
Advanced Algorithm Design: Hashing

Lectured by Prof. Moses Charikar
Transcribed by Linpeng Tang∗

Feb 2nd, 2013

1 Preliminaries

In hashing, we want to store a subset S of a large universe U (U can be very
large, say |U | = 232 is the set of all 32 bit integers). And |S| = m is a relatively
small subset. For each x ∈ U , we want to support 3 operations:

• insert(x). Insert x into S.

• delete(x). Delete x from S.

• query(x). Check whether x ∈ S.

U

h

n elements

Figure 1: Hash table. x is placed in T [h(x)].

A hash table can support all these 3 operations. We design a hash function

h : U −→ {0, 1, . . . , n− 1} (1.1)

such that x ∈ U is placed in T [h(x)], where T is a table of size n.
Since |U | ≫ n, multiple elements can be mapped into the same location in

T , and we deal with these collisions by constructing a linked list at each location
in the table.

One natural question to ask is: how long is the linked list at each location?
We make two kinds of assumptions:

∗linpengt@cs.princeton.edu

1

1. Assume the input is the random.

2. Assume the input is arbitrary, but the hash function is random.

Assumption 1 may not be valid for many applications, since the input might
be correlated.

For Assumption 2, we construct a set of hash functions H, and for each
input, we choose a random function h ∈ H and hope that on average we will
achieve good performance.

2 Hash Functions

Say we have a family of hash functions H, and for each h ∈ H, h : U −→ [n]1,
what do mean by saying these functions are random?

For any x1, x2, . . . , xm ∈ S (xi ̸= xj when i ̸= j), and any a1, a2, . . . , am ∈
[n], ideally a random H should satisfy:

• Prh∈H[h(x1) = a1] =
1
n .

• Prh∈H[h(x1) = a1 ∧ h(x2) = a2] =
1
n2 . Pairwise independence.

• Prh∈H[h(x1) = a1 ∧ h(x2) = a2 ∧ · · · ∧ h(xk) = ak] =
1
nk . k-wise indepen-

dence.

• Prh∈H[h(x1) = a1 ∧ h(x2) = a2 ∧ · · · ∧ h(xm) = am] = 1
nm . Full indepen-

dence (note that |U | = m). In this case we have nm possible h (we store
h(x) for each x ∈ U), so we need m logn bits to represent the each hash
function. Since m is usually very large, this is not practical.

For any x, let Lx be the length of the linked list containing x, then Lx is just
the number of elements with the same hash value as x. Let random variable

Iy =

{
1 if h(y) = h(x),

0 otherwise.
(2.1)

So Lx = 1 +
∑

y ̸=x Iy, and

E[Lx] = 1 +
∑
y ̸=x

E[Iy] = 1 +
m− 1

n
(2.2)

Note that we don’t need full independence to prove this property, and pairwise
independence would actually suffice.

1We use [n] to denote the set {0, 1, . . . , n− 1}

2

3 2-Universal Hash Families

Definition 3.1 (Cater Wegman). Family H of hash functions is 2-universal if
for any x ̸= y ∈ U ,

Prh∈H[h(x) = h(y)] ≤ 1

n
(3.1)

Note that this property is even weaker than 2 independence.
We can design 2-universal hash families in the following way. Choose a prime

p ∈ {|U |, . . . , 2|U |}, and let

fa,b(x) = ax+ b mod p (a, b ∈ [p], a ̸= 0) (3.2)

And let
ha,b(x) = fa,b(x) mod n (3.3)

Lemma 3.2. For any x1 ̸= x2 and s ̸= t, the following system

ax1 + b = s mod p (3.4)

ax2 + b = t mod p (3.5)

has exactly one solution.

Since [p] constitutes a finite field, we have that a = (x1 − x2)
−1(s − t) and

b = s− ax1. Since we have p(p− 1) different hash functions in H in this case,

Prh∈H[h(x1) = s ∧ h(x2) = t] =
1

p(p− 1)
(3.6)

Claim 3.3. H = {ha,b : a, b ∈ [p] ∧ a ̸= 0} is 2-universal.

Proof. For any x1 ̸= x2,

Pr[ha,b(x1) = ha,b(x2)] (3.7)

=
∑

s,t∈[p],s ̸=t

δ(s=t mod n)Pr[fa,b(x1) = s ∧ fa,b(x2) = t] (3.8)

=
1

p(p− 1)

∑
s,t∈[p],s̸=t

δ(s=t mod n) (3.9)

≤ 1

p(p− 1)

p(p− 1)

n
(3.10)

=
1

n
(3.11)

where δ is the Dirac delta function. Equation (3.10) follows because for each
s ∈ [p], we have at most (p − 1)/n different t such that s ̸= t and s = t
mod n.

3

Can we design a collision free hash table then? Say we have m elements,
and the hash table is of size n. Since for any x1 ̸= x2, Prh[h(x1) = h(x2)] ≤ 1

n ,
the expected number of total collisions is just

E[
∑

x1 ̸=x2

h(x1) = h(x2)] =
∑

x1 ̸=x2

E[h(x1) = h(x2)] ≤
(
m

2

)
1

n
(3.12)

Let’s pick m ≥ n2, then

E[number of collisions] ≤ 1

2
(3.13)

and so

Prh∈H [∃ a collision] ≤ 1

2
(3.14)

So if the size the hash table is large enough m ≥ n2, we can easily find a
collision free hash functions. But in reality, such a large table is often unrealistic.
We may use a two-layer hash table to avoid this problem.

0

1

n− 1

i

si elements

s
2
i locations

Figure 2: Two layer hash tables.

Specifically, let si denote the number of collisions at location i. If we can
construct a second layer table of size s2i , we can easily find a collision-free hash
table to store all the si elements. Thus the total size of the second-layer hash
tables is

∑m−1
i=0 s2i .

Note that
∑m−1

i=0 si(si − 1) is just the number of collisions calculated in
Equation (3.12), so

E[
∑
i

s2i] = E[
∑
i

si(si − 1)] + E[
∑
i

si] =
m(m− 1)

n
+m ≤ 2m (3.15)

4 Load Balance

In load balance problem, we can imagine that we are trying to put balls into
bins. If we have n balls and n bins, and we randomly put the balls into bins,

4

then for a give i,

Pr[bini gets more than k elements] ≤
(
n

k

)
· 1

nk
≤ 1

k!
(4.1)

By Stirling’s formula,

k! ∼
√
2nk(

k

e
)k (4.2)

If we choose k = O(logn
log log n), we can let 1

k! ≤
1
n2 . Then

Pr[∃ a bin ≥ k balls] ≤ n · 1

n2
=

1

n
(4.3)

So with probability larger than 1− 1
n
2,

max load ≤ O(
log n

log log n
) (4.4)

Note that if we look at 2 random bins when a new ball comes in and put
the ball in the bin with fewer balls, we can achieve maximal load at the scale of
O(log log n), which is a huge improvement.

2this can be easily improve to 1− 1
nc for any constant c

5

	Preliminaries
	Hash Functions
	2-Universal Hash Families
	Load Balance

