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1 Recap

In the previous lectures we discussed tree embeddings. We saw that embedding
onto random trees can be useful, providing approximation algorithms to many
problems. Random tree embedding was introduced by Bartal (1996), and we
mentioned that the bound was improved by Fakcharoenpol, Rao and Talwar
(2003), based on a construction by Calinescu, Karloff and Rabani (2001). In
this lecture we will analyze this improved construction. Also, we will introduce
the concept of a minimum communication spanning tree.

2 A New Partitioning Procedure

Let us pick R ∈ [ δ4 ,
δ
2 ] uniformly and let σ be a random permutation of [n] (n

being the amount of points we wish to embed). Let B(p, r) denote a ball of
radius r around p (more precisely: B(p, r) = {x | d(x, p) ≤ r}). We can define a
ball of radius R around each point (after undergoing the random permutation)
as Bi = B(σ(i), R). Our partition will be:

B̂i = Bi \ (
⋃
j<i

Bj) (2.1)

which is a fancy way of saying we partition according to the balls Bi, forcing
that if a point is selected at some stage to be inside a set, it will not be selected
for the succeeding sets.

Given a pair of points u and v, we ask ourselves what is the probability
that they are separated by the above procedure. We notice that if a ball misses
the pair completely, we do not care since it will not change the outcome. If
a ball contains both u and v, it “protects” the points from separation on this
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level (keeping in mind that we will perform this procedure multiple times in a
hierarchical fashion). If a ball contains only one point out of the pair, the pair
will be separated.

Just for the sake of analysis, let us renumber the points according to their
distance from {u, v}. Thus, d(1, {u, v}) ≤ d(2, {u, v}) ≤ · · · ≤ d(n, {u, v}).
Let us assume for now that d(u, v) ≤ δ

8 . We notice that i can cut {u, v} only

if δ
8 ≤ d(i, {u, v}) ≤ δ

2 . Assuming w.l.o.g that d(i, u) < d(i, v), we get that
in order to cut {u, v} by the ball centered around i, it needs to hold that
R ∈ [d(i, u), d(i, v)]. The probability of such event is easy to compute:

Pr[R ∈ [d(i, u), d(i, v)]] =
d(i, v)− d(i, u)

δ
4

≤ d(u, v)
δ
4

(2.2)

where the last part holds due to triangle inequality. Also, in order for the ball
around i to cut {u, v}, i must be the first amongst [i] in the random permutation
σ. We notice that the probability for that to happen is 1

i . Combining that with
Equation 2.2 we get:

Pr[u, v separated at diam δ] =
∑

i: δ8≤d(i,{u,v})≤
δ
2

Pr[u, v separated by i at diam δ]

≤
∑
i

1

i

4d(u, v)

δ

≤ O(log(n))
d(u, v)

δ

(2.3)

We notice that since we sum over all i values we get the same result as in
the previous lecture (accumulating all δ values will get us O(d(u, v) · log2(n)) as
before). But we can do better! Remembering that

E[dT (u, v)] ≤
∑
δ

c · δ · Pr[u, v separated at diam δ] (2.4)

(for some constant c) we can refine our counting a bit:

E[dT (u, v)] ≤ c · δ · d(u, v)

δ

∑
i: δ8≤d(i,{u,v})≤

δ
2

1

i

+ c · δ
2
· d(u, v)

δ
2

∑
i:
δ/2
8 ≤d(i,{u,v})≤

δ/2
2

+ c · δ
4
· d(u, v)

δ
4

∑
i:
δ/4
8 ≤d(i,{u,v})≤

δ/4
2

1

i

...

+ c · δ
2i
· d(u, v)

δ
2i

∑
i:
δ/2i

8 ≤d(i,{u,v})≤
δ/2i

2

1

i

≤ O(d(u, v) · log(n))

(2.5)
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and we managed to shave off the extra log(n), due to the fact that in the above
expression we sum each 1

i at most twice.

3 Min Communication Spanning Tree

Let us start with some definitions. We would like to define a mapping from the
tree leaves to the graph vertices as before, but extend that mapping to include
all vertices of the tree. Also, we would like to define a mapping from tree edges
to paths in the graph. Given a tree T (Et, Vt) and a graph G(V,E) we will define
the following mappings:

mv : Vt → V (node mapping)

me : Et → E∗ (edge-path mapping)
(3.1)

such that me maps et = (ut, vt) to the path Puv between u = mv(ut) and
v = mv(vt). Given requirements r(u, v) ≥ 0 our goal is to pick a single tree T
that minimizes

∑
dT (u, v) · r(u, v). Comparing to

∑
dG(u, v) · r(u, v) (the best

we can achieve), we can use the tree embedding to get a randomized algorithm
with O(log(n)) ratio.

We can define the requirement of a tree edge:

r(et) =
∑
u∈Vet
v∈Vet

r(u, v) (3.2)

where Vet and Vet denote the two disjoint sets of graph vertices defined by
removing et and looking at all leaves in each of the two resulting disjoint trees.

We notice that using these definition we get loadT (e) =
∑

et∈Et
e∈me(et)

r(et) and we

can rewrite the expression for cost(T ):

cost(T ) =
∑
e∈E

loadT (e) · l(e) (3.3)

We have already shown, using tree embedding, that the following holds:

cost(T ) ≤ O(log(n))
∑
r(e)

l(e) (3.4)

The next step is to reuse the same infrastructure, defined over capacities,
to approximate the minimum congestion multicommodity flow. Moving on to
capacities, we can define:

c(ut, vt) =
∑
u∈Vet
v∈Vet

c(u, v) (3.5)
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where Vet and Vet are defined exactly as before. Given a multicommodity flow
f in G and congestion CG, we would like to map it to a tree T with congestion
CT such that CT ≤ CG and also get a probability distribution {λi} on trees Ti
s.t.

minβ = max
e∈E

{∑
i

λi
loadT (e)

c(e)

}
(3.6)

In the next lecture we will show that the above is possible with β = O(log(n)),
using the same mechanism we developed throughout this lecture. This in turn
will imply that we can solve any instance of minimum congestion multicommod-
ity flow, obliviously, with approximation O(log(n)).
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