
COS 521 Lecture 4: Streaming Algorithms

Guest lecture by Jelani Nelson

Transcribed by Michael Zhu

February 13, 2013

1 Chernoff bound

The Chernoff bound is a tail bound for sums of independent real variables.

Theorem: Let X1, ..., Xn be independent random variables each in [0, 1]. Let X =
∑
i

Xi. Let

σ2 = V ar[X]. Then Pr[|X − E[X]| > λσ] ≤ c1 max{e−c2λ
2

, e−c3λσ}.

Proof : We will prove an upper bound on Pr[X − E[X] > λσ] (the proof of the other inequality

is similar). Define Yi = Xi − E[Xi], and note that the Yi’s are independent. We have Y =
∑
i

Yi =

∑
i

(
Xi − E[Xi]

)
= X − E[X]. Let t ∈ (0, 1) be some constant to be determined later.

Pr[X − E[X] > λσ] = Pr[et(X−E[X]) > etλσ]

= Pr[etY > etλσ]

< e−tλσE[etY]

= e−tλσ
∏
i

E[etYi]

≤ e−tλσ
∏
i

eet
2V ar[Xi]

= e−tλσeet
2 ∑

i V ar[Xi]

≤ e−tλσ+et
2σ2

The first inequality follows by Markov’s inequality. To derive the second inequality, we use Taylor’s

theorem. For twice-differentiable functions f , we have that f(x) = f(0) + f ′(0)x+
f”(α)x2

2
for some

α ∈ (0, x). Applied to f(Yi) = etYi , we get

etYi ≤ 1 + tYi +
ett2Y 2

i

2

1

Taking the expectation of both sides,

E[etYi] ≤ 1 +
ett2E[Y 2

i]

2
≤ 1 + et2V ar[Xi]

≤ eet
2V ar[Xi]

Now setting t = min(
1

16
,
λ

2eσ
), the desired result follows.

2 Streaming Algorithm for counting distinct elements

Streaming algorithms are efficient algorithms designed to process large data streams “on the fly” by

making one or more passes over the input data but with limited amounts of memory available for

storage. The distinct element problem asks us to count the number of distinct elements i1, i2, ..., im

∈ {1, ..., n}. The algorithm is required to output F0 = # distinct i′s. The problem was first studied

in Flajolet, Martin 1983. Using O(log n) bits of memory, the algorithm outputs F̃0 ∈ [
F0

6
, 6F0] with

probability at least 2/3. The error probability can be reduced to 1− δ using Chernoff bound.

Algorithm (idealized):

1. Pick random hash function h : {1, ..., n} = [n]→ [0, 1]

2. Maintain X = min
i∈stream

h(i) in memory

3. At the end of the stream, output 1/X

Intuition:

If we have t independent random variables in the interval [0, 1], we expect these random variables

to be evenly spaced in the interval [0, 1], that is, taking on values
1

t+ 1
,

2

t+ 1
, ...,

t

t+ 1
. Suppose there

are t distinct elements x1, ..., xt in the input stream. Since the hash values of the distinct elements in

the stream can be treated as independent random variables, we expect the distinct hash values h(x1),

..., h(xt) to be evenly spaced in [0, 1]. We expect the smallest hash value to be approximately
1

t+ 1
and the inverse of this to yield a good approximation to the number of distinct queries.

Analysis:

Event E1: There are no hash values less than
1

6F0

Event E2: There is at least one hash value less than
6

F0

2

Note that E1 implies X ≥ 1

6F0
and

1

X
≤ 6F0 while E2 implies X ≤ 6

F0
and

1

X
≥ F0

6
. If events E1

and E2 both occur, then the estimate
1

X
∈ [

F0

6
, 6F0] output by the algorithm is in the correct interval.

To bound the probability that the algorithm makes an error, we first show that the probability E1

doesn’t occur is less than 1/6. Let a1, a2,, aF0 be the distinct values in the stream. Let Zi be an

indicator random variable for the event h(ai) <
1

6F0
. Let Z =

F0∑
i=1

Zi be the number of distinct i’s

such that h(ai) <
1

6F0
. By a simple calculation, E[Z] =

F0∑
i=1

E[Zi] =

F0∑
i=1

1

6F0
=

1

6
. Using Markov’s

inequality, Pr(not E1) = Pr(Z ≥ 1) ≤ 1

6
.

A similar calculation shows that the probability E2 doesn’t occur is also less than 1/6. Let

Z ′i be an indicator random variable for the event h(ai) <
6

F0
. Let Z ′ =

F0∑
i=1

Z ′i, and we have

E[Z ′] =

F0∑
i=1

E[Z ′i] = 6. Since the Zi’s are independent random variables, we have V ar[Z ′] =

F0∑
i=1

V ar[Z ′i] =

F0∑
i=1

(
E[Z ′2i] − E[Z ′i]

2

)
<

F0∑
i=1

E[Z ′i] = 6. Using Chebyshev’s inequality, we conclude

that Pr[not E2] ≤ Pr[|Z ′ − E[Z ′]| ≥ 6) ≤ V ar[Z ′]

36
≤ 1

6
.

In reality, we can’t use truly random hash functions since real numbers and real intervals cannot

be represented on the computer. Since the above proof only needs the sum of variance property to

hold, we only need h to be a pairwise independent hash function. Constructing h and storing h takes

O(log n) bits of memory.

3 Boosting success probability

To boost the success probability of the streaming algorithm presented in the previous section,

1. Repeat t = O(log
1

δ
) times with independent randomness over the trials. Get t estimates F̃ 1

0 ,

F̃ 2
0 , ..., F̃ t0 .

2. Output the median of the t estimates over F̃ i0

The claim is that the median of the t estimates is in [
F0

6
, 6F0] with probability at least 1− δ. As long

as a strict majority of trials give us a good answer (in the correct interval), then the median will be a

good answer.

3

Analysis:

Let Xi be an indicator random variable for the event that trial # i gave a good answer (in the

correct interval). Let X =

t∑
i=1

Xi. We want to show that Pr[X >
t

2
] ≥ 1 − δ. By linearity of

expectation, E[X] =

t∑
i=1

Pr[Xi = 1] ≥ 2t/3. We can bound the error probability as Pr[X ≤ t/2] ≤

Pr[|X − E[X]| > (
2

3
− 1

2
)t] and use the Chernoff bound with an appropriate choice of t to show that

the error probability is less than δ.

4 Lower bounds in streaming

Both randomization and approximation are necessary for getting a good solution to the distinct el-

ements problem in sublinear space. We consider the case of no randomness and no approximation.

Suppose there exists a deterministic, exact streaming algorithm which computes the number of distinct

elements in sublinear space. We can design a universal compression algorithm as follows, which is a

contradiction.

Encoding algorithm for any x ∈ {0, 1}n:

1. Create stream D containing {i | xi = 1}.

2. Run streaming algorithm on D

3. Output memory contents of streaming algorithm

Decoding algorithm:

1. Calculate F0, the number of distinct elements.

2. For each i = 1, 2, ...n:

(a) Add i to the stream.

(b) Ask if F0 increased (xi = 1 iff F0 didn’t increase)

3. Output {i | ith iteration of for loop, F0 didn’t increase}

5 F2 estimation

Given a stream of elements in the range {1, ..., n}, the stream defines a frequency vector x ∈ Rn where

xi is the number of times that the element i appears. When v copies of element i are seen, we have

4

the update xi ← xi + v. The goal is to output F2 = ‖x‖22 =

n∑
i=1

x2i . A O(log n)-space algorithm was

introduced by Alan, Matias, Szegedy (1996).

Algorithm:

Construct a m by n matrix Π = [σij] where the entries σij are drawn at random independently

from {−1,+1}. Initially, x ∈ Rn is the 0 vector. The algorithm maintains Πx ∈ Rm in memory,

where Πx is initially the 0 vector. The update xi ← xi + v can be formulated in vector notation as

x← x+ vei. We can compute Π(x+ vei) = Πx+ vΠi by adding v times Πi (the ith column of Π) to

Πx. At the end of the stream, the algorithm outputs
1

m
‖Πx‖22.

Analysis:

1

m
‖Πx‖22 =

1

m

m∑
i=1

(Πx)2i

=
1

m

m∑
i=1

(n∑
j=1

Πijxj

)2

=
1

m

m∑
i=1

(n∑
j=1

n∑
j′=1

σijσij′xjxj′

)

=
1

m

m∑
i=1

(n∑
j=1

σ2
ijx

2
j +

∑
j 6=j′

σijσij′xjxj′

)

=
1

m

m∑
i=1

(n∑
j=1

x2j +
∑
j 6=j′

σijσij′xjxj′

)
Assuming pairwise independence, the expectation is

E

[
1

m
‖Πx‖22

]
=

1

m

m∑
i=1

(
‖x‖22 +

∑
j 6=j′

E[σijσij′]xjxj′

)

=
1

m

m∑
i=1

(
‖x‖22 +

∑
j 6=j′

E[σij]E[σij′]xjxj′

)
= ‖x‖22 = F2

5

Assuming our hash function is 4-wise independent, we can bound the variance by

V ar

[
1

m
‖Πx‖22

]
= E

[(
1

m
‖Πx‖22 − E[

1

m
‖Πx‖22]

)2]
= E

[(
1

m

m∑
i=1

∑
j 6=j′

σijσij′xjxj′

)2]

=
2

m2

m∑
i=1

∑
j 6=j′

E[σ2
ijσ

2
ij′]x

2
jx

2
j′

=
2

m2

m∑
i=1

∑
j 6=j′

x2jx
2
j′

≤ 2

m
(
∑
j

x2j)
2

=
2

m
‖x‖42

By Chebyshev’s inequality, we have

Pr

[∣∣∣∣ 1

m
‖Πx‖22 − ‖x‖22

∣∣∣∣ > ε‖x‖22
]
≤

2
m‖x‖

4
2

ε2‖x‖42

=
2

mε2

For any ε > 0 and δ > 0, we can choose m sufficiently large so
1

m
‖Πx‖22 ∈ [(1 − ε)F2, (1 + ε)F2]

with probability at least 1− δ

6

	Chernoff bound
	Streaming Algorithm for counting distinct elements
	Boosting success probability
	Lower bounds in streaming
	F2 estimation

