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Amazon’s	  “Big	  Data”	  Problem	  

•  Too	  many	  (paying)	  users!	  
– Lots	  of	  data	  

•  Performance	  maFers	  
– Higher	  latency	  =	  lower	  “conversion	  rate”	  

•  Scalability:	  retaining	  performance	  when	  large	  
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Tiered	  Service	  Structure	  

provide a response within 300ms for 99.9% of its requests for a 
peak client load of 500 requests per second. 

In Amazon’s decentralized service oriented infrastructure, SLAs 
play an important role. For example a page request to one of the 
e-commerce sites typically requires the rendering engine to 
construct its response by sending requests to over 150 services. 
These services often have multiple dependencies, which 
frequently are other services, and as such it is not uncommon for 
the call graph of an application to have more than one level. To 
ensure that the page rendering engine can maintain a clear bound 
on page delivery each service within the call chain must obey its 
performance contract.  

Figure 1 shows an abstract view of the architecture of Amazon’s 
platform, where dynamic web content is generated by page 
rendering components which in turn query many other services. A 
service can use different data stores to manage its state and these 
data stores are only accessible within its service boundaries. Some 
services act as aggregators by using several other services to 
produce a composite response. Typically, the aggregator services 
are stateless, although they use extensive caching. 

A common approach in the industry for forming a performance 
oriented SLA is to describe it using average, median and expected 
variance. At Amazon we have found that these metrics are not 
good enough if the goal is to build a system where all customers 
have a good experience, rather than just the majority.  For 
example if extensive personalization techniques are used then 
customers with longer histories require more processing which 
impacts performance at the high-end of the distribution. An SLA 
stated in terms of mean or median response times will not address 
the performance of this important customer segment. To address 
this issue, at Amazon, SLAs are expressed and measured at the 
99.9th percentile of the distribution. The choice for 99.9% over an 
even higher percentile has been made based on a cost-benefit 
analysis which demonstrated a significant increase in cost to 
improve performance that much. Experiences with Amazon’s 

production systems have shown that this approach provides a 
better overall experience compared to those systems that meet 
SLAs defined based on the mean or median. 

In this paper there are many references to this 99.9th percentile of 
distributions, which reflects Amazon engineers’ relentless focus 
on performance from the perspective of the customers’ 
experience. Many papers report on averages, so these are included 
where it makes sense for comparison purposes. Nevertheless, 
Amazon’s engineering and optimization efforts are not focused on 
averages. Several techniques, such as the load balanced selection 
of write coordinators, are purely targeted at controlling 
performance at the 99.9th percentile.   

Storage systems often play an important role in establishing a 
service’s SLA, especially if the business logic is relatively 
lightweight, as is the case for many Amazon services. State 
management then becomes the main component of a service’s 
SLA. One of the main design considerations for Dynamo is to 
give services control over their system properties, such as 
durability and consistency, and to let services make their own 
tradeoffs between functionality, performance and cost-
effectiveness. 

2.3 Design Considerations 
Data replication algorithms used in commercial systems 
traditionally perform synchronous replica coordination in order to 
provide a strongly consistent data access interface. To achieve this 
level of consistency, these algorithms are forced to tradeoff the 
availability of the data under certain failure scenarios. For 
instance, rather than dealing with the uncertainty of the 
correctness of an answer, the data is made unavailable until it is 
absolutely certain that it is correct. From the very early replicated 
database works, it is well known that when dealing with the 
possibility of network failures, strong consistency and high data 
availability cannot be achieved simultaneously [2, 11]. As such 
systems and applications need to be aware which properties can 
be achieved under which conditions. 

For systems prone to server and network failures, availability can 
be increased by using optimistic replication techniques, where 
changes are allowed to propagate to replicas in the background, 
and concurrent, disconnected work is tolerated. The challenge 
with this approach is that it can lead to conflicting changes which 
must be detected and resolved.  This process of conflict resolution 
introduces two problems: when to resolve them and who resolves 
them. Dynamo is designed to be an eventually consistent data 
store; that is all updates reach all replicas eventually. 

An important design consideration is to decide when to perform 
the process of resolving update conflicts, i.e., whether conflicts 
should be resolved during reads or writes. Many traditional data 
stores execute conflict resolution during writes and keep the read 
complexity simple [7]. In such systems, writes may be rejected if 
the data store cannot reach all (or a majority of) the replicas at a 
given time. On the other hand, Dynamo targets the design space 
of an “always writeable” data store (i.e., a data store that is highly 
available for writes). For a number of Amazon services, rejecting 
customer updates could result in a poor customer experience. For 
instance, the shopping cart service must allow customers to add 
and remove items from their shopping cart even amidst network 
and server failures. This requirement forces us to push the 
complexity of conflict resolution to the reads in order to ensure 
that writes are never rejected.  

 
Figure 1: Service-oriented architecture of Amazon’s 
platform 
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Horizontal	  or	  VerZcal	  Scalability?	  

VerZcal	  Scaling	   Horizontal	  Scaling	  
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Horizontal	  Scaling	  Chaos	  

•  Horizontal	  scaling	  is	  chaoZc*	  
•  Failure	  Rates:	  
– k	  =	  probability	  a	  machine	  fails	  in	  given	  period	  
– n	  =	  number	  of	  machines	  
– 1-‐(1-‐k)n	  =	  probability	  of	  any	  failure	  in	  given	  period	  
– For	  50K	  machines,	  with	  online	  Zme	  of	  99.99966%:	  

•  16%	  of	  the	  Zme,	  data	  center	  experiences	  failures	  
•  For	  100K	  machines,	  30%	  of	  the	  Zme!	  
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Dynamo	  Requirements	  

•  High	  Availability	  
– Always	  respond	  quickly,	  even	  during	  failures	  
– Replica+on!	  

•  Incremental	  Scalability	  
– Adding	  “nodes”	  should	  be	  seamless	  

•  Comprehensible	  Conflict	  ResoluZon	  
– High	  availability	  in	  above	  sense	  implies	  conflicts	  
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Dynamo	  Design	  

•  Key-‐Value	  Store	  è	  DHT	  over	  data	  nodes	  
– get(k)	  and	  put(k,	  v)	  

•  QuesZons:	  
– ReplicaZon	  of	  Data	  
– Handling	  Requests	  in	  Replicated	  System	  
– Temporary	  and	  Permanent	  Failures	  
– Membership	  Changes	  
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Data	  ParZZoning	  and	  Data	  ReplicaZon	  

•  Familiar?	  
•  Nodes	  are	  virtual!	  
– Heterogeneity	  

•  ReplicaZon:	  
– Coordinator	  Node	  
– N-‐1	  successors	  
also	  

– Nodes	  keep	  
preference	  list	  

Traditional replicated relational database systems focus on the 
problem of guaranteeing strong consistency to replicated data. 
Although strong consistency provides the application writer a 
convenient programming model, these systems are limited in 
scalability and availability [7]. These systems are not capable of 
handling network partitions because they typically provide strong 
consistency guarantees.  

3.3 Discussion 
Dynamo differs from the aforementioned decentralized storage 
systems in terms of its target requirements. First, Dynamo is 
targeted mainly at applications that need an “always writeable” 
data store where no updates are rejected due to failures or 
concurrent writes. This is a crucial requirement for many Amazon 
applications. Second, as noted earlier, Dynamo is built for an 
infrastructure within a single administrative domain where all 
nodes are assumed to be trusted. Third, applications that use 
Dynamo do not require support for hierarchical namespaces (a 
norm in many file systems) or complex relational schema 
(supported by traditional databases). Fourth, Dynamo is built for 
latency sensitive applications that require at least 99.9% of read 
and write operations to be performed within a few hundred 
milliseconds. To meet these stringent latency requirements, it was 
imperative for us to avoid routing requests through multiple nodes 
(which is the typical design adopted by several distributed hash 
table systems such as Chord and Pastry). This is because multi-
hop routing increases variability in response times, thereby 
increasing the latency at higher percentiles. Dynamo can be 
characterized as a zero-hop DHT, where each node maintains 
enough routing information locally to route a request to the 
appropriate node directly. 

4. SYSTEM ARCHITECTURE 
The architecture of a storage system that needs to operate in a 
production setting is complex. In addition to the actual data 
persistence component, the system needs to have scalable and 
robust solutions for load balancing, membership and failure 
detection, failure recovery, replica synchronization, overload 
handling, state transfer, concurrency and job scheduling, request 
marshalling, request routing, system monitoring and alarming, 
and configuration management. Describing the details of each of 
the solutions is not possible, so this paper focuses on the core 
distributed systems techniques used in Dynamo: partitioning, 
replication, versioning, membership, failure handling and scaling. 

Table 1 presents a summary of the list of techniques Dynamo uses 
and their respective advantages. 

4.1 System Interface  
Dynamo stores objects associated with a key through a simple 
interface; it exposes two operations: get() and put(). The get(key) 
operation locates the object replicas associated with the key in the 
storage system and returns a single object or a list of objects with 
conflicting versions along with a context. The put(key, context, 
object) operation determines where the replicas of the object 
should be placed based on the associated key, and writes the 
replicas to disk. The context encodes system metadata about the 
object that is opaque to the caller and includes information such as 
the version of the object. The context information is stored along 
with the object so that the system can verify the validity of the 
context object supplied in the put request. 

Dynamo treats both the key and the object supplied by the caller 
as an opaque array of bytes. It applies a MD5 hash on the key to 
generate a 128-bit identifier, which is used to determine the 
storage nodes that are responsible for serving the key.  

4.2 Partitioning Algorithm 
One of the key design requirements for Dynamo is that it must 
scale incrementally. This requires a mechanism to dynamically 
partition the data over the set of nodes (i.e., storage hosts) in the 
system. Dynamo’s partitioning scheme relies on consistent 
hashing to distribute the load across multiple storage hosts. In 
consistent hashing [10], the output range of a hash function is 
treated as a fixed circular space or “ring” (i.e. the largest hash 
value wraps around to the smallest hash value). Each node in the 
system is assigned a random value within this space which 
represents its “position” on the ring. Each data item identified by 
a key is  assigned to a node by hashing the data item’s key to yield 
its position on the ring, and then walking the ring clockwise to 
find the first node with a position larger than the item’s position. 
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Figure 2: Partitioning and replication of keys in Dynamo 
ring.  

Table 1: Summary of techniques used in Dynamo and 
their advantages. 

Problem Technique Advantage 

Partitioning Consistent Hashing Incremental 
Scalability 

High Availability 
for writes 

Vector clocks with 
reconciliation during 

reads 

Version size is 
decoupled from 

update rates. 

Handling temporary 
failures 

Sloppy Quorum and 
hinted handoff 

Provides high 
availability and 

durability guarantee 
when some of the 
replicas are not 

available. 

Recovering from 
permanent failures 

Anti-entropy using 
Merkle trees 

Synchronizes 
divergent replicas in 

the background. 

Membership and 
failure detection 

Gossip-based 
membership protocol 
and failure detection. 

Preserves symmetry 
and avoids having a 
centralized registry 

for storing 
membership and 

node liveness 
information. 

199209
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Handling	  Requests	  
•  Requests	  handled	  by	  
coordinator	  
–  Consults	  replicas	  

•  Forward	  request	  to	  N	  
replicas	  from	  pref.	  list	  
–  R	  or	  W	  responses	  form	  a	  
quorum	  

•  For	  load	  balancing/
failures,	  any	  of	  the	  top	  
N	  in	  the	  pref.	  list	  can	  
handle	  request	  

Traditional replicated relational database systems focus on the 
problem of guaranteeing strong consistency to replicated data. 
Although strong consistency provides the application writer a 
convenient programming model, these systems are limited in 
scalability and availability [7]. These systems are not capable of 
handling network partitions because they typically provide strong 
consistency guarantees.  

3.3 Discussion 
Dynamo differs from the aforementioned decentralized storage 
systems in terms of its target requirements. First, Dynamo is 
targeted mainly at applications that need an “always writeable” 
data store where no updates are rejected due to failures or 
concurrent writes. This is a crucial requirement for many Amazon 
applications. Second, as noted earlier, Dynamo is built for an 
infrastructure within a single administrative domain where all 
nodes are assumed to be trusted. Third, applications that use 
Dynamo do not require support for hierarchical namespaces (a 
norm in many file systems) or complex relational schema 
(supported by traditional databases). Fourth, Dynamo is built for 
latency sensitive applications that require at least 99.9% of read 
and write operations to be performed within a few hundred 
milliseconds. To meet these stringent latency requirements, it was 
imperative for us to avoid routing requests through multiple nodes 
(which is the typical design adopted by several distributed hash 
table systems such as Chord and Pastry). This is because multi-
hop routing increases variability in response times, thereby 
increasing the latency at higher percentiles. Dynamo can be 
characterized as a zero-hop DHT, where each node maintains 
enough routing information locally to route a request to the 
appropriate node directly. 

4. SYSTEM ARCHITECTURE 
The architecture of a storage system that needs to operate in a 
production setting is complex. In addition to the actual data 
persistence component, the system needs to have scalable and 
robust solutions for load balancing, membership and failure 
detection, failure recovery, replica synchronization, overload 
handling, state transfer, concurrency and job scheduling, request 
marshalling, request routing, system monitoring and alarming, 
and configuration management. Describing the details of each of 
the solutions is not possible, so this paper focuses on the core 
distributed systems techniques used in Dynamo: partitioning, 
replication, versioning, membership, failure handling and scaling. 

Table 1 presents a summary of the list of techniques Dynamo uses 
and their respective advantages. 

4.1 System Interface  
Dynamo stores objects associated with a key through a simple 
interface; it exposes two operations: get() and put(). The get(key) 
operation locates the object replicas associated with the key in the 
storage system and returns a single object or a list of objects with 
conflicting versions along with a context. The put(key, context, 
object) operation determines where the replicas of the object 
should be placed based on the associated key, and writes the 
replicas to disk. The context encodes system metadata about the 
object that is opaque to the caller and includes information such as 
the version of the object. The context information is stored along 
with the object so that the system can verify the validity of the 
context object supplied in the put request. 

Dynamo treats both the key and the object supplied by the caller 
as an opaque array of bytes. It applies a MD5 hash on the key to 
generate a 128-bit identifier, which is used to determine the 
storage nodes that are responsible for serving the key.  

4.2 Partitioning Algorithm 
One of the key design requirements for Dynamo is that it must 
scale incrementally. This requires a mechanism to dynamically 
partition the data over the set of nodes (i.e., storage hosts) in the 
system. Dynamo’s partitioning scheme relies on consistent 
hashing to distribute the load across multiple storage hosts. In 
consistent hashing [10], the output range of a hash function is 
treated as a fixed circular space or “ring” (i.e. the largest hash 
value wraps around to the smallest hash value). Each node in the 
system is assigned a random value within this space which 
represents its “position” on the ring. Each data item identified by 
a key is  assigned to a node by hashing the data item’s key to yield 
its position on the ring, and then walking the ring clockwise to 
find the first node with a position larger than the item’s position. 
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Figure 2: Partitioning and replication of keys in Dynamo 
ring.  

Table 1: Summary of techniques used in Dynamo and 
their advantages. 

Problem Technique Advantage 

Partitioning Consistent Hashing Incremental 
Scalability 

High Availability 
for writes 

Vector clocks with 
reconciliation during 

reads 

Version size is 
decoupled from 

update rates. 

Handling temporary 
failures 

Sloppy Quorum and 
hinted handoff 

Provides high 
availability and 

durability guarantee 
when some of the 
replicas are not 

available. 

Recovering from 
permanent failures 

Anti-entropy using 
Merkle trees 

Synchronizes 
divergent replicas in 

the background. 

Membership and 
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Gossip-based 
membership protocol 
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and avoids having a 
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for storing 
membership and 
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information. 
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DetecZng	  Failures	  

•  Purely	  Local	  Decision	  
– Node	  A	  may	  decide	  independently	  that	  B	  has	  
failed	  

–  In	  response,	  requests	  go	  further	  in	  the	  pref.	  list	  
•  A	  request	  hits	  an	  unsuspecZng	  node	  	  
– “temporary	  failure”	  handling	  occur	  
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Handling	  Temporary	  Failures	  

Traditional replicated relational database systems focus on the 
problem of guaranteeing strong consistency to replicated data. 
Although strong consistency provides the application writer a 
convenient programming model, these systems are limited in 
scalability and availability [7]. These systems are not capable of 
handling network partitions because they typically provide strong 
consistency guarantees.  

3.3 Discussion 
Dynamo differs from the aforementioned decentralized storage 
systems in terms of its target requirements. First, Dynamo is 
targeted mainly at applications that need an “always writeable” 
data store where no updates are rejected due to failures or 
concurrent writes. This is a crucial requirement for many Amazon 
applications. Second, as noted earlier, Dynamo is built for an 
infrastructure within a single administrative domain where all 
nodes are assumed to be trusted. Third, applications that use 
Dynamo do not require support for hierarchical namespaces (a 
norm in many file systems) or complex relational schema 
(supported by traditional databases). Fourth, Dynamo is built for 
latency sensitive applications that require at least 99.9% of read 
and write operations to be performed within a few hundred 
milliseconds. To meet these stringent latency requirements, it was 
imperative for us to avoid routing requests through multiple nodes 
(which is the typical design adopted by several distributed hash 
table systems such as Chord and Pastry). This is because multi-
hop routing increases variability in response times, thereby 
increasing the latency at higher percentiles. Dynamo can be 
characterized as a zero-hop DHT, where each node maintains 
enough routing information locally to route a request to the 
appropriate node directly. 

4. SYSTEM ARCHITECTURE 
The architecture of a storage system that needs to operate in a 
production setting is complex. In addition to the actual data 
persistence component, the system needs to have scalable and 
robust solutions for load balancing, membership and failure 
detection, failure recovery, replica synchronization, overload 
handling, state transfer, concurrency and job scheduling, request 
marshalling, request routing, system monitoring and alarming, 
and configuration management. Describing the details of each of 
the solutions is not possible, so this paper focuses on the core 
distributed systems techniques used in Dynamo: partitioning, 
replication, versioning, membership, failure handling and scaling. 

Table 1 presents a summary of the list of techniques Dynamo uses 
and their respective advantages. 

4.1 System Interface  
Dynamo stores objects associated with a key through a simple 
interface; it exposes two operations: get() and put(). The get(key) 
operation locates the object replicas associated with the key in the 
storage system and returns a single object or a list of objects with 
conflicting versions along with a context. The put(key, context, 
object) operation determines where the replicas of the object 
should be placed based on the associated key, and writes the 
replicas to disk. The context encodes system metadata about the 
object that is opaque to the caller and includes information such as 
the version of the object. The context information is stored along 
with the object so that the system can verify the validity of the 
context object supplied in the put request. 

Dynamo treats both the key and the object supplied by the caller 
as an opaque array of bytes. It applies a MD5 hash on the key to 
generate a 128-bit identifier, which is used to determine the 
storage nodes that are responsible for serving the key.  

4.2 Partitioning Algorithm 
One of the key design requirements for Dynamo is that it must 
scale incrementally. This requires a mechanism to dynamically 
partition the data over the set of nodes (i.e., storage hosts) in the 
system. Dynamo’s partitioning scheme relies on consistent 
hashing to distribute the load across multiple storage hosts. In 
consistent hashing [10], the output range of a hash function is 
treated as a fixed circular space or “ring” (i.e. the largest hash 
value wraps around to the smallest hash value). Each node in the 
system is assigned a random value within this space which 
represents its “position” on the ring. Each data item identified by 
a key is  assigned to a node by hashing the data item’s key to yield 
its position on the ring, and then walking the ring clockwise to 
find the first node with a position larger than the item’s position. 
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X	  

Add	  E	  to	  the	  replica	  set!	  
	  

•  E	  is	  in	  replica	  set	  
– Needs	  to	  receive	  
the	  replica	  

– Hinted	  Handoff:	  
replica	  contains	  
“original”	  node	  

•  When	  C	  comes	  back	  
– E	  forwards	  the	  
replica	  back	  to	  C	  
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Managing	  Membership	  

•  Peers	  randomly	  tell	  another	  their	  known	  
membership	  history	  –	  “gossiping”	  

•  Also	  called	  epidemic	  algorithm	  
– Knowledge	  spreads	  like	  a	  disease	  through	  
system	  

– Great	  for	  ad	  hoc	  systems,	  self-‐
configuraZon,	  etc.	  

– Does	  this	  make	  sense	  in	  Amazon’s	  
environment?	  
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Gossip	  could	  parZZon	  the	  ring	  

•  Possible	  Logical	  ParZZons	  
– A	  and	  B	  choose	  to	  join	  ring	  at	  about	  the	  
same	  Zme:	  unaware	  of	  one	  another,	  may	  
take	  long	  Zme	  to	  converge	  to	  one	  another	  

•  SoluZon:	  
– Use	  seed	  nodes	  to	  reconcile	  membership	  
views:	  well-‐known	  peers	  which	  are	  
contacted	  more	  frequently	  
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Why	  is	  Dynamo	  Different?	  

•  So	  far,	  looks	  a	  lot	  like	  normal	  p2p	  
•  Amazon	  wants	  to	  use	  this	  for	  applicaZon	  data!	  
•  Lots	  of	  potenZal	  synchronizaZon	  problems	  
•  Dynamo	  uses	  versioning	  to	  provide	  eventual	  
consistency.	  
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Consistency	  Problems	  
•  Shopping	  Cart	  Example:	  
– Object	  is	  a	  history	  of	  “adds”	  and	  “removes”	  
– All	  adds	  are	  important	  (trying	  to	  make	  money)	  

Client:	  
	  
Put(k,	  [+1	  Banana])	  
Z	  =	  get(k)	  
Put(k,	  Z	  +	  [+1	  Banana])	  
Z	  =	  get(k)	  
Put(k,	  Z	  +	  [-‐1	  Banana])	  

Expected	  Data	  at	  Server:	  
	  
[+1	  Banana]	  
[+1	  Banana,	  +1	  Banana]	  
[+1	  Banana,	  +1	  Banana,	  	  
	  	  -‐1	  Banana]	  
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What	  if	  a	  failure	  occurs?	  
Client:	  
	  
Put(k,	  [+1	  Banana])	  
Z	  =	  get(k)	  
Put(k,	  Z	  +	  [+1	  Banana])	  
Z	  =	  get(k)	  
Put(k,	  Z	  +	  [-‐1	  Banana])	  

Data	  on	  Dynamo:	  
	  
[+1	  Banana]	  	   	   	   	   	  at	  A	  
A	  Crashes	  
B	  not	  in	  first	  Put’s	  quorum	  
[+1	  Banana]	  	   	   	   	   	  at	  B	  
[+1	  Banana,	  -‐1	  Banana]	   	  at	  B	  
Node	  A	  Comes	  Online	  
	  
	  

At	  this	  point,	  Node	  A	  and	  B	  disagree	  about	  the	  	  
current	  state	  of	  the	  object	  –	  how	  is	  that	  resolved?	  
Can	  we	  even	  tell	  that	  there	  is	  a	  conflict?	  
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“Time”	  is	  largely	  a	  human	  construct	  

•  What	  about	  Zme-‐stamping	  objects?	  
– We	  could	  authoritaZvely	  say	  whether	  an	  object	  is	  
newer	  or	  older…	  

–  all	  events	  are	  not	  necessarily	  witnessed	  
•  If	  our	  system’s	  noZon	  of	  Zme	  corresponds	  to	  
“real-‐Zme”…	  
– A	  new	  object	  always	  blasts	  away	  older	  versions,	  even	  
though	  those	  versions	  may	  have	  important	  updates	  
(as	  in	  bananas	  example).	  

•  Requires	  a	  new	  noZon	  of	  Zme	  (causal	  in	  nature)	  
•  Anyhow,	  real-‐Zme	  is	  impossible	  in	  any	  case	  
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Causality	  

•  Objects	  are	  causally	  related	  if	  the	  value	  of	  one	  
object	  depends	  on	  (or	  witnessed)	  the	  previous	  

•  Conflicts	  can	  be	  detected	  when	  replicas	  
contain	  causally	  independent	  objects	  for	  a	  
given	  key.	  

•  Can	  we	  have	  a	  noZon	  of	  Zme	  which	  captures	  
causality?	  

	  



21 

Versioning	  

•  Key	  Idea:	  every	  PUT	  includes	  a	  version,	  
indicaZng	  the	  most	  recently	  witnessed	  version	  
of	  the	  object	  being	  updated	  

•  Problem:	  replicas	  may	  have	  diverged	  
– No	  single	  authoritaZve	  version	  number	  (or	  “clock”	  
number)	  

– NoZon	  of	  Zme	  must	  use	  a	  par+al	  ordering	  of	  
events	  
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Vector	  Clocks	  

•  Every	  replica	  has	  its	  own	  logical	  clock	  
–  Incremented	  before	  it	  sends	  a	  message	  

•  Every	  message	  aFached	  with	  vector	  version	  
–  Includes	  originator’s	  clock	  
– Highest	  seen	  logical	  clocks	  for	  each	  replica	  

•  If	  M1	  is	  causally	  dependent	  on	  M0:	  
– Replica	  sending	  M1	  will	  have	  seen	  M0	  

– Replica	  will	  have	  seen	  clocks	  ≥	  all	  clocks	  in	  M0	  
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Vector	  Clocks	  in	  Dynamo	  

Dynamo has access to multiple branches that cannot be 
syntactically reconciled, it will return all the objects at the leaves, 
with the corresponding version information in the context. An 
update using this context is considered to have reconciled the 
divergent versions and the branches are collapsed into a single 
new version. 

To illustrate the use of vector clocks, let us consider the example 
shown in Figure 3.  A client writes a new object. The node (say 
Sx) that handles the write for this key increases its sequence 
number and uses it to create the data's vector clock. The system 
now has the object D1 and its associated clock [(Sx, 1)]. The 
client updates the object. Assume the same node handles this 
request as well. The system now also has object D2 and its 
associated clock [(Sx, 2)]. D2 descends from D1 and therefore 
over-writes D1, however there may be replicas of D1 lingering at 
nodes that have not yet seen D2. Let us assume that the same 
client updates the object again and a different server (say Sy) 
handles the request. The system now has data D3 and its 
associated clock [(Sx, 2), (Sy, 1)].  

Next assume a different client reads D2 and then tries to update it, 
and another node (say Sz) does the write. The system now has D4 
(descendant of D2) whose version clock is [(Sx, 2), (Sz, 1)]. A 
node that is aware of D1 or D2 could determine, upon receiving 
D4 and its clock, that D1 and D2 are overwritten by the new data 
and can be garbage collected. A node that is aware of D3 and 
receives D4 will find that there is no causal relation between 
them. In other words, there are changes in D3 and D4 that are not 
reflected in each other. Both versions of the data must be kept and 
presented to a client (upon a read) for semantic reconciliation.  

 Now assume some client reads both D3 and D4 (the context will 
reflect that both values were found by the read). The read's 
context is a summary of the clocks of D3 and D4, namely [(Sx, 2), 
(Sy, 1), (Sz, 1)]. If the client performs the reconciliation and node 
Sx coordinates the write, Sx will update its sequence number in 
the clock. The new data D5 will have the following clock: [(Sx, 
3), (Sy, 1), (Sz, 1)].  

A possible issue with vector clocks is that the size of vector 
clocks may grow if many servers coordinate the writes to an 

object. In practice, this is not likely because the writes are usually 
handled by one of the top N nodes in the preference list. In case of 
network partitions or multiple server failures, write requests may 
be handled by nodes that are not in the top N nodes in the 
preference list causing the size of vector clock to grow. In these 
scenarios, it is desirable to limit the size of vector clock. To this 
end, Dynamo employs the following clock truncation scheme: 
Along with each (node, counter) pair, Dynamo stores a timestamp 
that indicates the last time the node updated the data item. When 
the number of (node, counter) pairs in the vector clock reaches a 
threshold (say 10), the oldest pair is removed from the clock. 
Clearly, this truncation scheme can lead to inefficiencies in 
reconciliation as the descendant relationships cannot be derived 
accurately. However, this problem has not surfaced in production 
and therefore this issue has not been thoroughly investigated.  

4.5 Execution of get () and put () operations 
Any storage node in Dynamo is eligible to receive client get and 
put operations for any key. In this section, for sake of simplicity, 
we describe how these operations are performed in a failure-free 
environment and in the subsequent section we describe how read 
and write operations are executed during failures.  

Both get and put operations are invoked using Amazon’s 
infrastructure-specific request processing framework over HTTP. 
There are two strategies that a client can use to select a node: (1) 
route its request through a generic load balancer that will select a 
node based on load information, or (2) use a partition-aware client 
library that routes requests directly to the appropriate coordinator 
nodes. The advantage of the first approach is that the client does 
not have to link any code specific to Dynamo in its application, 
whereas the second strategy can achieve lower latency because it 
skips a potential forwarding step. 

A node handling a read or write operation is known as the 
coordinator. Typically, this is the first among the top N nodes in 
the preference list. If the requests are received through a load 
balancer, requests to access a key may be routed to any random 
node in the ring. In this scenario, the node that receives the 
request will not coordinate it if the node is not in the top N of the 
requested key’s preference list. Instead, that node will forward the 
request to the first among the top N nodes in the preference list. 

 Read and write operations involve the first N healthy nodes in the 
preference list, skipping over those that are down or inaccessible. 
When all nodes are healthy, the top N nodes in a key’s preference 
list are accessed. When there are node failures or network 
partitions, nodes that are lower ranked in the preference list are 
accessed.  

To maintain consistency among its replicas, Dynamo uses a 
consistency protocol similar to those used in quorum systems. 
This protocol has two key configurable values: R and W. R is the 
minimum number of nodes that must participate in a successful 
read operation. W is the minimum number of nodes that must 
participate in a successful write operation.  Setting R and W such 
that R + W > N yields a quorum-like system. In this model, the 
latency of a get (or put) operation is dictated by the slowest of the 
R (or W) replicas. For this reason, R and W are usually 
configured to be less than N, to provide better latency.  

Upon receiving a put() request for a key, the coordinator generates 
the vector clock for the new version and writes the new version 
locally. The coordinator then sends the new version (along with 

 
Figure 3: Version evolution of an object over time. 
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•  Vector	  clock	  per	  object	  
•  Gets()	  return	  vector	  clock	  
of	  object	  

•  Puts()	  contain	  most	  recent	  
vector	  clock	  
–  Coordinator	  treated	  as	  
“originator”	  

•  Serious	  conflicts	  are	  
resolved	  by	  the	  
applicaZon	  /	  client	  
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Vector	  Clocks	  in	  Banana	  Example	  
Client:	  
	  
Put(k,	  [+1	  Banana])	  
Z	  =	  get(k)	  
Put(k,	  Z	  +	  [+1	  Banana])	  
Z	  =	  get(k)	  
Put(k,	  Z	  +	  [-‐1	  Banana])	  

Data	  on	  Dynamo:	  
	  
[+1]	   	   	   	  v=[(A,1)]	  	   	  at	  A	  
A	  Crashes	  
B	  not	  in	  first	  Put’s	  quorum	  
[+1]	   	   	   	  v=[(B,1)] 	   	  at	  B	  
[+1,-‐1]	   	   	  v=[(B,2)] 	   	  at	  B	  
Node	  A	  Comes	  Online	  
	  
[(A,1)]	  and	  [(B,2)]	  are	  a	  conflict!	  
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Eventual	  Consistency	  
•  Versioning,	  by	  itself,	  does	  not	  guarantee	  
consistency	  
–  If	  you	  don’t	  require	  a	  majority	  quorum,	  you	  need	  to	  
periodically	  check	  that	  peers	  aren’t	  in	  conflict	  

– How	  oven	  do	  you	  check	  that	  events	  are	  not	  in	  
conflict?	  

•  In	  Dynamo	  
– Nodes	  consult	  with	  one	  another	  using	  a	  tree	  hashing	  
(Merkel	  tree)	  scheme	  

– Allows	  them	  to	  quickly	  idenZfy	  whether	  they	  hold	  
different	  versions	  of	  parZcular	  objects	  and	  enter	  
conflict	  resoluZon	  mode	  
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NoSQL	  

•  NoZce	  that	  Eventual	  Consistency,	  ParZal	  
Ordering	  do	  not	  give	  you	  ACID!	  

•  Rise	  of	  NoSQL	  (outside	  of	  academia)	  
– Memcache	  
– Cassandra	  
– Redis	  
– Big	  Table	  
– Neo4J	  
– MongoDB	  


