COS 426 Computer Graphics Princeton University

Ray Tracing

Ray/primitive intersection

Ellipsoid

Hyperboloid of one sheet

Hyperbolic paraboloid

Hyperboloid of two sheets

Elliptic paraboloid

Cone

Ellipsoid

Hyperboloid of one sheet

Hyperbolic paraboloid

Hyperboloid of two sheets

Elliptic paraboloid

Cone

Ellipsoid

Hyperboloid of one sheet

Hyperbolic paraboloid

Hyperboloid of two sheets

Elliptic paraboloid

Cone

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$$

- Ray/primitive intersection:
 - Write down all equations
 - Solve for intersection

- Ray/primitive intersection:
 - Write down all equations
 - Solve for intersection
- Quadric:

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$$

- Ray:
 - **—** ???

- Ray/primitive intersection:
 - Write down all equations
 - Solve for intersection
- Quadric:

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$$

• Ray:

$$p = p_0 + t \cdot v$$

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$$

$$p = p_{0} + t \cdot v$$

$$y = x_{0} + t \cdot v_{x}$$

$$y = y_{0} + t \cdot v_{y}$$

$$z = z_{0} + t \cdot v_{z}$$

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$$

$$p = p_{0} + t \cdot v$$

$$x = x_{0} + t \cdot v_{x}$$

$$y = y_{0} + t \cdot v_{y}$$

$$z = z_{0} + t \cdot v_{z}$$

$$K \cdot t^2 + L \cdot t + M = 0$$

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$$

$$p = p_{0} + t \cdot v$$

$$x = x_{0} + t \cdot v_{x}$$

$$y = y_{0} + t \cdot v_{y}$$

$$z = z_{0} + t \cdot v_{z}$$

$$K \cdot t^2 + L \cdot t + M = 0$$

A positive real solution exists

Two complex solution solution

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$$

$$p = p_{0} + t \cdot v$$

$$x = x_{0} + t \cdot v_{x}$$

$$y = y_{0} + t \cdot v_{y}$$

$$z = z_{0} + t \cdot v_{z}$$

$$K \cdot t^2 + L \cdot t + M = 0$$

A positive real solution exists

Two complex solutions

Two real negative solution

Pick smallest positive value to find intersection

Does not intersect

Does not intersect

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$$

 $p = p_{0} + t \cdot v$

$$\frac{Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0}{p = p_{0} + t \cdot v}$$

$$pQp^T + Pp^T + R = 0$$

$$\frac{Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0}{p = p_{0} + t \cdot v}$$

$$pQp^T + Pp^T + R = 0$$

$$3 \times 3 \qquad 1 \times 1$$

$$\frac{Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0}{p = p_{0} + t \cdot v}$$

$$pQp^T + Pp^T + R = 0$$

$$3 \times 3 \qquad 1 \times 1$$

$$(p_0 + tv)Q(p_0 + tv)^T + P(p_0 + tv)^T + R = 0$$

$$pQp^T + Pp^T + R = 0$$

If you use general quadric for sphere

$$pQp^T + Pp^T + R = 0$$

– What do you need to define?

$$pQp^T + Pp^T + R = 0$$

- What do you need to define?
- Q, P, R

$$pQp^T + Pp^T + R = 0$$

- What do you need to define?
- Q, P, R

$$Q = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$pQp^T + Pp^T + R = 0$$

- What do you need to define?
- Q, P, R

$$Q = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$P = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$pQp^T + Pp^T + R = 0$$

- What do you need to define?
- -Q, P, R

$$Q = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$R = -r^2$$

$$P = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

Ray Tracing

Ray/primitive intersection

- Bounding Volume
- Generate Structure (e.g. octree)
- Traverse Structure

Bounding Volume

- Bounding sphere
- Axis-aligned bounding box (AABB)
- Oriented bounding box (OBB)
- Bounding volume hierarchy

Generate Structure (e.g. octree)

Traverse Structure

Generate Structure (e.g. octree)

Traverse Structure

ORDER: 3.3, 3.4, 3.2, 2

If a ray intersected something in 3.3, can it intersect something (with a smaller t) in a later node?

ORDER: 3.3, 3.4, 3.2, 2

If a ray intersected something in 3.3, can it intersect something (with a smaller t) in a later node?

Think about objects on boundaries.

Example: should intersect the circle, but the triangle is visited first

The End

Questions?