
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture # 18
Scribe: Frank Xiao April 11, 2013

1 The Widrow-Hoff Algorithm

Last lecture we talked about the Widrow-Hoff algorithm, which we include below for com-
pleteness:

Algorithm 1: Widrow-Hoff

initialize w1 = 0;
for t = 1 to T do

get xt ∈ Rn;
predict ŷt = wt · xt;
observe yt;
incur loss of (ŷt − yt)2;
update wt+1 = wt − η(wt · xt − yt)xt;

end

We define the loss of algorithm A to be LA =
∑T

t=1(ŷt − yt)2, and the loss of any vector

u ∈ Rn to be Lu =
∑T

t=1(u · xt − yt)2. We left off last time wanting to upper bound the
loss of Widrow-Hoff in terms of the loss of the best vector in hindsight, which we do in the
following theorem.

Theorem 1.1 Assume that for all rounds t we have ‖xt‖22 ≤ 1, then we have

LWH ≤ min
u∈Rn

[
Lu

1− η
+
‖u‖22
η

]
, (1)

where LWH denotes the loss of the Widrow-Hoff algorithm.

Proof Let u ∈ Rn be an arbitrary vector. We define a potential Φt = ‖wt − u‖22, and also
define the following three quantities:

lt = ŷt − yt = wt · xt − yt
gt = u · xt − yt

∆t = η(wt · xt − yt)xt = ηltxt,

so that l2t denotes the learner’s loss at round t, g2t is u’s loss at round t, and ∆t is the
update to the weight vector.

Now we need the following result:

Claim 1.2
Φt+1 − Φt ≤ −ηl2t +

η

1− η
g2t . (2)

We’ll prove the claim later, but for now suppose that it’s true. Then we can prove the
bound in (1) by first making the following observation:

−‖u‖22 = −Φ1 ≤ ΦT+1 − Φ1, (3)

where the equality comes from the fact that we initialize w1 = 0, and the inequality is due
to the potential Φt being non-negative.

Now we rewrite the rightmost term of (3) as a telescoping sum, and get:

−‖u‖22 ≤
T∑
t=1

(Φt+1 − Φt)

≤
T∑
t=1

(−ηl2t +
η

1− η
g2t) using (2)

= −ηLWH +
η

1− η
Lu =⇒

LWH ≤
1

1− η
Lu +

‖u‖22
η

.

Since u was arbitrary, the above inequality in particular must hold for the best hindsight
vector, so that we get the inequality in (1).

Now what’s left is to prove the claim in (2).

Proof

Φt+1 − Φt = ‖wt+1 − u‖22 − ‖wt − u‖22 definition of potential

= ‖wt − u−∆t‖22 − ‖wt − u‖22
= ‖wt − u‖22 − 2(wt − u) ·∆t + ‖∆t‖22 − ‖wt − u‖22 since ‖a− b‖22 = ‖a‖22 − 2a · b + ‖b‖22
= −2ηltxt · (wt − u) + η2l2t ‖xt‖22
≤ −2ηlt(wt · xt − u · xt) + η2l2t since ‖xt‖22 ≤ 1

= −2ηlt[(wt · xt − yt)− (u · xt − yt)] + η2l2t subtracting and adding a yt

= −2ηlt(lt − gt) + η2l2t

= −2ηl2t + 2ηltgt + η2l2t

≤ −2ηl2t + 2η

 l2t (1− η) +
g2t
1−η

2

+ η2l2t by AM-GM

= −ηl2t +
η

1− η
g2t ,

where we used the arithmetic mean-geometric mean inequality (AM-GM), which states that
for any set of non-negative real numbers, the arithmetic mean of the set is greater than or
equal to the geometric mean of the set. For two non-negative reals a and b, the inequality
is
√
ab ≤ (a + b)/2. In our case we set a = l2t (1 − η) and g2t /(1 − η). This completes the

proof of Theorem 1.1.

2

We can look at the average loss per time step by dividing both sides of (1) by the to-
tal number of rounds T , to get

LWH

T
≤ min

u

[
1

1− η
· Lu

T
+
‖u‖22
ηT

]
As T gets large, the term ‖u‖22/(ηT) goes to 0; and if the step-size η is very small, the first
term on the right hand side gets close to minu Lu/T , which is the average loss of the best
hindsight vector. This means that the Widrow-Hoff algorithm is performing almost as well
as the best hindsight vector as the number of rounds gets large.

2 Families of Online Algorithms

In the previous lecture, we motivated the update to the weight vector wt by describing two
objectives of the learning algorithm: minimize the loss of wt+1 on the point (xt, yt), and
minimize the “distance” between wt+1 and wt. To simultaneously reflect these two goals,
we formulated the problem as an optimization problem:

min ηL(wt+1,xt, yt) + d(wt+1,wt) (4)

where L(w,x, y) is the loss of using weight vector w on the point (x, y), d(p, q) is some
distance measurement between p and q, and η is a real number that captures the relative
importance of these two different goals.

2.1 Gradient Descent Algorithms

We have some freedom in choosing the loss and distance functions, depending on the partic-
ular problem we’re working with. If we use the Euclidean norm as our distance measurement
(so d(p, q) = ‖p − q‖22), then when we solve the optimization problem in (4), we get the
following update equation

wt+1 = wt − η∇wL(wt+1,xt, yt)

≈ wt − η∇wL(wt,xt, yt), (5)

where in the second line we use wt as an approximation for wt+1, since when we run the al-
gorithm we can’t use wt+1 in calculating wt+1. This update equation describes the gradient
descent family of algorithms. For Widrow-Hoff, in addition to specifying the distance mea-
surement as being the Euclidean norm, we also set the loss function L(w,x, y) = (w·x−y)2,
and so the update equation became wt+1 = wt − η(wt · xt − yt)xt.

2.2 Exponentiated Gradient (EG) Algorithms

Now suppose the loss function is the square loss L(w,x, y) = (w ·x− y)2, and the distance
is RE(p||q), where now we assume that p and q are probability distributions on n points,
or in other words they lie in the standard (n− 1)-simplex, denoted by ∆n−1. Letting a(i)
denote the ith coordinate of a, the resulting update step when we solve (4) is given by

Zt =

n∑
j=1

wt(j) exp(−η(wt · xt − yt)xt(j))

3

wt+1(i) =
wt(i) exp(−η(wt+1 · xt − yt)xt(i))

Zt

≈ wt(i) exp(−η(wt · xt − yt)xt(i))
Zt

, (6)

where Zt is a normalization factor to ensure that the updated vector wt+1 lies in ∆n−1.
This update equation describes the exponentiated gradient family of algorithms.

It’s possible to derive the following bound for EG, which we state without proof.

Theorem 2.1 Suppose ‖xt‖∞ ≤ 1 for all rounds t, then we have

LEG ≤ min
‖u‖1=1

[aηLu + bη lnN]

where LEG denotes the loss of EG, and aη and bη are some constants.

2.3 Recap of Previous Algorithms

The update in (5) is an additive one, while in (6) it’s multiplicative. Besides gradient
descent, other algorithms we’ve covered that use an additive update include SVMs and the
perceptron algorithm. When we studied these algorithms, we assumed a (L2, L2) bound on
the norms of the prediction vectors xt and best hindsight vector u, respectively. Besides
EG, we also learned about AdaBoost and the Winnow algorithm which used multiplicative
updates. Here we assumed a (L∞, L1) bound.

3 Using an Online Algorithm in a Batch Setting

It turns out that online algorithms can be modified slightly for use in some batch learning
settings. To show this, we look at the specific problem of linear regression (though the
techniques involved are more general and can be used to deal with other problem types as
well).

In the linear regression setting, we assume the training and test examples are i.i.d. from
a fixed distribution D, and we’re given a training set S = ((x1, y1), . . . , (xm, ym)), with
S ∼ Dm. We then define the risk Rv of a prediction vector v as

Rv = ED[(v · x− y)2],

where the expectation ED is with respect to the random sampling of the test example (x, y).

We’d like an algorithm that after training on S outputs a vector v with low risk. One ap-
proach is to take the Widrow-Hoff algorithm, and pass it the examples (x1, y1), . . . , (xm, ym)
(in that order), which would then generate the weight vectors w1, . . . ,wm+1. A natural
choice is to then just output the last weight vector wm+1. This is often what’s done in
practice, but here we’ll look at the case where the output is an average of the first m vec-
tors, so v = 1

m

∑m
t=1wt (we leave out wm+1). In some experiments this average has had

good performance, but we also choose to study this behavior since it makes the analysis
easier, and we’re able to prove the following bound on the risk.

4

Theorem 3.1 Let v = 1
m

∑m
t=1wt be the output vector of running the modified Widrow-

Hoff algorithm above. Then we have

ES [Rv] ≤ min
u∈Rn

[
Ru

1− η
+
‖u‖22
ηm

]
,

where ES refers to the expectation with respect to the random sample set S ∼ Dm.

Proof The proof relies on the following three observations:

(v · x− y)2 =

[(
1

m

m∑
t=1

wt

)
· x− y

]2

=

[
1

m

m∑
t=1

(wt · x− y)

]2

≤ 1

m

m∑
t=1

(wt · x− y)2 since x2 is convex (7)

ES×D[(u · xt − yt)2] = ES×D[(u · x− y)2] ∀u ∈ Rn (8)

ES×D[(wt · xt − yt)2] = ES×D[(wt · x− y)2], (9)

where ES×D in (8) and (9) refers to the expectation with respect to the random sampling
of S and the test example (x, y). The equality in (8) is because of the i.i.d. assumption
about the training and test examples. The equality in (9) is because in generating wt, the
Widrow-Hoff algorithm won’t have seen xt yet, so the i.i.d. property means the expecta-
tions are the same.

Now we can prove the theorem as follows:

ES [Rv] = E[(v · x− y)2]

≤ E

[
1

m

m∑
t=1

(wt · x− y)2

]
using (7)

=
1

m

m∑
t=1

E[(wt · x− y)2]

=
1

m

m∑
t=1

E[(wt · xt − yt)2] using (9)

=
1

m
E

[
m∑
t=1

(wt · xt − yt)2
]

≤ 1

m
E

[∑m
t=1(u · xt − yt)2

1− η
+
‖u‖22
η

]
from Theorem 1.1

=
1

m

[∑m
t=1 E[(u · x− yt)2]

1− η
+
‖u‖22
η

]
using (8)

=
Ru

1− η
+
‖u‖22
ηm

,

which completes the proof.

5

4 Learning the Distribution

In the batch setting, we assume that the training and test examples are all i.i.d. from some
fixed, but unknown distribution D. So far in class, we’ve studied algorithms for performing
classification/regression without any assumptions about D. Next time we’ll change focus
by looking at ways to try to learn about and model the underlying distribution of the data.

6

