Last class, we discussed an analogue for Occam’s Razor for infinite hypothesis spaces that, in conjunction with VC-dimension, reduced the problem of finding a good PAC-learning algorithm to the problem of computing the VC-dimension of a given hypothesis space. Recall that VC-dimension is defined using the notion of a shattered set, i.e. a subset S of the domain such that $\Pi_H(S) = 2^{|S|}$. In this lecture, we compute the VC-dimension of several hypothesis spaces by computing the maximum size of a shattered set.

1 Example 1: Axis-aligned rectangles

Not all sets of four points are shattered. For example the following arrangement is impossible:

![Figure 1](image1.png)

Figure 1: An impossible assignment of +/- to the data, as all rectangles that contain the outer three points (marked +) must also contain the one − point.

However, this is not sufficient to conclude that the VC-dimension is at most three. Note that the following set does shatter:

![Figure 2](image2.png)

Figure 2: A set of four points that shatters, as there is an axis-aligned rectangle that contains any given subset of the points but contains no others.

Therefore, the VC-dimension is at least four. In fact, it is exactly four. Consider any set of five distinct points $\{v_1, v_2, v_3, v_4, v_5\} \subseteq \mathbb{R}^2$. Consider a rectangle that contains the points with maximum x-coordinate, minimum x-coordinate, maximum y-coordinate, and minimum y-coordinate. These points may not be distinct. However, there are at most four such points. Call this set of points $S \subseteq \{v_1, v_2, v_3, v_4, v_5\}$. Any axis-aligned rectangle that
contains S must also contain all of the points v_1, v_2, v_3, v_4, and v_5. There is at least one v_i that is not in S, but still must be in the rectangle. Therefore, the labeling that labels all vertices in S with $+$ and v_i with $-$ cannot be consistent with any axis-aligned rectangle. This means that there is no shattered set of size 5, since all possible labelings of a shattered set must be realized by some concept.

By a similar argument, we can show that the VC-dimension of axis-aligned rectangles in \mathbb{R}^n is $2n$. By generalizing the approach for proving that the VC-dimension of the positive half interval learning problem is 1, one can show that the VC-dimension of $n-1$ dimensional hyperplanes in \mathbb{R}^n that pass through the origin is n. These concepts are inequalities of the form

$$w \cdot x > 0$$

for any fixed $w \in \mathbb{R}^n$ and variable $x \in \mathbb{R}^n$. In this case, concepts label points with $+$ if they are one side of a hyperplane and $-$ otherwise.

2 Other remarks on VC-dimension

In the cases mentioned previously, note that the VC-dimension is similar to the number of parameters needed to specify any particular concept. In the case of axis-aligned rectangles, for example, they are equal since rectangles require a left boundary, a right boundary, a top boundary, and a bottom boundary. Unfortunately, this similarity does not always hold, although it often does. There are some hypothesis spaces with infinite VC-dimension that can be specified with one parameter.

Note that if \mathcal{H} is finite, the VC-dimension is at most $\log_2 |\mathcal{H}|$, as at least 2^r distinct hypotheses must exist to shatter a set of size r.

For a hypothesis space with infinite VC-dimension, there is a set of size m that is shattered for any $m > 0$. Therefore, $\Pi_{\mathcal{H}}(m) = 2^m$, which we mentioned last class as an indication of a class that is hard to learn. In the next section, we will show that all classes with bounded VC-dimension d have $\Pi_{\mathcal{H}}(m) = O(m^d)$, completing the description of PAC-learnability by VC-dimension.

3 Sauer’s Lemma

Recall that \(\binom{n}{k} = \frac{n!}{(n-k)!k!} \) if $0 \leq k \leq n$ and $\binom{n}{k} = 0$ if $k < 0$ or $k > n$. k and n are integers and n is nonnegative for our purposes. Note that $\binom{n}{k} = O(n^k)$ when k is regarded as a positive constant. We will show the following lemma, which immediately implies the desired result:

Lemma 3.1 (Sauer’s Lemma). Let \mathcal{H} be a hypothesis with finite VC-dimension d. Then,

$$\Pi_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} \binom{m}{i} := \Phi_d(m)$$

Proof. We will prove this by induction on $m + d$. There are two base cases:

Case 1 ($m = 0$). There is only one possible assignment of $+$ and $-$ to the empty set, i.e. $\Pi_{\mathcal{H}}(m) = 1$ here. Note that $\Phi_d(0) = \binom{0}{0} + \binom{0}{1} + \ldots + \binom{0}{d} = 1$, as desired.
Case 2 $(d = 0)$. Not even a single point can be shattered in this situation. Therefore, on any given point, all hypotheses have the same value. Therefore, there is only one possible hypothesis and $\Pi_{H}(m) = 1$. This agrees with Φ, as $\Phi_{0}(m) = \binom{m}{0} = 1$.

Now, we will prove the induction step. For this, we will need Pascal’s Identity, which states that

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

for all integers n and k with $n \geq 0$. Consider a hypothesis space H with VC-dimension d and a set of m examples $S := \{x_1, x_2, \ldots, x_m\}$. Let $T := \{x_1, x_2, \ldots, x_{m-1}\}$. Form two hypothesis spaces H_1 and H_2 on T as follows (an example is in Figure 3). Let H_1 be the set of restrictions of hypotheses from H to T. Let $h \mid T$ denote the restriction of h to T for $h \in H$, i.e. the function $h_T : T \rightarrow \{-, +\}$ such that $h_T(x_i) = h(x_i)$ for all $x_i \in T$. An element ρ on T is added to H_2 if and only if there are two distinct hypotheses $h_1, h_2 \in H$ such that $h_1 \mid T = h_2 \mid T = \rho$.

Note that $|\Pi_{H}(S)| = |\Pi_{H_1}(T)| + |\Pi_{H_2}(T)|$. What are the VC-dimensions of H_1 and H_2?

First, note that the VC-dimension of H_1 is at most d, as any shattering set of size $d + 1$ in T is also a subset of S that is shattered by the elements of H, contradicting the fact that the VC-dimension of H is d.

Suppose that there is a set of size d in T that is shattered by H_2. Since every hypothesis in H_2 is the restriction of two different hypotheses in H, x_m can be added to the shattered set of size d in T to obtain a set shattered by H of size $d + 1$. This is a contradiction, so the VC-dimension of H_2 is at most $d - 1$. By the inductive hypothesis, $\Pi_{H_1}(m-1) \leq \Phi_{d}(m-1)$. Similarly, $\Pi_{H_2}(m-1) \leq \Phi_{d-1}(m-1)$. Combining these two inequalities shows that

$$\Pi_{H}(m) \leq \Phi_{d}(m-1) + \Phi_{d-1}(m-1)$$

$$= \left(\sum_{i=0}^{d} \binom{m-1}{i} \right) + \left(\sum_{j=0}^{d-1} \binom{m-1}{j} \right)$$

$$= \binom{m-1}{0} + \sum_{i=0}^{d-1} \left(\binom{m-1}{i} + \binom{m-1}{i+1} \right)$$

$$= \binom{m}{0} + \sum_{i=0}^{d-1} \binom{m}{i+1}$$

$$= \Phi_{d}(m)$$

completing the inductive step. \qed

Often, the polynomial $\Phi_{d}(m)$ is hard to work with. Instead, we often use the following result:

Lemma 3.2. $\Phi_{d}(m) \leq (em/d)^{d}$ when $m \geq d \geq 1$.

Proof. $m \geq d \geq 1$ implies that $\frac{d}{m} \leq 1$. Therefore, since $i \leq d$ in the summand,
Multiplying on both sides by \((m/d)^d\) on both sides gives the desired result. \(\square\)

Plugging this result into the examples bound proven last class shows that

\[
err(h) = O\left(\frac{1}{m} \left(d \ln \frac{m}{d} + \ln \frac{1}{\delta} \right) \right)
\]

We can also write this in terms of the number of examples required to learn:

\[
m = O\left(\frac{1}{\epsilon} \left(\ln \frac{1}{\delta} + d \ln \frac{1}{\epsilon} \right) \right)
\]

Note that the number of examples required to learn scales linearly with the VC-dimension.

4 Lower bounds on learning

The bound proven in the previous section shows that the VC-dimension of a hypothesis space yields an upper bound on the number of examples needed to learn. Lower bounds on the required number of examples also exist. If the VC-dimension of a hypothesis space is \(d\), there is a shattered set of size \(d\). Intuitively, any hypothesis learned from a subset of size at most \(d - 1\) cannot predict the value of the last element with probability better than \(1/2\). This suggests that at least \(\Omega(d)\) examples are required to learn.

In future classes, we will prove the following

Theorem 4.1. For all learning algorithms \(A\), there is a concept \(c \in C\) and a distribution \(D\) such that if \(A\) is given \(m \leq d/2\) examples labeled by \(c\) and distributed according to \(D\), then

\[
\Pr[err(h_A) > 1/8] \geq \frac{1}{8}
\]
One can try to prove this as follows. Choose a uniform distribution D on examples $\{z_1, \ldots, z_d\}$ and run A on $m \leq d/2$ examples. Call this set of examples S. Label the elements of S arbitrarily with $+$ and $-$. Suppose that $c \in \mathcal{C}$ is selected to be consistent with all of the labels on S and $c(x) \neq h_A(x)$ for all $x \notin S$. $\text{err}_D(h_A) \geq \frac{1}{2}$ since c agrees with h_A on at most $(d/2)/2 = 1/2$ of the probability mass of the domain, which means that there is no PAC-learning algorithm on $d/2$ examples.

This proof is flawed, as c needs to be chosen before the examples. We will discuss a correct proof in future classes.