
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #14
Scribe: Yingfei Wang March 28, 2013

1 More on SVM

1.1 A quick review

Given m labeled examples (~x1, y1), ..., (~xm, ym), where ~xi ∈ Rn and yi ∈ {−1,+1}. We are
first assuming that the data is linearly separable. Our goal is to find the hyperplane passing
through the origin which maximizes the margin. We end up with the following optimization
problem:

find ~v, δ

max δ

s.t. ‖~v‖2 = 1

∀i, yi(~v · ~xi) ≥ δ. (1)

If we let ~w = ~v
δ , we have ‖~w‖2 = 1

δ and we can rewrite the above optimization problem as:

min
1

2
‖~w‖2

s.t. ∀i, yi(~w · ~xi) ≥ 1. (2)

In the previous lecture, we claim that it can be converted to its dual problem:

max
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj~xi · ~xj

s.t. ∀i, αi ≥ 0. (3)

After we find out optimal αi’s, we have ~w =
∑m

i=1 αiyi~xi. And αi 6= 0⇒ (~xi, yi) is a support
vector, meaning: yi(~w · ~xi) = 1. In the next section we’ll show how to convert the above
optimization problem to its dual problem.

1.2 Convert to dual problem

Basically, we use Lagrangian method. We first notice that if we don’t have constraints
in eq.(2), we could find the minimum value by simply taking first derivative over ~w. But
here, we do have constraints, so we first convert each constraint into the standard form
yi(~w · ~xi) − 1 ≥ 0. We denote yi(~w · ~xi) − 1 as bi(~w). Then we form Lagrangian by
subtracting each constraint :

L(~w, ~α) =
1

2
‖~w‖2 −

m∑
i=1

αibi(~w),

where αi’s are called Lagrange multipliers. This optimization problem can be written in
this form:

min
~w

max
~α:∀i,αi≥0

L(~w, ~α). (4)

This can be treated as a two-player game, where Min chooses ~w first and then Max chooses
~α. The goal of Min is to minimize L(~w, ~α) and the goal of Max is to maximize it. If Min
chooses ~w s.t. bi(~w) < 0, then Max chooses αi = +∞, and the value of L will be infinity.
But since Min’s goal is to minimize L, Min will never choose ~w s.t. bi(~w) < 0.

bi(~w) = 0⇒ αi is irrelevant,

bi(~w) > 0⇒ αi = 0.

In the above two cases, we have αibi(~w) = 0 for all i. So Min will choose ~w such that
bi(~w) ≥ 0 for all i and Max will choose αi such that

∑m
i=1 αibi(~w) = 0 for all i. Recall

that Min’s goal is to minimize L(~w, ~α) = 1
2‖~w‖

2 −
∑m

i=1 αibi(~w), so ~w chosen by Min is the
one that minimizes 1

2‖~w‖
2. So the solution here is the same as the original optimization

problem.
Now consider another two-player game:

max
~α:∀i,αi≥0

min
~w
L(~w, ~α), (5)

where Max chooses ~α first and then Min chooses ~w. This is called the dual.
In the two-player game min~w max~α:∀i,αi≥0 L(~w, ~α), Min goes first and then Max. While

in the other game, Max goes first. We claim that the condition for Min in the second game
will not be worse than that in the first game, since if Min goes second, he can choose ~w
based on the value of ~α that is chosen by Max. More knowledge is always better! The fact
that the second game is better (or not worse) than the first game for Min means the value
of L in the second game is less than or equal to that in the first game. And this argument
holds for Max at the same time. So we have

max
~α:∀i,αi≥0

min
~w
L(~w, ~α) ≤ min

~w
max

~α:∀i,αi≥0
L(~w, ~α),

where the equality holds if L is convex in ~w and concave in ~α in addition to some other
conditions that usually hold.

Let

~w∗ = arg min
~w

max
~α

L(~w, ~α)

~α∗ = arg max
~α

min
~w
L(~w, ~α).

We have

L(~w∗, ~α∗) ≤ max
~α

L(~w∗, ~α) (6)

= min
~w

max
~α

L(~w, ~α) (7)

= max
~α

min
~w
L(~w, ~α) (8)

= min
~w
L(~w, ~α∗) (9)

≤ L(~w∗, ~α∗) (10)

2

Inequality (6) holds because L(~w∗, ~α∗) is the value of L(~w∗, ~α) at a particular ~α∗, while
max~α L(~w∗, ~α) is taking the maximum over all choices of ~α. So L(~w∗, ~α∗) ≤ max~α L(~w∗, ~α).
The equality (7) holds since ~w∗ minimizes the expression max~α L(~w, ~α) by definition. So
max~α L(~w∗, ~α) = min~w max~α L(~w, ~α). Reversing these arguments proves Eq.(9) and Eq.(10).
So we end up with the above chain of equalities and inequalities. Since the first and the
last term are the same, everything between these two all have to be equal. In particular,
we have L(~w∗, ~α∗) = max~α L(~w∗, ~α). In other words, ~α∗ maximizes L(~w∗, ·). We can also
show that ~w∗ minimizes L(·, ~α∗) in a similar way. So (~w∗, ~α∗) is the saddle point of L(~w, ~α).
What does this means? Imagine you are at some point (~w∗, ~α∗) in a high dimensional space.
Now start to moving along the function L in the ~α direction. It says that the value at this
point is the maximum of L in this direction. On the other hand, if you move in ~w direction
which happens to be perpendicular to ~α direction, the value at this point is the minimum
of L in this direction. (~w∗, ~α∗) is said to be the saddle point of L.

Up to now, we have all the conditions we need to find the optimal ~w:

∂L

∂wj

∣∣∣
~w∗,~α∗

= 0, (11)

∀i : bi(~w
∗) ≥ 0, (12)

∀i : α∗i ≥ 0, (13)

∀i : α∗i bi(~w
∗) = 0. (14)

These four together are called Karush-Kuhn-Tucker (KKT) conditions, and the last
three together are called complementary slackness condition.

By equation (11), we have 0 = ∂L
∂wj

= wj −
∑

i αiyixij , or ~w =
∑

i αiyi ~xi. Plugging into

L, we get

max

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj~xi · ~xj

s.t. ∀i, αi ≥ 0. (15)

Also, by condition(14): ∀i, α∗i bi(~w∗) = 0, we get αi[yi(~w · ~xi)− 1] = 0. Therefore if αi is not
equal to 0, then yi(~w · ~xi)− 1 has to be 0 and hence (~xi, yi) is a support vector.

1.3 Compare SVM with Boosting

We now compare SVM with Boosting algorithm. In SVM, we get examples ~x which are
points in RN . It is natural to assume that ‖~x‖2 ≤ 1. In boosting we get examples x
from some space. Boosting algorithm never directly touches training examples. Instead, it
gets weak hypotheses and gives a prediction. Suppose weak hypothesis space H is finite,
H = {g1, ..., gN} and ~h(x) = 〈g1(x), ..., gN (x)〉. In a sense, the input of boosting algorithm
is this huge vector ~h(x). Since gi(x) ∈ {−1,+1}, ‖~h(x)‖∞ = maxj |gj(x)| = 1.

The next thing is that SVM finds a vector ~v with ‖v‖2 = 1, and given an exam-
ple ~x, it predicts sign(~v · ~x). In boosting, instead, the algorithm finds the weight ~αt for

each weak hypothesis ht, and the output of the algorithm is sign(
∑

t αtht(x)∑
t αt

). This ex-

pression is a convex combination of weak hypotheses, and each one of these comes from
the weak hypothesis space. That’s to say ht ∈ {g1, ...gN}. So we can rewrite this as

3

the convex combination of gj ’s rather than ht’s. So we can choose weights aj ’s such that

sign(
∑

t αtht(x)∑
t αt

) = sign(
∑N

j=1 ajgj(x)). And
∑N

j=1 ajgj(x) = ~a ·~h(x), where ~a = 〈a1, ..., aN 〉.
What boosting is doing is finding those weights ~a. The sum of these weights is 1 and each
of them is non-negative. So ~a: ‖~a‖1 =

∑
j |aj | = 1. And the prediction of boosting is

sign(~a · ~h(x)).
Finally we’ll talk about the margin. The margin of SVM is y(~v · ~x). In boosting, the

margin of (x, y) is yf(x) = y
∑
αtht(x)∑
αt

= y(~a · ~h(x)). We point out here that SVM and
Boosting both maximize margin, but the definitions of margin are different, the norms used
here are different.

They both can work over high dimensions, but SVM uses kernel trick to deal with high
dimensional data. And in boosting, if we view ~h(x) as input, the dimension is the number
of weak hypotheses which is typically gigantic and we use a weak learning algorithm as a
oracle to give us those weak hypotheses to work over high dimensional space.

We sum up the comparison in the following table:

SVM Boosting

input ~x: ‖~x‖2 ≤ 1 input ~h(x): ‖~h(x)‖∞ = 1

~v: ‖~v‖2 = 1 ~a: ‖~a‖1 =
∑

j |aj | = 1

predict sign(~v · ~x) predict sign(~a · ~h(x))

margin y(~v · ~x) margin y(~a · ~h(x))

2 Online learning

2.1 Introduction

The learning framework for on-line learning is quite different from the PAC learning model
we have seen so for. First, instead of learning from a training set and then testing on a
test set, training and testing happen all at the same time in the online learning scenario.
It gets one example at a time, predicts the label and then gets the truth. Second, the PAC
learning model follows the key assumption that the training data and test data are i.i.d.
from some fixed distribution, while in online learning, no statistical assumptions are made.
We no longer assume that examples are random, and in fact examples can be generated by
an adversary in online learning.

One example of the online learning problem is to predict the stock market. In the
morning, the learner predicts whether the price will go up or down, and then in the late
afternoon it can find out whether it actually went up or down.

2.2 Learning with expert advice

We still use the stock market example. Suppose there are four experts who will give you
their predictions of the price every morning, and based on their predictions, you make your
own prediction. A specific example might look like this:

4

Experts
1 2 3 4 Learner(Master) Outcome

Day 1 ↑ ↓ ↑ ↑ ↑ ↑
Day 2 ↓ ↑ ↑ ↓ ↓ ↑

...

mistakes 37 12 63 88 18

The goal of the learner is to be not much worse than the best expert in terms of the number
of mistakes that it makes..

General form of learning with expert advice is:

N=# experts
for t = 1, 2, ...T ,

each expert i predicts ξi ∈ {0, 1},
learner predicts ŷ ∈ {0, 1},
observe actual outcome y ∈ {0, 1}.

(mistake if ŷ 6= y)

Suppose some expert is perfect, but the learner doesn’t know which one is perfect.
We have the following ”Halving Algorithm”, in which on each round we kill an expert
immediately after he makes a mistake and take the majority vote of surviving experts as
the prediction:

on each round:
ŷ = majority vote of experts with no mistakes so far

We now prove that the halving algorithm makes at most lgN mistakes, where N is the
number of experts. Let W be the number of surviving experts. Initially W = N . If the
learner made a mistake on some round, then at least 1

2 survivors made a mistake on that
round. So at least 1

2 experts were eliminated on that round. In other words, if the learner
made 1 mistake on some round, the number of survivors is at most 1

2N . If the learner made
another mistake, the number of survivors after the second mistake is at most (12)2N . So
after the learner made the mth mistake, the number of survivors is at most (12)mN . Since
we know that at least one expert is perfect, we have W ≥ 1. By 1 ≤ W ≤ 2−mN we have
m ≤ lgN .

At last, we want to point out that experts really can be anything, for example, fixed
functions, other learning algorithms and actual human experts.

5

