
COS 511: Theoretical Machine Learning

Homework #5 Due:
Boosting & SVM’s March 28, 2013

Problem 1

[10] Suppose, in the usual boosting set-up, that the weak learning condition is guaranteed
to hold so that εt ≤ 1

2 − γ for some γ > 0 which is not known before boosting begins. And
suppose AdaBoost is run in the usual fashion, except that the algorithm is modified to halt
and output the combined classifier H immediately following the first round on which it is
consistent with all of the training examples (so that its training error is zero). Assume
that the weak hypotheses are selected from a class of VC-dimension d. Prove that, with
probability at least 1− δ, the generalization error of the output combined classifier H is at
most

Õ

(
(d/γ2) + ln(1/δ)

m

)
.

Give a bound in which all constants and log terms have been filled in explicitly.

Problem 2

Suppose AdaBoost is run for an unterminating number of rounds. In addition to our usual
notation, we define for each T ≥ 1:

FT (x) =
T∑
t=1

αtht(x) and sT =
T∑
t=1

αt.

Recall that each αt ≥ 0 (since εt ≤ 1
2). The minimum margin on round t, denoted θt, is the

smallest margin of any training example; thus,

θt = min
i

yiFt(xi)

st
.

Finally, we define the smooth margin on round t to be

gt =
− ln

(
1
m

∑m
i=1 e

−yiFt(xi)
)

st
.

a. [10] Prove that

θt ≤ gt ≤ θt +
lnm

st
.

Thus, if st gets large, then gt gets very close to θt.

b. [10] Let us define the continuous function

Υ(γ) =
− ln(1− 4γ2)

ln
(
1+2γ
1−2γ

) .

It is a fact (which you do not need to prove) that γ ≤ Υ(γ) ≤ 2γ for 0 ≤ γ ≤ 1
2 .

Prove that gT is a weighted average of the values Υ(γt), specifically,

gT =

∑T
t=1 αtΥ(γt)

sT
.

c. [10] Prove that if the edges γt converge (as t→∞) to some value γ, where 0 < γ < 1
2 ,

then the minimum margins θt converge to Υ(γ).



Problem 3

Suppose we use support-vector machines with the kernel:

K(x, u) =

{
1 if x = u
0 otherwise.

As we discussed in class, this corresponds to mapping each x to a vector ψ(x) in some high
dimensional space (that need not be specified) so that K(x, u) = ψ(x) ·ψ(u).

As usual, we are given m examples (x1, y1), . . . , (xm, ym) where yi ∈ {−1,+1}. Assume
for simplicity that all the xi’s are distinct (i.e., xi 6= xj for i 6= j).

a. [10] Recall that the weight vector w used in SVM’s has the form

w =
∑
i

αiyiψ(xi).

Compute the αi’s explicitly that would be found using SVM’s with this kernel.

b. [6] Recall that the SVM algorithm outputs a classifier that, on input x, computes the
sign of w·ψ(x). What is the value of this inner product on training example xi? What
is the value of this inner product on any example x not seen during training? Based
on these answers, what kind of generalization error do you expect will be achieved by
SVM’s using this kernel?

c. [6] Recall that the generalization error of SVM’s can be bounded using the margin
δ (which is equal to 1/‖w‖), or using the number of support vectors. What is δ in
this case? How many support vectors are there in this case? How are these answers
consistent with your answer in part (b)?
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Problem 4 – Optional (Extra Credit)

[15] In class (as well as on Problem 1 of this homework), we showed how a weak learning
algorithm that uses hypotheses from a space H of bounded VC-dimension can be converted
into a strong learning algorithm. However, strictly speaking, the definition of weak learn-
ability does not include such a restriction on the weak hypothesis space. The purpose of
this problem is to show that weak and strong learnability are equivalent, even without these
restrictions.

Let C be a concept class on domain X. Let A0 be a weak learning algorithm and let
γ > 0 be a (known) constant such that for every concept c ∈ C and for every distribution
D on X, when given m0 random examples xi from D, each with its label c(xi), A0 outputs
a hypothesis h such that, with probability at least 1/2,

Prx∈D [h(x) 6= c(x)] ≤ 1

2
− γ.

Here, for simplicity, we have “hard-wired” the usual parameter δ to the constant 1/2 so
that A0 takes a fixed number of examples and only needs to succeed with fixed probability
1/2. Note that no restrictions are made on the form of hypothesis h used by A0, nor on the
cardinality or VC-dimension of the space from which it is chosen. For this problem, assume
that A0 is a deterministic algorithm.

Show that A0 can be converted into a strong learning algorithm using boosting. That
is, construct an algorithm A such that, for ε > 0, δ > 0, for every concept c ∈ C and for
every distribution D on X, when given m = poly(m0, 1/ε, 1/δ, 1/γ) random examples xi
from D, each with its label c(xi), A outputs a hypothesis H such that, with probability at
least 1− δ,

Prx∈D [H(x) 6= c(x)] ≤ ε.

Be sure to show that the number of examples needed by this algorithm is polynomial in
m0, 1/ε, 1/δ and 1/γ.
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