
Advanced Algorithm Design: Semidefinite
Programming (SDP)

Lectured by Prof. Moses Charikar
Transcribed by Aaron Schild∗

March 25, 2013

In the last few lectures, we considered constant-factor approximation al-
gorithms that relied on linear programming and greedy algorithms. In this
lecture, we will analyze algorithms that use a more powerful mathematical
programming technique called semidefinite programming. We will illustrate
the power of semidefinite programming by looking at the maximum cut prob-
lem. However, SDPs are useful for other problems as well.

1 The Max-Cut Problem

In the weighted version of the maximum cut problem, we are given a graph
G = (V,E) with edge weights given by a function w : E → R≥0. We want to
find the set S ⊆ V that maximizes∑

e∈E(S,V \S)

w(e)

This is superficially similar to the minimum cut problem. Nonetheless,
the Max-Cut problem is NP-complete, unlike its counterpart. Furthermore,
it is NP-hard to approximate within any ratio better that 16

17
. [1]

∗aschild@princeton.edu

1

2 Some 1/2-approximation algorithms

There are many simple approximation algorithms that obtain a cut contain-
ing at least half of the edges of the graph, which is always at least half the
weight of the optimal cut. We will discuss two of them.

2.1 A greedy algorithm

Iterate through the vertices once and suppose the interation order is {v1, v2, . . . , vn}.
While doing so, keep track of a partition of the vertices S ∪ T seen so far.
Upon seeing vi, let Ei be the edges with vi and some vertex vj with j < i as
endpoints. Let ES

i , E
T
i be a partition of the edges in Ei, where ES

i is the set
of edges with an endpoint in S and ET

i is the set of edges with an endpoint
in T . If w(ES

i) > w(ET
i) (w(F) =

∑
e∈F w(e) for F ⊆ E), then add vi to

T and increment i (which adds ES
i to the cut). Otherwise, add vi to S and

increment i (which adds ET
i to the cut).

Note that ∪ni=1Ei = E and that Ei∩Ej = ∅ for i 6= j. For each i, at least
1
2
w(Ei) is added to the cut. Therefore, the total weight of the S − T cut is

at least 1
2
w(E).

2.2 A randomized algorithm

Iterate through the vertices once. When considering a vertex vi (iteration
order as in the previous section), add it to S with probability 1/2 and add
it to T otherwise. The choices for each vertex are made independently.

Now, consider the expected total weight of the resulting S− T cut. Note
that E[w(E(S, T))] =

∑
e∈E Pr[e ∈ E(S, T)]w(e) =

∑
e∈E

1
2
w(e) = 1

2
w(E),

as desired.

3 Max-Cut with quadratic programming

Are there any more powerful techniques than greed and basic randomness
for this problem? Let’s start by writing the unweighted max cut problem as
a quadratic program. These ideas also apply to the weighted version.

2

Maximize
∑

(u,v)∈E

1− xuxv
2

subject to x2u = 1 ∀u ∈ V

Figure 1: A quadratic programming formulation of the Max-Cut problem,
where xv = 1 and xv = −1 identify membership in S and T respectively

However, quadratic programs are NP-hard to solve (precisely because this
is a reduction from max-cut to quadratic programming!) In future sections,
we will show that replacing the scalars xu in this quadratic program with
n-dimensional unit vectors results in a polynomial time solvable “relaxation”
of the max-cut problem:

Maximize
∑

(u,v)∈E

1− wu · wv
2

subject to wv · wv = 1 ∀v ∈ V
wv ∈ Rn ∀v ∈ V

Figure 2: A vector programming formulation of Max-Cut

By vector program, we mean a linear program in terms of variables that
are dot products of two vectors.

4 Introduction to SDPs

Recall the standard formulation of a maximization LP (in Figure 3).

An SDP is just an LP in which there are n2+n
2

variables Xij with Xij = Xji

instead of n variables. Furthermore, instead of positivity constraints, there is
a positive semidefiniteness constraint, where {Xij} is viewed as a square ma-
trix in the positive semidefiniteness constraint and a vector in the AiX ≤ bi
constraint (see Figure 4).

3

Maximize cTx

subject to Aix ≤ bi 1 ≤ i ≤ n

xi ≥ 0 1 ≤ i ≤ n

Figure 3: A typical LP formulation

Maximize cTx

subject to AiX ≤ bi 1 ≤ i ≤ n

X � 0

Figure 4: A typical SDP formulation

An n×n matrix X is positive semidefinite, denoted X � 0, if and only if
any of the following equivalent characterizations holds:

1. X only has nonnegative eigenvalues.

2. For all y ∈ Rn, yTXy ≥ 0.

3. There is some n× n matrix V such that X = V TV .

By Condition 2, αX+ (1−α)Y is positive semidefinite for α ∈ (0, 1) if X
and Y are positive semidefinite. Therefore, the space of positive semidefinite
matrices, called the positive semidefinite cone, is convex. Furthermore, given
a point (a matrix X) that is not a solution to the SDP in Figure 4, there is a
polynomial time algorithm for producing a separating hyperplane. If X does
not satisfy one of the constraints AiZ ≤ bi, then one obtains a separating
hyperplane using the same techniques as with linear programming (replace bi
with bi+ε for some sufficiently small ε > 0). What about the positive semidef-
inite constraint? If X is not positive semidefinite, then by Condition 2 (or
rather a polynomial tima algorithm for finding y in Condition 2), we can pro-
duce a vector y such that yTZy =

∑
i,j Zijyiyj < 0. Treating the yis as con-

stants and Zij as variables gives a hyperplane
∑

i,j Zijyiyj = 1
2

∑
i,j Xijyiyj.

Therefore, we may use the ellipsoid algorithm to produce a solution within ε

4

of the optimal in poly(1/ε, n) time.

Why is it that for SDPs we can obtain approximate solutions while for
LPs we can obtain optimal solutions? For LPs, we know that at least one
vertex of the LP polytope must be optimal. Therefore, once we get a solution
for small enough ε with the ellipsoid method, we may “round” the solution to
the nearest vertex. With SDPs, the set of possible solutions is not a polytope,
so we have no similar guarantees.

5 Applying SDPs to Max-Cut

First, note that Figure 2 is an SDP, as Condition 3 for positive semidefinite-
ness implies that an SDP is a vector program and vice versa (withXij = Vi·Vj,
where X = V TV).

This SDP defines a map from vertices of G to unit vectors in Rn, where
n = |V |. Now, we will use randomized rounding to convert these unit vectors
into a high weight cut. The rounding scheme will partition the unit vectors
into two sets by picking a random hyperplane through the origin and desig-
nating all vertices corresponding to vectors on one side S. How do we pick
such a hyperplane? We pick a random normal vector in Rn by picking each
coordinate independently with a Gaussian distribution.

Now, we will calculate the expected weight of this cut. Since the expec-
tation of a sum is the sum of expectations, we may analyze every edge of G
independently. Consider an edge e = (u, v) ∈ E and consider the intersection
of the random hyperplane H with the two dimensional plane generated by wu
and wv. This intersection will be a line `. ` is also a uniformly random line
passing through the origin in the plane generated by wu and wv. Therefore,
the probability that wu and wv are on opposite sides of ` is θ

π
, where θ is the

angle between wu and wv in [0, π]. Therefore, the expected contribution of e
to the weight of the cut is θ

π
in the unweighted problem. The contribution

of e to the value of the SDP is 1−wu·wv

2
= 1−cos θ

2
. Therefore, the ratio of

the expected cut contribution to the SDP contribution is 2θ
π(1−cos θ) ≥ .878

for all θ ∈ [0, π]. Overall, this means that the expected weight of the cut
from randomized rounding is at least .878 times the SDP value, which is an
upper bound on the optimal maximum cut size. Therefore, this algorithm is

5

a randomized 0.878-approximation!

Could there be a better approximation algorithm? First, it is unlikely that
this SDP can be used to obtain a better algorithm through clever rounding
schemes, as the integrality gap (ratio of the optimal integer solution to the
optimal fractional solution) is 0.878. Could we add more constraints to this
SDP to get a better relaxation? One can try adding some triangle inequality
constraints of the form

(1− wp · wq) + (1− wq · wr) ≥ (1− wp · wr)

for all triples of vertices p, q, r ∈ V . This is valid because viewing
wp, wq, wr as scalars shows that inequalities of this form will be satisfied by
any valid cut. One might think that they would help, as not all unit vectors
in Rn satisfy these inequalities. However, it turns out that the integrality
gap of the resulting SDP is still .878. All of these results are related to a
more fundamental hardness conjecture called the Unique Games Conjecture.

6 The Unique Games Conjecture (UGC)

The Unique Games Conjecture was originally proposed in [2] to serve as a
stronger extension of NP-hardness for approximation hardness results. There
are many formulations of UGC and we present one involving systems of equa-
tions.

Consider variables x1, . . . , xn ∈ Zp and systems of constraints of the form
xi−xj ≡ cij (mod p) for constants cij. One can determine if these systems are
satisfiable using Gaussian elimination, which takes polynomial time. What if
the system cannot be satisfied? Can we figure out what the maximum frac-
tion of constraints is that we can satisfy? UGC, if true, would say that the
problem is very hard to get reasonable approximations for! More precisely,
UGC says that given an ε > 0, there is some p = f(1/ε) such that there is
no polynomial time algorithm for the following decision problem:

Given: A system of constraints as specified above for which either at
least 1− ε or at most ε of the constraints can be satisfied.

6

Decide: Whether there is an assignment that satisfies at least 1−ε of the
constraints or whether no assignment satisfies more than ε of the constraints.

Assuming UGC, one can show that there is no (.878 + ε)-approximation
algorithm for the Max-Cut problem for any constant ε > 0! For a proof, see
[3].

References

[1] Johan H̊astad. Some optimal inapproximability results. J. ACM,
48(4):798–859, July 2001.

[2] Subhash Khot. On the power of unique 2-prover 1-round games. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing, STOC ’02, pages 767–775, New York, NY, USA, 2002. ACM.

[3] Guy Kindler, Ryan O’Donnell, Subhash Khot, and Elchanan Mossel. Op-
timal inapproximability results for max-cut and other 2-variable csps?
Electronic Colloquium on Computational Complexity (ECCC), (101),
2005.

7

	The Max-Cut Problem
	Some 1/2-approximation algorithms
	A greedy algorithm
	A randomized algorithm

	Max-Cut with quadratic programming
	Introduction to SDPs
	Applying SDPs to Max-Cut
	The Unique Games Conjecture (UGC)

