
Advanced Algorithm Design: Online Algorithm

Lecture by Prof. Moses Charikar
Transcribed by Kevin Lin

February 18, 2013

In this lecture, we describe online algorithms, algorithms that process its input
piece-by-piece in a serial fashion where the entire input is not available from the start.
We study list update and caching and develop common methods to analyse these algo-
rithms.

1 List Update
List update was developed first by Sleator and Tarjan when developing online algo-
rithms for data structures. We study this in the setting below:

1.1 Setup
There is a list of n elements in the form of a linked list. The cost of accessing the kth

element is k. We also have flexibility of rearranging the list as we access elements.
More specifically, we can choose the perform the following actions when accessing
this kth element:

• Move the kth element to any position in front of it for free (no cost) (ie: one
position forward, two positions forward, all the way forward, etc.).

• Swap consecutive elements in the list for cost of 1. (This is called a Paid Ex-
change)

The task we want to solve is given a sequence signal σ, design an online algorithm to
minimize CA(σ).

Definition. CA(σ): Cost of A on sequence σ.

Definition. COPT(σ): Minimum cost solution for σ knowing σ in advance.

Definition. Strictly α-competitive: A has a stricly competitive ratio of α if CA(σ) ≤
α·COPT(σ)

Definition. α-competitive: A has a competitive ratio of α if CA(σ) ≤ α·COPT(σ) + β
where β is independent of σ.

Notes:

1



• We generally will not use the swap function at all. We specify it so we allow
other possible algorithms (such as the optimal algorithm) to use them.

• The definition of α-competitive is more general and focuses on the average cost.
β can be a function of any other parameters of the problem besides σ (for exam-
ple, it cannot depend on |σ|). We hope that for large σ, β becomes insignificant.

• We are allowed to store any amount of external information when running an
online algorithm in the setting we described. We can also take as much time (ie:
exponential) time to calculate anything we want when running these algorithms.
As it turns out though, we typically do not need to do either of these things.

• For this lecture, we are not concerned with how the list is initialized. All we need
to know is that both A and OPT share the same initial list.

1.2 Optimal Algorithm
What if we knew σ beforehand? As it turns out, finding this cost is NP-hard. The
details are not shown here. (This is shown by reduction where we show it is NP-
Hard to differentiate between the yes’s and no’s for some defined yes-instance and
no-instance.) The point is that COPT(σ) is hard to compute, and we might feel hopeless
since calculating CA(σ) is an ”even harder” than calculating COPT(σ).
Instead, we put implicit lower-bounds on the solution. In some sense, by comparing
the ratio between CA(σ) and an approximation of COPT(σ), we are trying to answer how
much we lose due to our inability to predict the future.

1.3 Algorithms
Here are some examples of possible algorithms we might be interested in using to solve
List Update

• MTF (Move to Front): After accessing the kth element, move it all the way to the
very front of the list.

• MoTF (Move One to Front): After accessing the kth element, move it one posi-
tion forward in the list.

• Frequency Count: Keep the list sorted with respect to frequency. (The highest
frequency is in the front.)

We can actually eliminate two of these ideas right away since they have poor compet-
itive ratios. MoTF is clearly bad since we might continually call the nth and (n-1)th

element. A better algorithm should’ve recognized that it would be best to move this
two elements to the front of the list so save costs. Frequency count is also clearly bad
since (intuitively), it will react too slowly to new changes. In fact, frequency count can
be shown to be Ω(n)-competitive.

2



Theorem 1.1. MTF is 2-Competitive
Proof Idea: We first describe one method that would not work. One method that would
be unsuccessful would be to try showing CMTF(σi) ≤ 2·COPT(σi). We cannot hope to
prove this since we cannot be certain on what the optimal algorithm does, and in some
sense, it is too good to be true. Instead, we use potential functions as some kind of
counter roughly measuring how different our algorithm is from the optimal algorithm.
The formula we seek to show is:

CMTF(σi) + φi − φi-1 ≤ 2 · COPT(σi) (1)

In particular, if we add up (1) for all i, we get:

CMTF(σ) + φ|σ| − φ0 ≤ 2 · COPT(σ) (2)

where |σ| denotes the length of the entire request sequence, φ|σ| ≥ 0, φ0 = 0.

Proof: All that remains to prove is (1). Let our potential function φ denote the number
of inversions between the OPT’s and MTF’s lists. When handling the ith request:

S T x

S

MTF:

OPT: Tx

Figure 1: An illustration of Go-CART on the climate data. (a) A list of the 18 collected climate
factors; (b) The estimated subregions for 125 locations projected onto the US map (two locations
belong to the same subregion if they are denoted by the same shape and color), with the estimated
graphs for subregions 2, 3, and 65; (c) the rescaled partition pattern mapped onto a unit square;
(d) estimated graph with data pooled from all 125 geographic locations. All tuning parameters
are chosen by minimizing the held-out likelihood under a conditional Gaussian model.

where S = {y | y precedes x in both MTF and OPT} and T = {y | y precedes x in MTF
but not in OPT}. (The graphics are to show volume not actual element positions.) We
can easily see for σi = x,

CMTF(σi) = |S|+ |T |+ 1 (3)
COPT(σi) ≥ |S|+ 1 + P (4)

where P refers to the unknown number of paid exchanges made by the optimal algo-
rithm. These equations simply refer to the position of x which can be visualized by the
graphic above.

We now want to know how φ changes. Let MTF make its move first. Clearly only
all pairs involving x might possibly have their inversions changed. Looking at the el-
ements in S and T, if we first look at just MTF’s actions before we consider OPT, we

3



count φi - φi-1 ≤ |S| - |T |.

After OPT makes its move, our number of inversions might decrease from |S| - |T |
(if element x moves to the front). We need to count the number of possible paid ex-
change OPT might do though. Hence, after looking at OPT’s actions, we get the final
inequality:

φi − φi-1 ≤ |S| − |T |+ P. (5)

Thus, using (5), we get:

CMTF(σi) + φi − φi-1 ≤ (|S|+ |T |+ 1) + (|S| − |T |+ P ) (6)
≤ 2 · |S|+ P + 1 (7)
≤ 2 · (|S|+ P + 1) (8)
≤ 2 · COPT(σi) (9)

Hence, we have shown (1) and we are done. We should note that finding these particular
potential functions is almost an artful in itself since there is no clear heuristic to follow
when constructing them. �

1.4 Randomness
Notice that in our algorithm, we did not use any randomness at all. In fact, we can
show that for any deterministic algorithm, a factor of 2 is the best.

Theorem 1.2. The lowest competitive ratio for a deterministic algorithm to solve List
Update is 2.
Proof Idea: We will only present the proof idea. We use an adversary-argument to
show why this bound holds. Suppose we run any deterministic algorithm. Since the
algorithm is deterministic, an adversary looking at the currently-stored list will know
how the algorithm will act in the future. Thus, the adversary makes a specific request
list σ to make the algorithm give the worst possible performance. Specifically, the
adversary keeps requesting the last element in the list in that iteration. Clearly MTF
would then pay n for every request.

Using that same σ, what would OPT do? Keep in mind that OPT can see the entire
σ before it starts handling the requests. A good approximation to what OPT would
do is to first sort the entire list by each element’s frequency count in σ with the more
frequently-requested items in front. It can be shown that aside from the constant cost
to sort this list, OPT would pay n/2 on average. �

In general, we could randomize an algorithm and analyse its performance, but in gen-
eral, randomized algorithms are hard to analyse in an online setting. These randomized
algorithms are essentially algorithms that are allowed to toss (weighted) coins and view
the result of the coin to determine its next action. When evaluating these models, our
competitive ratio definition would need to be altered slight:

4



Definition. α-competitive: A (a randomized algorithm) has a competitive ratio of α
if E[CA(σ)] ≤ α·COPT(σ) + β where β is independent of σ, and E is taken over all
possible random choices of A. We would like to have adversary-arguments similar to
the deterministic case to see what are the best possible bounds. Unfortunately, there
are many different adversarial-models since we need to specify whether or not the
adversary knows things like the outcomes of the coin tosses, etc. Here is a list of
different models with a brief description for each.

• Oblivious Adversary: Adversary knows how the randomized algorithm works
but does not know the exact choices the algorithm made. This will be the most
common model we use when we use the adversary-model.

• Adaptive Online Adversary: Adversary decides the request as the randomized
algorithm works.

• Adaptive Offline Adversary: Similar to the one before but in an offline setting
for the adversary.

In current algorithm literature, the best known randomized algorithm to solve List Hash
has a competitive ratio of approximately 1.6. Lastly, we present a very simple example
of a randomized List Update algorithm:

Data: A linked list with n elements
Set one randomized bit (0 or 1) for every element in the list;
while Still requesting elements do

Return the requested element;
if the bit for the requested element is 0 then

Move the requested element to front
end
Flip the bit of the requested element

end
Algorithm 1: Algorithm ”BIT”

The only randomization BIT has is the randomized bits assigned to each element in the
very beginning. We will not prove it here, but surprisingly, BIT is 1.75-competitive.

2 Caching
There is additional information at theory.stanford.edu/˜trevisan/cs261/
lecture17.pdf.

2.1 Setup
There are n pages (of memory) stored in your computer across all types of memory.
The cache can only has a capacity of storing k pages at any time. When someone
requests a certain page, if the page is already in the cache, it is a hit. If not, then we
have to first evict a certain page in cache, retrieve the requested page from hard disk,

5

theory.stanford.edu/~trevisan/cs261/lecture17.pdf
theory.stanford.edu/~trevisan/cs261/lecture17.pdf


and then place this request page into the cache. We pay a cost of 1 doing this. The
task we want to solve is given a sequence signal σ of page requests, design an online
algorithm to minimize CA(σ), the number of cache misses.

2.2 Common Algorithms
We present some reasonable online algorithms used to solve this problem. Both of
these algorithms will require you to store additional information.

• Least Recently Used (LRU): When choosing a page to evict in cache, chose the
page which the long has passed since its last request.

• Least Frequently Used (LFU): When choosing a page to evict in cache, chose
the page that has been least frequently requested.

Similar to our analysis in List Update, we can immediately get rid of LFU for its poor
competitive ratio. Consider the following scenario. (k-1) of the pages in cache have a
really high frequency count after running the algorithm for some amount of time. If x
and y denote two distinct pages with extremely low frequency count, a request sequence
of x and y alternating will result in a cache miss every single time since the cache keeps
cycling through these 2 pages. Thus, LFU can be shown to be Ω(|σ|)-competitive. We
present a popular offline algorithm for Caching:

• Furtherest in Future: When choosing a page to evict in cache, choose the page
that is requested furthest in the future.

Again, we can see the entire σ when we are in the offline setting. As opposed to List
Update, we actually can prove that this offline algorithm is the optimal algorithm, so
there is no need to use potential functions. We will not prove this claim here.

Theorem 2.1. LRU is K-competitive.
Proof Idea: We can partition the request sequence into phases where each phase starts
at the first element after the previous phase and contains the maximum set of pages to
ensure that there are k distinct pages within each phase. In particular, by choosing the
phases to be the maximum set of pages to ensure k distinct pages within in phase, we
can guarantee that when we request the first page in the following phase, OPT must
have perform at least 1 eviction. On the other hand, when LRU handles this phase, it
performs at most k evictions since there are k distinct elements in this phase. Formally,
by construction of phases:

• OPT has cot ≥ 1 per phase

• LRU has cost ≤ k per phase.

We note that the ≤ for LRU is needed since some of the pages requested in the phase
might already be the cache. �

Now we are interested if we could have done any better than k-competitive. This ratio
might seem pretty bad, but we should keep in mind that this pessimism is dictated by
the way we chose to analyse online algorithms.

6



Theorem 2.2. Any deterministic algorithm has a competitive ration ≥ k.
Proof: Consider (k+1) pages. Consider any deterministic algorithm A. Let an ad-
versary always request a page that is not in cache when running A. This can be any
page. (Again, similar to when analysing deterministic algorithms in List Update, the
adversary can plan out how to choose the requests to generate this behaviour since the
algorithm is deterministic.) Thus, the algorithm incurs a cost of 1 for every request.

Now, consider the optimal algorithm. Since we know the optimal algorithm uses ”Fur-
thest in the Future”, we evict the page furthest in the future. this means that once we
have a fault, we won’t have a fault for at least k requests in the future. It is clear the
following holds:

COPT (σ) ≤
⌈
|σ|
k

⌉
(10)

2.3 Randomness
We now describe a simple random ”Marking” algorithm:

Data: n pages and a cache of capacity k < n
Until the cache fills up, attach an unset bit to all pages in the cache;
while Requesting page p do

if Page p does not exist in cache then
if There is one unmarked page in cache then

Evict one random unmarked page;
else

Unmark all pages and evict a random unmarked page;
end
Bring in page p and mark it

end
end

Algorithm 2: Algorithm ”Marking”

Next lecture, we will show that this algorithm is actually O(log k)-competitive. We
will also show that the lower bound for all randomized algorithms for Caching is Ω(log
k)-competitive.

7


	List Update
	Setup
	Optimal Algorithm
	Algorithms
	Randomness

	Caching
	Setup
	Common Algorithms
	Randomness


