Peer-to-Peer in the
Datacenter: Amazon Dynamo

Aaron Blankstein

COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr13/cos461/

Last Lecture...

EI F bits Uﬂ_m”
- d, é\%ﬁ
_ S

, u,

(

upload rate u,

upload rates u.
download rates d.

2

Lecture...

IS

Th

(i T

~s- S rrry -
Fren .

,.!

.

/)

i
“\

/ %’//ﬁ////?/ N\

TAEENLLLLL\Y

Amazon’s “Big Data” Problem

 Too many (paying) users!
— Lots of data

e Performance matters

— Higher latency = lower “conversion rate”

e Scalability: retaining performance when large

Tiered Service Structure

Client Requests

Statel L
ateless
\ /

| Request Routing |

Stateless

Aggregator
Services

Stateless

All of the
State @u‘

Dynamo instances Other datastores

Horizontal or Vertical Scalability?

Vertical Scaling Horizontal Scaling

Horizontal Scaling Chaos

e Horizontal scaling is chaotic*®

* Failure Rates:
— k = probability a machine fails in given period
— n = number of machines
— 1-(1-k)" = probability of any failure in given period
— For 50K machines, with online time of 99.99966%:

* 16% of the time, data center experiences failures
* For 100K machines, 30% of the time!

Dynamo Requirements

* High Availability
— Always respond quickly, even during failures
— Replication!

* Incremental Scalability

— Adding “nodes” should be seamless

 Comprehensible Conflict Resolution
— High availability in above sense implies conflicts

Dynamo Design

* Key-Value Store =» DHT over data nodes
— get(k) and put(k, v)
* Questions:
— Replication of Data
— Handling Requests in Replicated System
— Temporary and Permanent Failures
— Membership Changes

Data Partitioning and Data Replication

* Familiar?
* Nodes are virtual! / fey
— Heterogeneity @/@\\
// % Nodes B, C

e Replication:

. \ i and D store
— Coordinator Node ' keysin
i range (A,B)
— N-1 successors . 7 | including
\ K.

also \ ;7
— Nodes keep @__,@

preference list

10

Handling Requests

* Requests handled by
coordinator

/ Key
— Consults replicas /@\
* Forward request to N @)

replicas from pref. list / /" NodesB, C
\ i and D store
— R or W responses form a - eys in
quorum i range (A,B)
. i including
* For load balancing/ \ /i Tk

failures, any of the top \@ @ /

N in the pref. list can
handle request

11

Detecting Failures

* Purely Local Decision

— Node A may decide independently that B has
failed

— In response, requests go further in the pref. list

* A request hits an unsuspecting node
— “temporary failure” handling occur

12

Handling Temporary Failures

* Eisin replica set ,/ Keyk
— Needs to receive @ @\\
the replica / . Nodes B, C

— Hinted Handoff: and D store
replica contains
“original” node

keys in
§ range (A,B)
A including

e When C comes back

— E forwards the

' |
replica back to C Add E to the replica set!

13

Managing Membership

* Peers randomly tell another their known
membership history — “gossiping”
* Also called epidemic algorithm

— Knowledge spreads like a disease through
system

— Great for ad hoc systems, self-
configuration, etc.

— Does this make sense in Amazon’s
environment?

14

Gossip could partition the ring

* Possible Logical Partitions

— A and B choose to join ring at about the
same time: unaware of one another, may
take long time to converge to one another

e Solution:

— Use seed nodes to reconcile membership
views: well-known peers which are
contacted more frequently

16

Why is Dynamo Different?

So far, looks a lot like normal p2p
Amazon wants to use this for application data!
Lots of potential synchronization problems

Dynamo uses versioning to provide eventual
consistency.

Consistency Problems

e Shopping Cart Example:

— Object is a history of “adds” and “removes”

— All adds are important (trying to make money)

Client:

Put(k, [+1 Bananal])

Z = get(k)

Put(k, Z + [+1 Banana])
Z = get(k)

Put(k, Z + [-1 Banana])

17

Expected Data at Server:

+1 Banana]
+1 Banana, +1 Banana]

+1 Banana, +1 Banana,
-1 Banana]

What if a failure occurs?

Client: Data on Dynamo:

Put(k, [+1 Banana]) [+1 Banana] at A
Z = get(k) A Crashes

Put(k, Z + [+1 Bananal) B not in first Put’s quorum

Z = get(k) [+1 Banana] at B

Put(k, Z + [-1 Banana]) [+1 Banana, -1 Banana] atB
Node A Comes Online

At this point, Node A and B disagree about the
current state of the object — how is that resolved?
Can we even tell that there is a conflict?

18

19

“Time” is largely a human construct

What about time-stamping objects?

— We could authoritatively say whether an object is
newer or older...

— all events are not necessarily witnessed
If our system’s notion of time corresponds to
“real-time”...

— A new object always blasts away older versions, even
though those versions may have important updates
(as in bananas example).

Requires a new notion of time (causal in nature)
Anyhow, real-time is impossible in any case

Causality

* Objects are causally related if the value of one
object depends on (or witnessed) the previous

e Conflicts can be detected when replicas
contain causally independent objects for a
given key.

e Can we have a notion of time which captures
causality?

20

21

Versioning

Key Idea: every PUT includes a version,
indicating the most recently witnessed version

of the object being updated

Problem: replicas may have diverged

— No single authoritative version number (or “clock”
number)

— Notion of time must use a partial ordering of
events

Vector Clocks

* Every replica has its own logical clock
— Incremented before it sends a message

* Every message attached with vector version

* If M, is causally depenc

22

— Includes originator’s clock

— Highest seen logical clocks for each replica

— Replica sending M, will
— Replica will have seen c

ent on M:

nave seen M,

ocks 2 all clocks in M,

Vector Clocks in Dynamo

Vector clock per object Jnand‘}‘;’ﬁi}f Sx

Gets() return vector clock D1 ([Sx.1])

of object J write
handled by Sx

Puts() contain most recent
vector clock

. it write
— Coordinator treated as randied by sy / \?ancﬂed s
“originator”

Serious conflicts are
reconciled

resolved by the \ _/andwnnenby

application / client

D2 ([Sx,2])

D3 ([Sx,2].[Sy.1]) D4 ([Sx,2],[Sz,1])

D5 ([Sx,3],[Sy,1][Sz,1])

23

Vector Clocks in Banana Example

Client: Data on Dynamo:

Put(k, [+1 Bananal]) [+1] v=[(A,1)] at A
Z = get(k) A Crashes

Put(k, Z + [+1 Banana]) B not in first Put’s quorum

Z = get(k) [+1] v=[(B,1)] atB
Put(k, Z + [-1 Banana]) [+1,-1] v=[(B,2)] atB

Node A Comes Online

[(A,1)] and [(B,2)] are a conflict!

Eventual Consistency

* Versioning, by itself, does not guarantee
consistency

— If you don’t require a majority quorum, you need to
periodically check that peers aren’t in conflict

— How often do you check that events are not in
conflict?

* In Dynamo

— Nodes consult with one another using a tree hashing
(Merkel tree) scheme

— Allows them to quickly identify whether they hold
different versions of particular objects and enter
conflict resolution mode

NoSQL

* Notice that Eventual Consistency, Partial
Ordering do not give you ACID!

* Rise of NoSQL (outside of academia)
— Memcache
— Cassandra
— Redis
— Big Table
— Neo4)
— MongoDB

26

