”experts” are
replaced by ”algorithms”. In next class, we will analyze a different algorithm, one in which we
take the advice of one expert chosen probabilistically and proportionally to its weight.

3

