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1 Bourgain’s Theorem

Today we are mainly going to prove the Bourgain’s Theorem, which states that every
metric can be embedded into `1 with logarithmic distortion. Formally,

Theorem 1 (Bourgain’s Theorem). For any finite metric space (X, d) with |X| = n,
there exists an embedding F : X → Rm such that

d(x, y) ≤ |F (x)− F (y)|1 ≤ O(log n)d(x, y)

To begin with, let’s define a crucial notation in the proof of Bourgain’s theorem

d(x, S) = min
y∈S

d(x, y)

Claim 2. |d(x, S)− d(y, S)| ≤ d(x, y)

Proof. WLOG, it suffices to prove that d(x, S)−d(y, S) ≤ d(x, y). Suppose d(y, S) =
d(y, z) for some z ∈ S. Then d(x, S) ≤ d(x, z) ≤ d(x, y) + d(y, z) = d(x, y) +
d(y, S)

The crux of the proof of the Bourgain’s theorem is as follows: We want to find a
distribution S of subsets S, such that

ES [|d(x, S)− d(y, S)|] ≥ c

log n
d(x, y)

Then we define the embedding as F (x) = (d(x, S))S
The construction of distribution S is as follows:

1. Pick Sij, for j = 1, . . . , K = log n, and i = 1, . . . , L where L = c log n for some
constant c, by independently including an element of X into Sij with probability
1
2j

2. Let F (x) = (d(x, S11), d(x, S12), . . . , d(x, Slogn,L)) = (d(x, Sij))ij

Thus F is an embedding into the space RK where K = L log n = c log2 n. By
Claim 2 we have the following lemma:

Lemma 3.

|F (x)− F (y)|1 =
∑
ij

|d(x, Sij)− d(y, Sij)| ≤ K · d(x, y)



It suffices to bound |F (x)− F (y)|1 from below by the following theorem:

Theorem 4.
|F (x)− F (y)|1 ≥ c2 log n · d(x, y)

It can be seen that the Lemma 3 and Theorem 4 above implies that F (x)/(c2 log n)
is an embedding with distortion O(log n).

The key to prove theorem 4 is how to lower bound the value d(x, S)− d(y, S) in
average. The basic idea is as follows:

lower bound d(x, S)− d(y, S)? We draw a ball B(x, r1) with radius r1 and center x,
and a ball B(y, r2). (B(x, r) is defined as B(x, r) = {y ∈ X : d(x, y) ≤ r}). If S
doesn’t intersect B(x, r1) but does intersect B(y, r2), then we have that d(x, S) ≥ r1
and d(y, S) ≤ r2 and then d(x, S) − d(y, S) ≥ r1 − r2. With carefully chosen r1, r2,
we can show that the condition that ”S doesn’t intersect B(x, r1) but does intersect
B(y, r2)” happens quite often.

To see why this can be true, let assume that both |B(x, r1)| ≈ 2j, |B(y, r2)| ≈ 2j

for some r1, r2. Then we have that

Pr[ Sij doesn’t intersect B(x, r1) ] ≈
(

1− 1

2j

)2j

≈ 1

e

and

Pr[ Sij intersects B(x, r1) ] ≈ 1−
(

1− 1

2j

)2j

≈ 1− 1

e

This means that if we can choose r1,j, r2,j such that |B(x, r1,j)| ≈ 2j, |B(y, r2,j)| ≈
2jn hold, then we can argue that d(x, Sij)− d(x, Sij ≥ r1,j − r2,j

Proof of Theorem 4. Let

rj , smallest value such that |B(x, rj)| ≥ 2j

r′j , smallest value such that |B(y, r′j)| ≥ 2j

and
ρj = max{rj, r′j}

Let t , smallest value such that ρt ≥ 1
2
d(x, y). Intuitively, when j ≥ t, we cannot

even guarantee that B(x, rj) doesn’t intersect B(y, r′j), so we don’t bother considering
those large j’s larger than t. Also, for the same technical reason, if ρt−1+ρt ≥ d(x, y),
we have to redefine ρt , d(x, y)−ρt−1 so that we can guarantee that the ball B(x, ρt)
and B(x, ρt−1) don’t intersect.

If ρj = rj, then we define Bj = B(x, ρj) and Gj = B(y, ρj−1). Note that |Bj| =
B(x, rj) = 2j and |Gj| ≥ |B(y, r′j−1)| = 2j−1(If j = t, then |Bj| = B(x, rj) ≤ 2j, and
the same result follows). Then if we use ρj, ρj−1 as r1, r2 in the previous discussion of
lower bound, we know that

Pr [Bj = B(x, ρj) doesn’t intersects Sij ] =

(
1− 1

2j

)2j

≥ 1

4

2



and

Pr [Gj = B(y, ρj−1) intersects Sij ] ≥ 1−
(

1− 1

2j

)2j−1

≥ 1
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Thus with probability at least 1
16

, we have that d(x, Sij) ≥ ρj and d(y, Sij) ≤ ρj−1
and then |d(x, Sij)− d(y, Sij)| ≥ ρj − ρj−1.

On the other hand, if ρj = r′j, we can define Bj = B(y, ρj) and Gj = B(x, ρj−1),
and the same argument as in previous case follows exactly. Thus we have that
|d(x, Sij)− d(y, Sij)| ≥ ρj − ρj−1 with probability at least 1

16
. It follows that

E[
∑
i

|d(x, Sij)− d(y, Sij)|] ≥
L

16
(ρj − ρj−1)

Since for each i, Sij are drawn independently, thus by Chernoff inequality, by
taking L = O(log n), we have that with probability 1/2, for some constant c3, for any
j, x, y ∑

i

|d(x, Sij)− d(y, Sij)| ≥
c3L

16
(ρj − ρj−1)

Taking sum over all j we have that∑
i

∑
j

|d(x, Sij)− d(y, Sij)| ≥
c3L

16
ρt ≥

c3L

16

d(x, y)

2

2 Other metrics embedding

Recall that in 5th Problem in the first homework, we are asked to design approxima-
tion algorithm for the k-server problem when all the servers on a line. Consider the
following variants: What if all the servers are located on a circle. A idea by Karp to
conquer this problem is to cut the circle at some random point, and then treat circle
as a line. Thus we introduce a new metric dOL(·, ·) instead of the original metric
dC(·, ·). And it can be proved that dOL(x, y) ≥ dC(x, y), and on the other hand, if D
is the total length of the circle

E[dOL(x, y)] ≤ dC(x, y)

D
D +

1− dC(x, y)

D
dC(x, y) ≤ 2dC(x, y)

Though this 2 distortion embedding in expectation sense, it suffices for the online
server problem because if the algorithm on a line is α-competitive, the same algorithm
is 2α-competitive on the circle.

We will talk more about metrics imbedding into tree metrics next time.
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