
COS 511: Theoretical Machine Learning

Homework #6 Due:
Lagrange and online learning April 11, 2013

Problem 1

a. [10] In class, we argued that if a function L satisfies the “minmax property”

min
w

max
α

L(w,α) = max
α

min
w

L(w,α), (1)

and if (w∗,α∗) are the desired solutions

w∗ = arg min
w

max
α

L(w,α) (2)

α∗ = arg max
α

min
w

L(w,α), (3)

then (w∗,α∗) is a saddle point:

L(w∗,α∗) = max
α

L(w∗,α) = min
w

L(w,α∗). (4)

(Here, it is understood that w and α may belong to a restricted space (e.g., α ≥ 0)
which we omit for brevity.)

Prove the converse of what was shown in class. That is, prove that if (w∗,α∗) satisfies
Eq. (4), then Eqs. (1), (2) and (3) are also satisfied. You should not assume anything
special about L (such as convexity), but you can assume all of the relevant minima
and maxima exist.

b. [10] Let a1, . . . , an be nonnegative real numbers, not all equal to zero, and let b1, . . . , bn
and c all be positive real numbers. Use the method of Lagrange multipliers to find
the values of x1, . . . , xn which minimize

−
n∑

i=1

ai lnxi

subject to the constraint that
n∑

i=1

bixi ≤ c.

Show how this implies that relative entropy is nonnegative.

Problem 2

Consider the problem of learning with expert advice when one of the experts gives perfect
predictions. On some round t, let q be the fraction of surviving experts that predict 1. (A
surviving expert is one that has not made any mistakes so far.) In class, we talked about
the halving algorithm which predicts with the majority vote of the expert predictions, and
we talked about the randomized weighted majority algorithm (with β set to zero) which
predicts with one randomly selected expert.

In general, we can predict 1 with probability F (q) and 0 with probability 1 − F (q)
for some function F . For instance, for the halving algorithm, F (q) is 1 if q > 1/2 and 0
if q < 1/2 (and arbitrary if q = 1/2). For the randomized weighted majority algorithm
(again, with β = 0), F (q) = q.



Consider now a function F : [0, 1]→ [0, 1] satisfying the following property:

1 +
lg q
2
≤ F (q) ≤ − lg(1− q)

2
. (5)

a. [15] Suppose we run an on-line learning algorithm that uses a function F satisfying (5)
as described above. Show that the expected number of mistakes made by the learning
algorithm is at most (lgN)/2, where N is the number of experts.

b. [10] Show that the function

F (q) =
lg(1− q)

lg q + lg(1− q)

has range [0, 1] and satisfies (5). (At the endpoints, we define F (0) = 0 and F (1) = 1
to make F continuous, but you don’t need to worry about these.)

c. [10] (Optional – for extra credit) Suppose now that there are k ≥ 2 possible
outcomes rather than just 2. In other words, the outcome yt is now in the set {1, . . . , k}
(rather than {0, 1} as we have considered up until now), and likewise, both experts
and the learning algorithm make predictions in this set. Assume one of the experts
makes perfect predictions. On some round t, let qj be the fraction of surviving experts
predicting outcome j ∈ {1, . . . , k}. Suppose that the learning algorithm predicts each
outcome j with probability

lg(1− qj)∑k
i=1 lg(1− qi)

.

Show that the expected number of mistakes of this learning algorithm is at most
(lgN)/2.

Problem 3

[15] For this problem, let us suppose that labels, outcomes, expert/hypothesis predictions,
etc. are all defined over the set {−1,+1} rather than {0, 1}. Since this does not change
what it means for the learner or an expert to make a mistake, this has no effect on any of
the results we have discussed regarding online mistake bounds.

Let H be a finite space of hypotheses h : X → {−1,+1}, and let S = 〈x1, . . . , xm〉 be
any sequence of m distinct points in X . Prove that the empirical Rademacher complexity
of H satisfies

R̂S(H) ≤ O

√
ln |H|
m


by applying our analysis of online algorithms for learning with expert advice to an appro-
priately constructed sequence of expert prediction ξi and outcomes y. Give a bound with
explicit constants.

Note that this bound was earlier stated without proof in class (see Theorem 2 in the
scribe notes for lecture #10), and is also a special case of Theorem 3.3 in the book, although
with possibly weaker constants. Extra credit [5] will be given for obtaining a bound of√

(2 ln |H|)/m, that is, with the constant that was stated in class.
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