
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #16
Scribe: Andrej Risteski April 4, 2013

1 Introduction/Recap from last time

In this lecture, we continue with a modification of the online learning scenario from last
class. As a reminder, in the scenario, there is a binary event happening each day for a
sequence of days. We also have a set of experts, which give predictions each day, and we
guess a prediction according to all the previous information. After our prediction, we also
observe what the outcome actually was.

The previous way of scoring how well we did is according to the best expert - the one
who got the correct outcome most of the times. However, we could easily imagine a scenario
where no one expert is good. But, if we form a “committee” of experts, they might be much
better. The way we’ll formalize this is as follows:

• We have N experts.

• For t = 1, . . . , T rounds, we get a xt ∈ {1,−1}N - a vector of predictions from the
experts.

• In each round, the learner learns an outcome yt after it makes its prediction ŷt.

• We assume that there is a “perfect committee” - i.e. weighted sum of experts, that
are always right. Formally, this means that there exists a u ∈ RN , such that for all t,

sign(
N∑
i=1

uixt,i) = sign(xt · u) = yt

Geometrically, the perfect committee assumption just means that there is a separating
hyperplane between the 1 and -1 points, generated by the appropriate weighted sum of the
experts.

2 How to do updates

To get an algorithm for the above problem, we will do the following. We will maintain wt,
a sort of a “guess” of the correct weighting of the experts. We will update the weighting
on each round.

2.1 Perceptron

The first way to update the weights will give us an algorithm called the perceptron. The
update rules are as follows:

• w1 = 0

• If we predict wrong on a given point (i.e. yt 6= ŷt), set wt+1 = wt + yt ·xt. Otherwise,
do nothing (i.e. wt+1 = wt). This makes the algorithm conservative.

The intuition is that in case of a wrong answer we “shift” the weights on all the experts
in the direction of the correct answer. Geometrically, this is represented in figure 1 below.
We have the vector wt of weights and the vector xt of expert opinions. When we define
wt+1, we shift wt such that the angle between xt and wt decreases if yt = 1, and such that
it increases otherwise.

Figure 1: Perceptron geometric intuition

An alternative, more quantitative view of the algorithm is the following. Notice that
yt(wt · xt) ≤ 0 iff yt 6= ŷt. Then, if we write the left hand side with wt+1 instead, we get

yt(wt+1 · xt) = yt((wt + ytxt) · xt)

= ytwt · xt + yt
2xt · xt

But now, notice that y2
t = 1, since yt = ±1, and xt · xt = ||xt||22, which is non-negative.

What this chain of inequalities shows is that if we update the weights to wt+1 we are likely
to fix the algorithm’s prediction on the previously wrong point.

Now, we will state a theorem to formally analyze the performace of the perceptron
algorithm. But, first, we will make a few simplifying assumptions, all without loss of
generality:

• We will normalize the vector of predictions xt, so that ||xt||2 ≤ 1.

• We will normalize the vector of weights for the perfect committee, so that ||u||2 = 1.
(This is fine in both cases since the sign function won’t depend on multiplying the
entire vector u or xt by a constant.)

• We will assume the algorithm makes a mistake in each round. We can do this, since
no algorithmic changes happen during other rounds.

Theorem 1. Assume we are in the online learning scenario described at the beginning of
these notes, along with all of the assumptions above. Furthermore, assume that something
slightly stronger holds for the “committee” of best experts: for all t, (u · xt)yt ≥ δ for some
δ > 0 - i.e. the margin of correctness of the committee is bounded away from 0. Then, the
number of mistakes the perceptron algorithm makes is at most 1

δ2
.

2

Proof. As usual, the way we do this, is we find some quantity that depends on the state
of the algorithm at time t, upper and lower bound it, and derive a bound from there. The
quantity here is Φt, which we define as the cosine of the angle between wt and u. More
formally, we put Φt = wt·u

||wt||2 . For the upper bound, since this is a cosine, clearly, Φt ≤ 1.

Now, for the lower bound. We will prove that ΦT ≥
√
Tδ. We do this in two parts, by

lower bounding the numerator of Φt, and upper bounding the denominator.
We prove that wt+1 · u ≥ Tδ. We have that

wt+1 · u = (wt + ytxt) · u = wt · u + yt(u · xt) ≥ wt · u + δ

The equalities just come from the definition of wt+1. The inequality is by the margin
assumption in the theorem statement. But then, keeping in mind that w0 · u = 0, the
above bound implies that ~wT+1u ≥ Tδ

Now, for the second part. We prove that ||wt+1||2 ≤ T . The strategy is similar as above.
We have:

||wt+1||2 = (wt + ytxt) · (wt + ytxt) = ||wt||22 + 2yt(xt ·wt) + ||xt||22

But now, by assumption, since we get a mistake at each round, yt(xt ·wt) ≤ 0, and again,
by the normalization assumption, ||xt||22 ≤ 1, so we get that ||wt+1||2 ≤ ||wt||22 + 1. From
the fact that w0 = 0, we get that ||wt+1||22 ≤ T , as we need.

Now, we put everything together. We get that 1 ≥ ΦT ≥ Tδ√
T

, i.e. T ≤ 1
δ2

, which is
exactly what we needed to prove.

As a side remark, notice a simple consequence of the above: since the VC dimension of
the hypothesis space certainly is upper bounded by the number of mistakes the algorithm
makes, we get that the VC dimension of threshold functions with margin at least δ is at
most 1

δ2
.

To motivate the next section, consider a scenario where the target u consists of 0’s and
1’s, and the number of 1’s in the vector is k. (And think of k as being small compared to
N , the number of experts, i.e. it’s a very sparse vector.) Notice that this certainly is an
instance of the problem we looked at above - the k experts are the “perfect” committee.
If we normalize xt,u, as in the proof of the theorem above, we’d get that the margin
yt(u · xt) ≥ 1√

Nk
. So, we get that the perceptron algorithm would make at most Nk

mistakes. But this is really bad - consider interpreting the experts as features, and we
have millions of irrelevant features, and the committee is the important (maybe a dozen)
features. We get a linear dependence on N , which is not at all desireable.

Motivated by this exact scenario, we will design another update algorithm - called the
Winnow algorithm, which will get a much better bound in this case.

2.2 Winnow algorithm

Let’s describe the update rules first:

• The wt vectors will be normalized so that the coordinates sum to 1: one can think of
them as probability distributions.

• w1 = 1/N , where 1 is the all-ones vector (i.e. we start with a uniform distribution
over all experts).

3

• If we make a mistake, set wt+1,i = wt,i·eηyi 6=xt,i
Zt

. Here η is a parameter we will define
later, and Zt is a normalization factor. This is nothing more than an exponential
“punishment” for the experts that are wrong. The way to see it, is that, ignoring
the normalization factors, the above update is equivalent to wt+1,i = wt,ie

η, if i
predicted correctly, and wt+1,i = wt,ie

−η otherwise. Ignoring normalization again,
we can interpret this as wt+1,i = wt,i, if i predicted correctly, and wt+1,i = wt,ie

−2η

otherwise. This is exactly the view we claimed.

• If we are correct, don’t do anything.

Before we dive into the analysis, one thing to be noticed is that the Winnow algorithm
is extremely similar to the boosting framework - and with good reason. The connection will
be made more explicit in future lessons.

Before stating the formal theorem for the performance of the Winnow algorithm, we
again make a few normalization assumptions without loss of generality:

• We assume ||xt||∞ ≤ 1.

• We assume ||u||1 ≤ 1 and ui ≥ 0 for all indices i.

• We assume that we make a mistake at each round.

Theorem 2. Assume the online learning with experts scenario, along with the normalization
assumptions above. Furthermore, assume that there exists u ∈ RN , such that for all t,
(u · xt)yt ≥ δ. Then, the winnow updates algorithm makes at most 2 lnN

δ2
mistakes.

Proof. The general approach is similar as previously also - we come up with a quantity Φt,
which we both upper and lower-bound. The quantity we will use here is Φt = RE(u||wt),
where RE is the relative entropy or KL divergence of the two distributions. (I already
mentioned wt,u can be interpreted as distributions.)

Trivially, we have that Φt ≥ 0 for all t.
On the other direction, we make a potential sort of argument. In other words, we upper

bound Φt+1−Φt which by telescoping will give an upper bound on ΦT . Let’s write out the
calculations:

Φt+1 − Φt = RE(u||wt+1)−RE(u||wt)

=
∑
i

ui ln
wt,i
wt+1,i

=
∑
i

ui ln
Zt

eηytxi

= ln(Zt)−
∑
i

uiηytxt,i

This follows just by taking logarithms, and the fact that
∑

i ui = 1, since u is a distribution.
Continuing onward, this equals:

ln(Zt)− ηyt(u · xt)
≤ ln(Zt)− ηδ

This last inequality just follows from the margin property we assumed. Let’s work on Zt,
now. First,

Zt =
∑
i

wt,ie
ηytxt,i ≤

4

∑
i

wt,i

(
1 + ytxt,i

2
eη +

1− ytxt,i
2

e−η
)

The way to see this inequality is as follows. Consider the function ex and the line through
the points (−η, eη) and (η, eη). Since ex is convex, the line will always be above the ex curve
(see Figure 2). If the line has equation y = f(x), then for any −η ≤ x ≤ η, ex ≤ f(x). The
above inequality is derived exactly by comparing eηytxt,i and f(ηytxt,i).

Figure 2: Upper-bounding exponential function by linear function

Then, we simplify further to get:∑
i

wt,i

(
1 + ytxt,i

2
eη +

1− ytxt,i
2

e−η
)

=
eη + e−η

2

∑
i

wt,i +
eη − e−η

2
yt
∑
i

wt,ixt,i

Now,
∑

iwt,i = 1, by our assumption, eη − e−η ≥ 0 since we will take η > 0 of course, and

yt
∑
i

wt,ixt,i = yt(wt · xt) ≤ 0

by the assumption that we make a mistake at each round. Hence, Zt ≤ eη+e−η

2 . So, we get
that Φt+1 −Φt ≤ ln(e

η+e−η

2)− ηδ. The right hand side is a constant, and let’s say it equals
to −C.

Furthermore, Φ1 =
∑

i ui ln(Nui) ≤
∑

i ui lnN ≤ lnN . Hence, we have that 0 ≤
ΦT+1 ≤ lnN − C · T . This implies that T ≤ lnN

C . We want to make C as large as possible
to get the best bound. A bit of basic calculus implies that η = 1

2 ln(1+δ
1−δ) is the value to

pick, which makes

C = RE(
1
2
− δ

2
||1

2
) ≥ 2(δ/2)2 = δ2/2

Hence, the number of mistakes is at most 2 lnN
δ2

, as we need.

5

