
The 3D Rasterization Pipeline!

COS 426!

3D Rendering Scenarios!
•  Batch!
  One image generated with as much quality as possible  

for a particular set of rendering parameters!
 Take as much time as is needed (minutes)!
 Useful for photorealistism, movies, etc.!

 Interactive!
  Images generated in fraction of a second (<1/10) 

with user input, animation, varying camera, etc.!
 Achieve highest quality possible in given time!
 Visualization, games, etc.!

3D Polygon Rendering!
•  Many applications use rendering of 3D polygons 

with direct illumination!

Bungie

3D Polygon Rendering!
•  Many applications use rendering of 3D polygons 

with direct illumination!

meshview

Ray Casting Revisited!
•  For each sample …!
  Construct ray from eye position through view plane!
  Find first surface intersected by ray through pixel!
  Compute color of sample based on illumination!

3D Polygon Rendering!
•  We can render polygons faster if we take

advantage of spatial coherence!

3D Polygon Rendering!
•  How?!

3D Polygon Rendering!
•  How?!

3D Polygon Rendering!
•  How?!

3D Rendering Pipeline (for direct illumination)!
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

This is a pipelined!
sequence of operations !

to draw 3D primitives!
into a 2D image !

3D Rendering Pipeline (for direct illumination)!
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

OpenGL executes steps !
of 3D rendering pipeline!

for each polygon!

glBegin(GL_POLYGON);
glVertex3f(0.0, 0.0, 0.0);
glVertex3f(1.0, 0.0, 0.0);
glVertex3f(0.0, 1.0, 0.0);
glEnd();

3D Rendering Pipeline (for direct illumination)!
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system!

3D Rendering Pipeline (for direct illumination)!
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system!

Illuminate according to lighting and reflectance!

3D Rendering Pipeline (for direct illumination)!
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system!

Transform into 3D camera coordinate system!

Illuminate according to lighting and reflectance!

3D Rendering Pipeline (for direct illumination)!
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system!

Transform into 3D camera coordinate system!

Transform into 2D camera coordinate system !

Illuminate according to lighting and reflectance!

3D Rendering Pipeline (for direct illumination)!
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system!

Transform into 3D camera coordinate system!

Clip primitives outside camera’s view!

Transform into 2D camera coordinate system !

Illuminate according to lighting and reflectance!

3D Rendering Pipeline (for direct illumination)!
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system!

Transform into 3D camera coordinate system!

Clip primitives outside camera’s view!

Transform into 2D camera coordinate system !

Illuminate according to lighting and reflectance!

Transform into image coordinate system !

3D Rendering Pipeline (for direct illumination)!
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system!

Transform into 3D camera coordinate system!

Draw pixels (includes texturing, hidden surface, ...)!

Clip primitives outside camera’s view!

Transform into 2D camera coordinate system !

Illuminate according to lighting and reflectance!

Transform into image coordinate system !

3D Rendering Pipeline (for direct illumination)!
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system!

Transform into 3D camera coordinate system!

Draw pixels (includes texturing, hidden surface, ...)!

Clip primitives outside camera’s view!

Transform into 2D camera coordinate system !

Illuminate according to lighting and reflectance!

Transform into image coordinate system !

Transformations!

Modeling!
Transformation!

Viewing!
Transformation!

2D Image Coordinates!

Projection!
Transformation!

Viewport!
Transformation!

3D Object Coordinates!

3D World Coordinates!

3D Camera Coordinates!

2D Screen Coordinates!

Transformations map points from !
one coordinate system to another!

p(x,y,z)!

p’(x’,y’)!
3D World!

Coordinates!

3D Camera
Coordinates

3D Object
Coordinates

x

z

y

Viewing Transformations!

Modeling!
Transformation!

Viewing!
Transformation!

2D Image Coordinates!

Projection!
Transformation!

Viewport!
Transformation!

3D Object Coordinates!

3D World Coordinates!

3D Camera Coordinates!

2D Screen Coordinates!

p(x,y,z)!

p’(x’,y’)!

}Viewing Transformations!

Review: Viewing Transformation!
•  Mapping from world to camera coordinates!
  Eye position maps to origin!
  Right vector maps to X axis!
  Up vector maps to Y axis!
  Back vector maps to Z axis !

x!

y!

z!

World!

right!
up!

back!

Camera!

View
plane

Review: Camera Coordinates!

Camera right vector!
maps to X axis!

Camera up vector !
maps to Y axis!

Camera back vector!
maps to Z axis!
(pointing out of page)!

•  Canonical coordinate system!
  Convention is right-handed (looking down -z axis)!
  Convenient for projection, clipping, etc.!

x!

y!

z!

Finding the viewing transformation!
•  We have the camera (in world coordinates)!
•  We want T taking objects from world to camera!

•  Trick: find T-1 taking objects in camera to world!

wpTcp =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

w
z
y
x

ponm
lkji
hgfe
dcba

w
z
y
x

'
'
'
'

cpTwp 1−=

?

Finding the Viewing Transformation!
•  Trick: map from camera coordinates to world!
  Origin maps to eye position!
  Z axis maps to Back vector !
  Y axis maps to Up vector!
  X axis maps to Right vector!

•  This matrix is T-1 so we invert it to get T … easy!!

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

w
z
y
x

EBUR
EBUR
EBUR
EBUR

w
z
y
x

wwww

zzzz

yyyy

xxxx

'
'
'
'

Viewing Transformations!

Modeling!
Transformation!

Viewing!
Transformation!

2D Image Coordinates!

Projection!
Transformation!

Viewport!
Transformation!

3D Object Coordinates!

3D World Coordinates!

3D Camera Coordinates!

2D Screen Coordinates!

p(x,y,z)!

p’(x’,y’)!

}Viewing Transformations!

Projection!
•  General definition:!
  Transform points in n-space to m-space (m<n)!

•  In computer graphics:!
  Map 3D camera coordinates to 2D screen coordinates!

Taxonomy of Projections!

FVFHP Figure 6.10

Taxonomy of Projections!

FVFHP Figure 6.10

Parallel Projection!

Angel Figure 5.4

•  Center of projection is at infinity!
  Direction of projection (DOP) same for all points!

DOP!

View!
Plane!

Orthographic Projections!

Angel Figure 5.5 Top! Side!

Front!

•  DOP perpendicular to view plane!

Parallel Projection Matrix!
•  General parallel projection transformation:!

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

11000
0000
0sin10
0cos01

c

c

c

s

s

s

s

z
y
x

L
L

w
z
y
x

φ

φ

Parallel Projection View Volume!

H&B Figure 12.30

Taxonomy of Projections!

FVFHP Figure 6.10

Perspective Projection!

Angel Figure 5.9

•  Map points onto “view plane” along “projectors”
emanating from “center of projection” (COP)!

Center of!
Projection!

View !
Plane!

Perspective Projection!
•  Compute 2D coordinates from 3D coordinates

with similar triangles!

(0,0,0) z

-y

-z

y

D!

(x,y,z)!

View
Plane

-z!

What are the coordinates!
of the point resulting from!
projection of (x,y,z) onto!
the view plane?!

Perspective Projection!
•  Compute 2D coordinates from 3D coordinates

with similar triangles!

(0,0,0) z

-y

-z

y

D!

(x,y,z)!

View
Plane

-z!

(xD/z, yD/z)!

Perspective Projection Matrix!
•  4x4 matrix representation?!

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1????
????
????
????

c

c

c

s

s

s

s

z
y
x

w
z
y
x

1

/
/

=
=
=
=

s

s

ccs

ccs

w
Dz

zDyy
zDxx

Perspective Projection Matrix!
•  4x4 matrix representation?!

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1????
????
????
????

c

c

c

s

s

s

s

z
y
x

w
z
y
x

1

/
/

=
=
=
=

s

s

ccs

ccs

w
Dz

zDyy
zDxx

Dzw
zz
yy
xx

c

c

c

c

/'
'
'
'

=
=
=
=

'/'
'/'
'/'

wzz
wyy
wxx

s

s

s

=
=
=

Perspective Projection Matrix!
•  4x4 matrix representation?!

1

/
/

=
=
=
=

s

s

ccs

ccs

w
Dz

zDyy
zDxx

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

10/100
0100
0010
0001

c

c

c

s

s

s

s

z
y
x

Dw
z
y
x

Dzw
zz
yy
xx

c

c

c

c

/'
'
'
'

=
=
=
=

'/'
'/'
'/'

wzz
wyy
wxx

s

s

s

=
=
=

•  In practice, want to compute a value related to
depth to include in z-buffer!

Perspective Projection Matrix!

1
/
/
/

=
−=

=
=

s

cs

ccs

ccs

w
zDz
zDyy
zDxx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

10/100
1000
0010
0001

c

c

c

s

s

s

s

z
y
x

Dw
z
y
x

Dzw
z

yy
xx

c

c

c

/'
1'

'
'

=
−=

=
=

'/'
'/'
'/'

wzz
wyy
wxx

s

s

s

=
=
=

Perspective Projection View Volume!

H&B Figure 12.30

View!
Plane!

Perspective vs. Parallel!
•  Perspective projection!

+  Size varies inversely with distance - looks realistic!
–  Distance and angles are not (in general) preserved!
–  Parallel lines do not (in general) remain parallel!

•  Parallel projection!
+ Good for exact measurements!
+  Parallel lines remain parallel!
–  Angles are not (in general) preserved!
–  Less realistic looking !

Transformations!

Modeling!
Transformation!

Viewing!
Transformation!

2D Image Coordinates!

Projection!
Transformation!

Viewport!
Transformation!

3D Object Coordinates!

3D World Coordinates!

3D Camera Coordinates!

2D Screen Coordinates!

Transformations map points from !
one coordinate system to another!

p(x,y,z)!

p’(x’,y’)!
3D World!

Coordinates!

3D Camera
Coordinates

3D Object
Coordinates

x

z

y

Viewport Transformation!
•  Transform 2D geometric primitives from  

screen coordinate system (normalized device
coordinates) to image coordinate system (pixels)!

Image!Screen!

Viewport!

Window!

Viewport Transformation!

vx1 vx2
vy1

vy2

wx1 wx2
wy1

wy2
Window! Viewport!

Screen Coordinates! Image Coordinates!

(wx,wy)! (vx,vy)!

vx = vx1 + (wx - wx1) * (vx2 - vx1) / (wx2 - wx1);
vy = vy1 + (wy - wy1) * (vy2 - vy1) / (wy2 - wy1);

•  Window-to-viewport mapping!

Summary of Transformations!

Modeling!
Transformation!

Viewing!
Transformation!

2D Image Coordinates!

Projection!
Transformation!

Viewport!
Transformation!

3D Object Coordinates!

3D World Coordinates!

3D Camera Coordinates!

2D Screen Coordinates!

p(x,y,z)!

p’(x’,y’)!

}Viewing transformations!

}Modeling transformation!

}Viewport transformation!

3D Rendering Pipeline (for direct illumination)!
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates!

3D Modeling Coordinates!

3D World Coordinates!

3D Camera Coordinates!

2D Screen Coordinates!

2D Screen Coordinates!

Viewing
Transformation

3D World Coordinates!

2D Image Coordinates!

Clipping!
•  Avoid drawing parts of primitives outside window!
  Window defines part of scene being viewed !
  Must draw geometric primitives only inside window!

Viewing!
Window!

Polygon Clipping!
•  Find the part of a polygon inside the clip window?!

Before Clipping!

Polygon Clipping!
•  Find the part of a polygon inside the clip window?!

After Clipping!

Sutherland Hodgeman Clipping!
•  Clip to each window boundary one at a time  

(for convex polygons)!

Sutherland Hodgeman Clipping!
•  Clip to each window boundary one at a time!

Sutherland Hodgeman Clipping!
•  Clip to each window boundary one at a time!

Sutherland Hodgeman Clipping!
•  Clip to each window boundary one at a time!

Sutherland Hodgeman Clipping!
•  Clip to each window boundary one at a time!

Clipping to a Boundary!
•  Do inside test for each point in sequence, 

Insert new points when cross window boundary,
Remove points outside window boundary!

Outside!
Inside!

Window!
Boundary!

P1!
P2!

P5!

P4!

P3!

Clipping to a Boundary!
•  Do inside test for each point in sequence, 

Insert new points when cross window boundary,
Remove points outside window boundary!

Outside!
Inside!

Window!
Boundary!

P1!
P2!

P5!

P4!

P3!

Clipping to a Boundary!
•  Do inside test for each point in sequence, 

Insert new points when cross window boundary,
Remove points outside window boundary!

Outside!
Inside!

Window!
Boundary!

P1!
P2!

P5!

P4!

P3!

Clipping to a Boundary!
•  Do inside test for each point in sequence, 

Insert new points when cross window boundary,
Remove points outside window boundary!

Outside!
Inside!

Window!
Boundary!

P1!
P2!

P5!

P4!

P3!

P’!

Clipping to a Boundary!
•  Do inside test for each point in sequence, 

Insert new points when cross window boundary,
Remove points outside window boundary!

Outside!
Inside!

Window!
Boundary!

P1!
P2!

P5!

P4!

P3!

P’!

Clipping to a Boundary!
•  Do inside test for each point in sequence, 

Insert new points when cross window boundary,
Remove points outside window boundary!

Outside!
Inside!

Window!
Boundary!

P1!
P2!

P5!

P4!

P3!

P’!

Clipping to a Boundary!
•  Do inside test for each point in sequence, 

Insert new points when cross window boundary,
Remove points outside window boundary!

Outside!
Inside!

Window!
Boundary!

P1!
P2!

P5!

P4!

P3!

P’’!P’!

Clipping to a Boundary!
•  Do inside test for each point in sequence, 

Insert new points when cross window boundary,
Remove points outside window boundary!

Outside!
Inside!

Window!
Boundary!

P1!
P2!

P5!

P4!

P3!

P’’!P’!

Clipping to a Boundary!
•  Do inside test for each point in sequence, 

Insert new points when cross window boundary,
Remove points outside window boundary!

Outside!
Inside!

Window!
Boundary!

P1!
P2!

3D Rendering Pipeline (for direct illumination)!

Viewing!
Window!

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates!

3D Modeling Coordinates!

3D World Coordinates!

3D Camera Coordinates!

2D Screen Coordinates!

2D Screen Coordinates!

Viewing
Transformation

3D World Coordinates!

2D Image Coordinates!

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates!

3D Modeling Coordinates!

3D World Coordinates!

3D Camera Coordinates!

2D Screen Coordinates!

2D Screen Coordinates!

Viewing
Transformation

3D World Coordinates!

2D Image Coordinates!

Standard (aliased) 
Scan Conversion!

P1

P2

P3

3D Rendering Pipeline (for direct illumination)!

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates!

3D Modeling Coordinates!

3D World Coordinates!

3D Camera Coordinates!

2D Screen Coordinates!

2D Screen Coordinates!

Viewing
Transformation

3D World Coordinates!

2D Image Coordinates!

Antialiased!
Scan Conversion!

P1

P2

P3

3D Rendering Pipeline (for direct illumination)!

Scan Conversion!
•  Render an image of a geometric primitive  

by setting pixel colors!

•  Example: Filling the inside of a triangle!

P1

P2

P3

void SetPixel(int x, int y, Color rgba)

Triangle Scan Conversion!
•  Properties of a good algorithm!
  Symmetric!
  Straight edges!
  No cracks between adjacent primitives!
  (Antialiased edges)!
  FAST!!

P1

P2

P3

P4

•  Color all pixels inside triangle !

Simple Algorithm!

P1

P2

P3

void ScanTriangle(Triangle T, Color rgba){
 for each pixel P in bbox(T){
 if (Inside(T, P))
 SetPixel(P.x, P.y, rgba);
 }

}

Triangle Sweep-Line Algorithm!
•  Take advantage of spatial coherence!
  Compute which pixels are inside using horizontal spans!
  Process horizontal spans in scan-line order!

•  Take advantage of edge linearity!
  Use edge slopes to update coordinates incrementally!

dx!
dy!

Triangle Sweep-Line Algorithm!
void ScanTriangle(Triangle T, Color rgba){
 for each edge pair {
 initialize xL, xR;
 compute dxL/dyL and dxR/dyR;
 for each scanline at y
 for (int x = xL; x <= xR; x++)
 SetPixel(x, y, rgba);
 xL += dxL/dyL;
 xR += dxR/dyR;
 }

}

xL! xR!

dxL!
dyL!

dxR!
dyR!

Triangle Sweep-Line Algorithm!
void ScanTriangle(Triangle T, Color rgba){
 for each edge pair {
 initialize xL, xR;
 compute dxL/dyL and dxR/dyR;
 for each scanline at y
 for (int x = xL; x <= xR; x++)
 SetPixel(x, y, rgba);
 xL += dxL/dyL;
 xR += dxR/dyR;
 }

}

xL! xR!

dxL!
dyL!

dxR!
dyR!

Minimize computation
in inner loops

GPU Architecture!

GeForce 6 Series Architecture GPU Gems 2, NVIDIA

GPU Architecture!

GPU Gems 2, NVIDIA

GeForce 6 Series Architecture

