
Advanced Algorithm Design: Hashing and

Applications to Compact Data Representation

Lectured by Prof. Moses Charikar
Transcribed by John McSpedon∗

Feb 11th, 2013

1 Cuckoo Hashing

Recall from last lecture the dictionary cuckoo hashing. It grows in size linear
to the number of elements and has worst case constant lookup time. Here we
have:

• n elements.

• table size of m = 4n.

• two hash functions h1(x) and h2(x).

An element x is stored in either T [h1(x)] or T [h2(x)]. There are no linked-
lists nor is there linear probing. Insertions are the only nontrival procedure. For
this we use:

procedure Insert(x)
if lookup(x) then return

loop MaxLoop times
swap(x, T [h1(x)])
if x = NULL then return
swap(x, T [h2(x)])
if x = NULL then return

end loop
rehash( ); insert(x)

end procedure

For our analysis, we will set MaxLoop such that our algorithm rehashes after
performing 6 log(n) swaps without terminating. To estimate the probability of
rehashing, we must consider three cases separately: while attempting to insert,
we may encounter a chain of 6 log(n) distinct elements; we may encounter a

∗mcspedon@princeton.edu

1



chain of 6 log(n) evictions but with some repeated elements, i.e. one cycle; or
we may encounter two such cycles (in which case even letting MaxLoop→ ∞
would not guarantee termination).

Case 1: No Cycles

Figure 1: An insertion without cycles

Let x1 be the element we are trying to insert. We can say :

Pr[one eviction] ≤ Pr[∃ y | (h1(x) = h1(y)) or (h1(x) = h2(y))]

≤ n · ( 1

m
+

1

m
) =

2n

m
=

2n

4n
=

1

2

So if our hash functions are truly random, then:

Pr[t evictions] ≤ 1

2t
(1.1)

Hence for Case 1 we can say:

Pr[rehashing] = Pr[6 log(n) evictions] ≤ 1

26 log(n)
∈ O

(
1

n6

)
Ignoring the possibility of rehashing, we can also say that the expected time

for insertions here is:

E[insertion time] ≤
∑
t

t · 2−t ≤
∑
t

2−t ∈ O (1)

2



Case 2: One Cycle

(a) Insertion with one cycle (b) Three “chains” of distinct elements

Figure 2

Here we can reuse equation (1.1) from Case 1. To do so, note that the figure
above can be divided into three separate “chains” each composed of distinct
elements: {x1 → xb, xb → x1, x1 → xc}. If our procedure requires t swaps
before insertion (i.e. t arrows in the above figure), then at least one the separate

chains is of size ≥ t
3 . Hence Pr[Case 2 requires ≥ t steps] ≤ 1

2
t
3

. Accordingly:

Pr[rehash] = Pr[Case 2 requires ≥ 6 log(n) steps] ≤ 1

2
6 log(n)

3

=
1

22 log(n)
∈ O

(
1

n2

)
E[insert time] ≤

∑
t

t

2
t
3

∈ O (1)

3



Case 3: Two Cycles

Figure 3: An insertion with 2 cycles

The last case to consider is that with two cycles. In the absence of a MaxLoop
cut-off, we would infinite loop when attempting to insert in this situation –
therefore having two cycles guarantees that we rehash. We can approximate
the chance of this occurring by cardinality. Here we are attempting to hash t
elements into t− 1 hash locations. For problematic configurations, we have:

• t− 1 elements besides x1 meaning there are approximately nt−1 elements
to choose from

• t3 choices for the start and end positions of the cycles

• mt−1 choices for hash locations

For unproblematic choices, we need two hash locations per element, hence

we can estimate this with
(
m
2

)t ∈ O(m2t

2t

)
. Combining this information we

have:

Pr[2 cycles in t elements] ≤ nt−1 ·mt−1 · t3
m2t

2t

=
nt−1 · t3 · 2t

mt+1

=
nt−1 · t3 · 2t

(4n)t+1

∈ O
(

t3

n22t

)

4



It follows that:

Pr[2 cycle rehash] ≤
∑
t

t3

n22t
∈ O

(
1

n2

)

Synopsis

Through the above analysis we have shown Cuckoo Hashing provides constant
lookup time along with expected constant insertion time. The analysis holds
for 6 log(n)-wise independent hash functions and there are constructions of such
hash functions which take constant time. Alternatively, we can generalize the

hash function from previous lectures to a polynomial: f(x) =
k−1∑
i=0

aix
i mod p

is k-wise universal.

2 Min-wise Hashing for Set Similarity

Here we introduce algorithms that analyze data streams where the input is
much larger than the algorithm’s available memory. Typically we are allowed
just one pass at the data (“online-” or “streaming-” algorithms are both com-
mon descriptors for this situation). In this example we consider a method used
by the early search-engine contender AltaVista for measuring the similarity of
two documents, perhaps to remove redundancy in search results.

We begin by replacing our input with a short “sketch”, or summary of the
data stream. For example, we could convert a document to a sketch by running a
sliding window across the text and recording all consecutive 5-word phrases. In
comparing two documents, we want to measure the similarity of two documents’
respective sets by calculating their Jaccard Coefficient : for sets A and B we

define sim(A,B) =
|A ∩B|
|A ∪B|

.

We now choose a random hash function h which returns, for example, a
4-byte integer.
Apply h to all elements in sets A and B then return min(h(a)) = min(h(b)).

If h is collision-free, then Pr[min(h(a)) = min(h(b))] =
|A ∩B|
|A ∪B|

. To see this,

observe that for min(h(a)) to equal min(h(b)), the minimum element of both
sets must lie in |A ∩B|. Now note that the probability of arbitrary element
(which we encounter) being the minimum is 1

|A∪B| .

Clearly we don’t expect our documents to be strictly 0% or 100% matches,
nor do we want to repeat this process every time we want to compare two docu-
ments. Instead we choose (for example) 100 distinct hash functions {h1, h2, ...h100}.
For any set A, we can store the sketch (min(h1),min(h2), ...min(h100)). Because

Pr[min(hi(a)) = min(hi(b))] =
|A ∩B|
|A ∪B|

, we can say the expected value for any

5



given comparison of minimums (using the same hash function) is
|A ∩B|
|A ∪B|

, and

we can estimate this value by calculating the proportion of matches between
two documents’ sketches.

Boosting Accuracy using Median-of-Means

In the above example, we approximated sim(A,B) by averaging together several
random variables with an expected value of sim(A,B). In terms of precision, we
can do better than this. Consider k random variables x1, x2, ...xk with E[xi] = µ
and Var[xi] = σ2. Applying the same technique here as we did above, we

effectively create a new random variable y =
x1 + x2 + ...+ xk

k
with E[y] = µ

and Var[y] = σ2

k . Here we can use Chebyshev’s Inequality1 to estimate the
probability of our measurement deviating by a factor of ε from the true mean:

Pr[|y − E[y]| > εE[y]] ≤ Var[y]

(εE[y])2

=
Var[x]

ε2k(E[x])2

≤ 1

ε2k
(2.1)

with (2.1) following from the inequality V ar[x] ≤ (E[x])2. Letting k = 4
ε2 , we

can say the probability of a bad estimate is ≤ 1
4 .

We can further decrease the likelihood of a bad estimate by employing the
“median-of-means” technique. For this, we separately average t groups of k
variables (essentially forming t independent copies of the variable y above),
then take the median of these t means.

y1 = [
x1 + x2 + ...+ xk

k
]

y2 = [
xk+1 + xk+2 + ...+ x2k

k
]

...

yt = [
x(t−1)k+1 + x(t−1)k+2 + ...+ xtk

k
]

z = med(y1, y2, ..., yt)

Suppose we want to guarantee our estimate is within ε of the true mean with
probability 1−δ. Using just the variable y, by (2.1) we would need k ≥ 1

ε2δ . This
becomes impractically large for small enough δ. We make the same guarantees

1Chebyshev’s Theorem states that given a random variable X with finite E[X] = µ and
finite Var[X] = σ2 6= 0, then for any real k > 0:

Pr[|X − µ| ≥ kσ] ≤
1

k2

6



but with a reduced sample size by using the median of means technique. The
insight is that because z is the median of several variables, for z to be ε too high
at least half of the yi’s must be ε too high (and for z to be too low at least half
of the yi’s must be ε too low). Suppose k remains 4

ε2 (so that the probability of
each yi ∈ z being more than ε off is ≤ 1

4 . Then the expected number of bad yi’s is
t
4 . We can use this fact with Chernoff Bounds2 to guarantee the probability that

the number of bad estimates is at least t
2 is at most e(−2 ln 2−2+1)t/4 < e(−t/11).

Hence we can choose t such that t ≥ 11 ln(1
δ ). In short we now have a technique

to construct a satisfactory estimate which requires space ∈ O
(
log( 1

δ )
)

instead

of ∈ O
(
1
δ

)
.

2The Chernoff Bound we are interested in here is as follows:
Given y1, ...yt independent random variables (perhaps from separate distributions),
assume 0 ≤ yi ≤ 1 always ∀i,
and define z =

∑
i
yi, µ = E[z] =

∑
i
E[yi].

Then ∀ε ≥ 0:

Pr[z ≥ (1 + ε)µ] ≤ exp(−
ε2

2 + ε
µ)

and, Pr[z ≤ (1− ε)µ] ≤ exp(−
ε2

2
µ)

7


	Cuckoo Hashing
	Min-wise Hashing for Set Similarity

