
Passive Dynamics and 
Particle Systems"

COS 426!



Computer Animation"
•  Animation!
  Make objects change over time  

according to scripted actions!

•  Simulation / dynamics!
  Predict how objects change over time  

according to physical laws!

University of Illinois 

Pixar 



Dynamics"

Hodgins 



Passive Dynamics"
•  No muscles or motors!
  Smoke!
  Water!
  Cloth!
  Fire!
  Fireworks!
  Dice!

McAllister 



Passive Dynamics"
•  Physical laws!
  Newton’s laws!
  Hooke’s law!
  Etc.!

•  Physical phenomena!
  Gravity!
  Momentum!
  Friction!
  Collisions!
  Elasticity!
  Fracture!

McAllister 



Particle Systems"
•  A particle is a point mass !
  Position!
  Velocity!
  Mass!
  Drag!
  Elasticity!
  Lifetime!
  Color!

•  Use lots of particles to model complex 
phenomena!
  Keep array of particles!
  Newton’s laws!

p = (x,y,z) 

v 



Particle Systems"
•  For each frame:!
  For each simulation step (Δt)!

 Create new particles and assign attributes!
 Update particles based on attributes and physics!
 Delete any expired particles!

  Render particles!



Creating Particles"
•  Where to create particles?!
  Predefined source!
  Where particle density is low!
  Surface of shape!
  etc.!

Reeves 



Creating Particles"
•  Example: particles emanating from shape!
  Line!
  Box!
  Circle"
  Sphere"
  Cylinder!
  Cone!
  Mesh!

McAllister 



Creating Particles"
•  Example: particles emanating from sphere!

nigels.com 



Creating Particles"
•  Example: particles emanating from sphere!

!
Selecting random position on surface of sphere!

!

1. z = random [−r, r] 
2. phi = random [0, 2π) 
3. d = sqrt(r2 − z2) 
4. px = cx + d * cos(phi) 
5. py = cy + d * sin(phi)  
6. pz = cz + z z r 

d 

(cx,cy,cz) 



Creating Particles"
•  Example: particles emanating from sphere!

!
Selecting random direction within angle cutoff of normal!

! Angle 
cutoff 

V 

N 

t1 

t2 
A 

1. N = surface normal 
2. A = any vector on tangent plane 
3. t1 = random [0, 2π) 
3. t2 = random [0, sin(angle cutoff)) 
4. V = rotate A around N by t1 
5. V = rotate V around VxN by acos(t2) 

acos(t2) 



Particle Systems"
•  For each frame:!
  For each simulation step (Δt)!

 Create new particles and assign attributes!
 Update particles based on attributes and physics!
 Delete any expired particles!

  Render particles!



Equations of Motion"
•  Newton’s Law for a point mass!
  f = ma  
!

•  Computing particle motion requires solving  
second-order differential equation  
 
 
!

•  Add variable v to form coupled  
first-order differential equations: 
“state-space form”!



Solving the Equations of Motion"
•  Initial value problem!
  Know x(0), v(0)!
  Can compute force (and therefore acceleration) 

for any position / velocity / time!
  Compute x(t) by forward integration!

f 
x(0) 

x(t) 

Hodgins 



Solving the Equations of Motion"
•  Forward (explicit) Euler integration!
  x(t+Δt) ← x(t) + Δt v(t) !
  v(t+Δt) ← v(t) + Δt f(x(t), v(t), t) / m!

Hodgins 



Solving the Equations of Motion"
•  Forward (explicit) Euler integration!
  x(t+Δt) ← x(t) + Δt v(t) !
  v(t+Δt) ← v(t) + Δt f(x(t), v(t), t) / m!

•  Problem:!
  Accuracy decreases as Δt gets bigger!

Hodgins 



Solving the Equations of Motion"
•  Midpoint method (2nd-order Runge-Kutta)!

1.  Compute an Euler step!
2.  Evaluate f at the midpoint of Euler step!
3.  Compute new position / velocity using  

midpoint velocity / acceleration!

  xmid ← x(t) + Δt / 2 * v(t) !
  vmid ← v(t) + Δt / 2 * f(x(t), v(t), t) / m!
  x(t+Δt) ← x(t) + Δt vmid!

  v(t+Δt) ← v(t) + Δt f(xmid, vmid, t) / m!

Hodgins 



Solving the Equations of Motion"
•  Adaptive step size!
  Repeat until error is below threshold!

1.  Compute xh by taking one step of size h!
2.  Compute xh/2 by taking 2 steps of size h / 2!
3.  Compute error = | xh  - xh/2 |!
4.  If (error < threshold) break!
5.  Else, reduce step size and try again!

error 

xh!

xh/2!



Particle System Forces"
•  Force fields!
  Gravity, wind, pressure!

•  Viscosity/damping!
  Drag, friction!

•  Collisions!
  Static objects in scene!
  Other particles!

•  Attraction and repulsion!
  Springs between neighboring particles (mesh)!
  Gravitational pull, charge!



Particle System Forces"
•  Gravity!
  Force due to gravitational pull (of earth)!
  g = acceleration due to gravity (m/s2)!

!
! mgfg = g = (0, -9.80665, 0) 



Particle System Forces"
•  Drag!
  Force due to resistance of medium!
  kdrag = drag coefficient (kg/s)!

  Air resistance sometimes taken as proportional to v2!

!
!

vkf dragd −=

p 

v 

fd 



Particle System Forces"
•  Sinks!
  Force due to attractor in scene!

!
!

p 

fs 

2 
intensity

dqadlaca 
fs ⋅+⋅+
=

Sink 
Closest point 
on sink surface 

d 



Particle System Forces"
•  Gravitational pull of other particles!
  Newton’s universal law of gravitation!

!
!

p 

fG 
 

-22-11 kg m N  10 x 6.67428=G

d 

2
21

d
m mGfG
⋅

=

q 



Particle System Forces"
•  Springs!
  Hooke’s law!

!
!

fH 
 

( )

tcoefficien spring
length resting

),(
/)(

  ),()(

=
=

−=

−−=

−=

s

sH

k
s

pqqpd
pqpqD

Dsqpdkpf



Particle System Forces"
•  Springs!
  Hooke’s law with damping!

!
!

( ) ( )[ ]

q ofvelocity )(
p ofvelocity )(

tcoefficien damping
tcoefficien spring

length resting
),(

/)(

  )()( ),()(

=
=

=
=
=

−=

−−=

⋅−+−=

qv
pv

k
k
s

pqqpd
pqpqD

DDpvqvksqpdkpf

d

s

dsH

fH 
 

v(p) 

v(q) 

sd mkk 2~



Particle System Forces"
•  Spring-mass mesh!

Hodgins 



Particle System Forces"
•  Collisions!
  Collision detection !
  Collision response!

Witkin 



Particle System Forces"
•  Collision detection!
  Intersect ray with scene!
  Compute up to Δt at time of first collision,  

and then continue from there!

Witkin 



Particle System Forces"
•  Collision response!
  No friction: elastic collision  

(for mtarget >> mparticle: specular reflection)!

  Otherwise, total momentum conserved, 
energy dissipated if inelastic!

N!

In!Out!
θ!θ!



Particle Systems"
•  For each frame:!
  For each simulation step (Δt)!

 Create new particles and assign attributes!
 Update particles based on attributes and physics!
 Delete any expired particles!

  Render particles!



Deleting Particles"
•  When to delete particles?!
  When life span expires!
  When intersect predefined sink surface!
  Where density is high!
  Random!

McAllister 



Particle Systems"
•  For each frame:!
  For each simulation step (Δt)!

 Create new particles and assign attributes!
 Update particles based on attributes and physics!
 Delete any expired particles!

  Render particles!



Rendering Particles"
•  Rendering styles!

 Points!
  Polygons!
  Shapes!
  Trails!
  etc.!

McAllister 



Rendering Particles"
•  Rendering styles!
  Points!
 Textured polygons: sprites!
  Shapes!
  Trails!
  etc.!

McAllister 



Rendering Particles"
•  Rendering styles!
  Points!
  Polygons!
 Shapes!
  Trails!
  etc.!

McAllister 



Rendering Particles"
•  Rendering styles!
  Points!
  Polygons!
  Shapes!
 Trails!
  etc.! McAllister 



Passive Dynamics"
•  Examples!
  Smoke!
  Water!
  Cloth!
  Fire!
  Fireworks!
  Dice!

McAllister 



Example: Gravity"

McAllister 



Example: Fire"



Example: Bouncing Off Particles"



Example: More Bouncing"

Bender 



Example: Cloth"

Breen 



Example: Cloth"

Bender 



Example: Flocks & Herds"

Reynolds 



Summary"
•  Particle systems!
  Lots of particles!
  Simple physics!

•  Interesting behaviors!
  Waterfalls!
  Smoke!
  Cloth!
  Flocks!

•  Solving motion equations!
  For each step, first sum forces,  

then update position and velocity!


