INTRACTABILITY |l

PEARSON
g

Addison
Wesley

» special cases

» approximation algorithms

exact exponential algorithms

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on May 9, 2013 9:04 AM

Coping with NP-completeness

Q. Suppose | need to solve an NP-hard problem. What should | do?

A. Sacrifice one of three desired features.
i. Solve arbitrary instances of the problem.
ii. Solve problem to optimality.
iii. Solve problem in polynomial time.

Coping strategies.
i. Design algorithms for special cases of the problem.
ii. Design approximation algorithms or heuristics.
iii. Design algorithms that may take exponential time.

INTRACTABILITY Il

» special cases: trees

\'A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 10.2

Independent set on trees

Independent set on trees. Given a tree, find a maximum cardinality subset
of nodes such that no two are adjacent.

Fact. A tree has at least one node that is a leaf (degree = 1).

Key observation. If node v is a leaf, there exists D
a max cardinality independent set containing v. C/;)
Pf. [exchange argument]
* Consider a max cardinality independent set S. @\@

* IfvES, we're done.

* Let (u,v) be some edge.
- ifuégSand v S, then SU {v} is independent = S not maximum
- ifueSandv& s, then SU {v}-{u} is independent =

Independent set on trees: greedy algorithm

Theorem. The following greedy algorithm finds a max cardinality
independent set in forests (and hence trees).

Pf. Correctness follows from the previous key observation. =

INDEPENDENT-SET-IN-A-FOREST (F)

S — .
WHILE (F has at least 1 edge)
e < (u, v) such that v is a leaf.
S—SU{v}.
F«—F —{u,v}. «— deleteuand v and all incident edges

RETURN .

Remark. Can implement in O(n) time by considering nodes in postorder.

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights w, >0,
find an independent set S that maximizes = - w,.

Dynamic programming solution. Root tree at some node, say r.
* OPT, (1) = max weight independent set of subtree rooted at u,
containing u.

* OPT,,(u) = max weight independent set of subtree rooted at «,

not containing u.

* OPT =max { OPT,,(r), OPT,,(7) }.
OPI, , (u) = ¥ max {OPT,,(v), OPT,,(v)} @/ \@

v € children(u)

OPT (u) = w,+ Y OPT, . (v)

u
v € children(u)

children(u) = {v, w, x }

Weighted independent set on trees: dynamic programming algorithm

Theorem. The dynamic programming algorithm finds a max weighted

independent set in a tree in O(n) time. ™ can also find independent set itself
(not just value)

WEIGHTED-INDEPENDENT-SET-IN-A-TREE (7)

Root the tree 7 at a node r.
S — .
FOREACH (node u of T in postorder)

IF (u 1s a leaf) \

ensures a node is visited

Min[u] = wu. after all its children
Mom[l/l] = O
ELSE

Minlu]l =w, + 2, e children(u) Mol v].
Mout[u] =2 children(x) ITNAX (Mzn[V]) Mout[v])-

RETURN max (Min[r], Moulr]).

NP-hard problems on trees: context

Independent set on trees. Tractable because we can find a node that breaks
the communication among the subproblems in different subtrees.

¢@
. o
.
. [N
' -~

Pad >
s] -
. N -
.
. 1
.
. 1
.
A 1
.
.

Linear-time on trees. VERTEX-COVER, DOMINATING-SET, GRAPH-ISOMORPHISM, ...

INTRACTABILITY ||

» special cases: planarity

SECTION 23.1

Planarity

Def. A graph is planar if it can be embedded in the plane in such a way that

no two edges cross.

O O

Ks is nonplanar

planar

Applications. VLSI circuit design, computer graphics, ...

O

O

K33 is nonplanar

10

Planarity testing

Theorem. [Hopcroft-Tarjan 1974] There exists an O(n) time algorithm to

determine whether a graph is planar. \
simple planar graph
has at < 3n edges

Efficient Planarity Testing

JOHN HOPCROFT AND ROBERT TARJAN
Cornell University, Ithaca, New York

ABSTRACT. This paper describes an efficient algorithm to determine whether an arbitrary graph ¢
can be embedded in the plane. The algorithm may be viewed as an iterative version of a method
originally proposed by Auslander and Parter and correctly formulated by Goldstein. The algorithm
uses depth-first search and has O(V) time and space bounds, where V is the number of vertices in
G. An ALcoL implementation of the algorithm successfully tested graphs with as many as 900 vertices
in less than 12 seconds.

11

Polynomial time detour

Graph minor theorem. [Robertson-Seymour 1980s]
Pf of theorem. Tour de force.

Corollary. There exist an O(n3) algorithm to determine if a graph can be
embedded in the torus in such a way that no two edges cross.

more than 212121(n/2)
Mind boggling fact 1. The proof is highly nonconstructive! /

Mind boggling fact 2. The constant of proportionality is enormous!

“ Unfortunately, for any instance G = (V, E) that one could fit into the known
universe, one would easily prefer n’0 to even constant time, if that constant

had to be one of Robertson and Seymour's. ” — David Johnson

Theorem. There exists an explicit O(n) algorithm.
Practice. LEDA implementation guarantees On3).

12

Problems on planar graphs

Fact 0. Many graph problems can be solved faster in planar graphs.
Ex. Shortest paths, max flow, MST, matchings, ...

Fact 1. Some NP-complete problems become tractable in planar graphs.
Ex. MAX-CUT, ISING, CLIQUE, GRAPH-ISOMORPHISM, 4-COLOR, ...

Fact 2. Other NP-complete problems become easier in planar graphs.
Ex. INDEPENDENT-SET, VERTEX-COVER, TSP, STEINER-TREE, ...

An O(nlog n) Algorithm for Maximum sz-Flow
in a Directed Planar Graph

GLENCORA BORRADAILE AND PHILIP KLEIN
Brown University, Providence, Rhode Island
Abstract. We give the first correct O (n log n) algorithm for finding a maximum sz-flow in a directed

planar graph. After a preprocessing step that consists in finding single-source shortest-path distances
in the dual, the algorithm consists of repeatedly saturating the leftmost residual s-to-¢ path.

SIAM J. COMPUT © 1980 Society for Industrial and Applied Mathematics
Vol. 9, No. 3. August 1980 0097-5397/80/0903-0013 $01.00/0

APPLICATIONS OF A PLANAR SEPARATOR THEOREM*
RICHARD J. LIPTONT AND ROBERT ENDRE TARJAN?

Abstract. Any n-vertex planar graph has the property that it can be divided into components of roughly
equal size by removing only O(J;) vertices. This separator theorem, in combination with a divide-and-
conquer strategy, leads to many new complexity results for planar graph problems. This paper describes
some of these results.

13

Planar graph 3-colorability

PLANAR-3-CoOLOR. Given a planar graph, can it be colored using 3 colors
so that no two adjacent nodes have the same color?

)
N\
)
N\

)
N

14

Planar map 3-colorability

PLANAR-MAP-3-CoLOR. Given a planar map, can it be colored using 3 colors
so that no two adjacent regions have the same color?

yes instance

15

Planar map 3-colorability

PLANAR-MAP-3-CoLOR. Given a planar map, can it be colored using 3 colors
so that no two adjacent regions have the same color?

no instance

16

Planar graph and map 3-colorability reduce to one another

Theorem. PLANAR-3-COLOR = p PLANAR-MAP-3-COLOR.
Pf sketch.
* Nodes correspond to regions.
 Two nodes are adjacent iff they share a nontrivial border.

\

e.g., hot Arizona
and Colorado

17

Planar 3-colorability is NP-complete

Theorem. PLANAR-3-COLOR € NP-complete.

Pf.
* Easy to see that PLANAR-3-COLOR & NP.

e We show 3-COLOR <p PLANAR-3-COLOR.
* Given 3-COLOR instance G, we construct an instance of

PLANAR-3-COLOR that is 3-colorable iff G is 3-colorable.

18

Planar 3-colorability is NP-complete

Lemma. Wis a planar graph such that:
* In any 3-coloring of W, opposite corners have the same color.
« Any assignment of colors to the corners in which opposite corners have
the same color extends to a 3-coloring of W.

planar gadget W

19

Planar 3-colorability is NP-complete

Lemma. Wis a planar graph such that:
* In any 3-coloring of W, opposite corners have the same color.
« Any assignment of colors to the corners in which opposite corners have
the same color extends to a 3-coloring of W.

Pf. The only 3-colorings (modulo permutations) of W are shown below. =

planar gadget W

20

Planar 3-colorability is NP-complete

Construction. Given instance G of 3-COLOR, draw G in plane, letting edges
cross. Form planar G' by replacing each edge crossing with planar gadget Ww.

Lemma. G is 3-colorable iff G' is 3-colorable.
* In any 3-coloring of W, a#a' and b #b'.
* Ifaza' and b #b' then can extend to a 3-coloring of W.

a crossing

21

Planar 3-colorability is NP-complete

Construction. Given instance G of 3-COLOR, draw G in plane, letting edges
cross. Form planar G' by replacing each edge crossing with planar gadget Ww.

Lemma. G is 3-colorable iff G' is 3-colorable.
* In any 3-coloring of W, a#a' and b #b'.
* Ifaza' and b #b' then can extend to a 3-coloring of W.

multiple crossings concatenate copies of gadget W

22

Planar map k-colorability

Theorem. [Appel-Haken 1976] Every planar map is 4-colorable.
* Resolved century-old open problem.
« Used 50 days of computer time to deal with many special cases.
* First major theorem to be proved using computer.

BULLETIN OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 82, Number 5, September 1976

RESEARCH ANNOUNCEMENTS

EVERY PLANAR MAP IS FOUR COLORABLE!

BY K. APPEL AND W. HAKEN

Communicated by Robert Fossum, July 26, 1976
The following theorem is proved.

THEOREM. Every planar map can be colored with at most four colors.

Remarks.
* Appel-Haken yields O(n*) algorithm to 4-color of a planar map.
* Best known: O®?) to 4-color; O(n) to 5-color.
* Determining whether 3 colors suffice is NP-complete.

23

Polynomialtime special cases NP-hard problems

Trees. VERTEX-COVER, INDEPENDENT-SET, DOMINATING-SET, GRAPH-ISOMORPHISM, ...

Bipartite graphs. VERTEX-COVER, 2-COLOR, ...

Chordal graphs. K-CoLOR, CLIQUE, INDEPENDENT-SET, ...

Planar graphs. MAX-CUT, ISING, CLIQUE, GRAPH-ISOMORPHISM, 4-COLOR, ...

Bounded treewidth. 3-CoLOR, HAM-CYCLE, INDEPENDENT-SET, GRAPH-ISOMORPHISM.

Small integers. KNAPSACK, PARTITION, SUBSET-SUM, ...

24

INTRACTABILITY Il

» approximation algorithms

A\qmll Jesiqr

\ JON KLEINBERG - EVA TARDOS
\

SECTION 11.8

Approximation algorithms

p-approximation algorithm.
* Guaranteed to run in poly-time.
« Guaranteed to solve arbitrary instances of the problem.
« Guaranteed to find solution within ratio p of true optimum.

Ex. Given a graph G, the greedy algorithms finds a VERTEX-COVER that
uses < 2 OPT(G) vertices in O(m + n) time.

Challenge. Need to prove a solution's value is close to optimum value,
without even knowing what optimum value is!

. David P. Williamson + David B. Shmoys

Approximation Algorithms

o NP— HARD PROBLEMS

The DESIGN of
APPROXIMATION
ALGORITHMS

, Approximation

~) Algorithms

edited by
DORIT S, HOCHBAUM

26

Knapsack problem

Knapsack problem.
* Given n objects and a knapsack.

* Item i has value v; >0 and weighs w; > 0. <«— we assume wi < W for each i
* Knapsack has weight limit w.

« Goal: fill knapsack so as to maximize total value.

Ex: {3,4} has value 40.

1 1 1

2 6 2
3 18 5
4 22 6
5 28 7

original instance (W = 11)

27

Knapsack is NP-complete

KNAPSACK. Given a set X, weights w; =0, values v; =0, a weight limit W, and a
target value V, is there a subset S C X such that:

Yw, = W
=
Evl. > V
=

SUBSET-SUM. Given a set X, values u; =0, and an integer U, is there a subset §
C X whose elements sum to exactly U?

Theorem. SUBSET-SUM <p KNAPSACK.
Pf. Given instance (ui, ..., us, U) of SUBSET-SUM, create KNAPSACK instance:

V. =W, = U Su, = U
€S
V=W=U Su, = U

es

Knapsack problem: dynamic programming |

Def. OPT(i,w) = max value subset of items 1....,i with weight limit w.

Case 1. OPT does not select item i.
* OPT selects best of 1,...,i—1 using up to weight limit w.

Case 2. OPT selects item i.
* New weight limit =w —w,.
* OPT selects best of 1,...,i—1 using up to weight limit w —w,.

[0 if i=0
OPT(i,w)=1 OPT(i-1,w) if wo>w
K max{ OPT(i-1,w), v,+ OPT(i-1,w-w,)} otherwise

Theorem. Computes the optimal value in O(n W) time.
* Not polynomial in input size.
« Polynomial in input size if weights are small integers.

29

Knapsack problem: dynamic programming |l

Def. OPT(i,v) = min weight of a knapsack for which we can obtain a solution
of value > v using a subset of items 1,..., .

Note. Optimal value is the largest value v such that OPT(i,v) < W.

Case 1. OPT does not select item i.
 OPT selects best of 1,...,i—1 that achieves value v.

Case 2. OPT selects item i.
* Consumes weight w,, need to achieve value v -v,.
* OPT selects best of 1,...,i—1 that achieves value v—v,.

0 itv<0
OPT(i,v) = { o0 ifi=0and v >0
min {OPT (i — 1,v), w; + OPT(i — 1,v —v;)} otherwise

30

Knapsack problem: dynamic programming |l

Theorem. Dynamic programming algorithm Il computes the optimal value
in O(n2 vimax) time, where vy, is the maximum of any value.
Pf.

* The optimal value V* < n vug.

* There is one subproblem for each item and for each value v < v*.

* It takes O(1) time per subproblem. =

Remark 1. Not polynomial in input size!
Remark 2. Polynomial time if values are small integers.

31

Knapsack problem: polynomialtime approximation scheme

Intuition for approximation algorithm.
* Round all values up to lie in smaller range.
* Run dynamic programming algorithm Il on rounded instance.
* Return optimal items in rounded instance.

]]] 1]

934221
2 5956342 2 2 6 2
3 17810013 5 3 18 5
4 21217800 6 4 22 6
5 27343199 7 5 28 7

original instance (W = 11) rounded instance (W = 11)

32

Knapsack problem: polynomialtime approximation scheme

Round up all values:

* v .. = largest value in original instance.] g .

. vo=llo, 9 =|Z
* ¢ = precision parameter. g i 0
« 0 = scaling factor=¢v,, /n.

Observation. Optimal solutions to problem with v are equivalent to
optimal solutions to problem with V.

Intuition. v close to v so optimal solution using v is nearly optimal;
v small and integral so dynamic programming algorithm Il is fast.

33

Knapsack problem: polynomialtime approximation scheme

Vi

Round up all values: vi:[(J 0

Theorem. If Sis solution found by rounding algorithm and S* is any other
feasible solution, then I+e)> v, = Y,

ies e S*

Pf. Let S* be any feasible solution satisfying weight constraint.

E v, = E v, always round up
IASING IASING

= E \7, solve rounded instance optimally
eSS

< E (Vi + 0) never round up by more than 6
eSS
ies DP alg can take v,

< (1+ : l
(8) E vl ne=€vmax, Y e < ZiES Vi

34

Knapsack problem: polynomialtime approximation scheme

Theorem. For any £ >0, the rounding algorithm computes a feasible solution
whose value is within a (1 +¢) factor of the optimum in O(n3/ ¢) time.

Pf.
* We have already proved the accuracy bound.

 Dynamic program Il running time is , Where

o(n*
Viax = = | —
[0 } [J

PTAS. (1 +¢)-approximation algorithm for any constant ¢ > 0.
* Produces arbitrarily high quality solution.

* Trades off accuracy for time.
e But such algorithms are unlikely to exist for certain problems...

max)

35

Inapproximability

MAX-3-SAT. Given a 3-SAT instance @, find an assignment that satisfies

the maximum number of clauses.

Theorem. [Karloff-Zwick 1997] There exists a Z%-approximation algorithm.

Theorem. [Hastad 2001] Unless P = NP, there does not exist a p-

approximation for any p > 7.

A 7/8-Approximation Algorithm for MAX 3SAT?
Howard Karloff * Uri Zwick T

We describe a randomized approximation algorithm which
takes an instance of MAX 3SAT as input. If the instance—a
collection of clauses each of length at most three—is satisfi-
able, then the expected weight of the assignment found is at
least 7/8 of optimal. We provide strong evidence (but not a
proof) that the algorithm performs equally well on arbitrary
MAX 3SAT instances.

Some Optimal Inapproximability Results

JOHAN HASTAD

Royal Institute of Technology, Stockholm, Sweden

Abstract. We prove optimal, up to an arbitrary € > 0, inapproximability results for Max-Ek-Sat for
k > 3, maximizing the number of satisfied linear equations in an over-determined system of linear
equations modulo a prime p and Set Splitting. As a consequence of these results we get improved
lower bounds for the efficient approximability of many optimization problems studied previously. In
particular, for Max-E2-Sat, Max-Cut, Max-di-Cut, and Vertex cover.

Categories and Subject Descriptors: F2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

36

INTRACTABILITY |l

» exact exponential algorithms

Exact exponential algorithms

Complexity theory deals with worst-case behavior.
* Instances you want to solve may be "easy.”

“ For every polynomial-time algorithm you have, there is an exponential

algorithm that I would rather run.” — Alan Perlis

"Fools ignore
++4 complexity. Pragmatists
1.4 suffer it. Some can
avoid it. Geniuses
. remove it."”

Alan Perlis

38

Exact algorithms for 3-satisfiability

Brute force. Given a 3-SAT instance with n variables and m clauses,
the brute-force algorithm takes O((m + n) 27) time.
Pf.

* There are 27 possible truth assignments to the »n variables.

* We can evaluate a truth assignment in O(m + n) time. =

39

Exact algorithms for 3-satisfiability

A recursive framework. A 3-SAT formula ® is either empty or the disjunction
of a clause (4, v 4, v ¢3) and a 3-SAT formula ®' with one fewer clause.

O = (liv lrv 03 A D'
= (UiADP) v (bon D) v (I3A DY

= (D' bi=true) v (P'| U, =true) v (D'l 43 = true)

Notation. ® |x=rtrue is the simplification of ® by setting x to rrue.
EX.

e ¢ =(xvyvag) Axvyvz AWvyv-gz) A(CxXVvyVz).
e @' = (xvyvzy Awvyv-z A(xVvyv2).
* (P'lx=true) = wvyv-z AQV2).

each clause has < 3 literals

40

Exact algorithms for 3-satisfiability

A recursive framework. A 3-SAT formula ® is either empty or the disjunction
of a clause (4, v 4, v ¢3) and a 3-SAT formula ®' with one fewer clause.

3-SAT (D)

[F @ 1s empty RETURN true.

(Oyv Uov U3) A ' <— OD.

IF 3-SAT(®' | ¢1=true) RETURN true.
IF 3-SAT(®' | ¢2=true) RETURN true.

IF 3-SAT(®' | ¢3=true) RETURN true.

RETURN false.

Theorem. The brute-force 3-SAT algorithm takes O(poly(n) 37) time.
Pf. T(n) < 3T(n—1) + poly(n). =

41

Exact algorithms for 3-satisfiability

Key observation. The cases are not mutually exclusive. Every satisfiable
assignment containing clause (¢, v ¢, v ¢3) must fall into one of 3 classes:
* {is true.
* 0yis false; 0»is true.
* 0yis false; 0,is false; 03is true.

3-SAT (D)

[F @ is empty RETURN frue.

(0iv Uov U3) A D' < D,

IF 3-SAT(®' | 4= true) RETURN true.
IF 3-SAT(®' | 4= false, U2=true) RETURN true.
IF 3-SAT(®' | 4= false, ¥>=false, €3=true) RETURN frue.

RETURN false.

42

Exact algorithms for 3-satisfiability

Theorem. The brute-force algorithm takes O(1.847) time.
Pf. Tn) < Tn-1D+Tn-2)+T(n-3)+ O(m +n). = \

largest root of r3=r2 +r + 1

3-SAT (D)

[F @ is empty RETURN frue.

(Oyv lrv U3) A D' < D.

IF 3-SAT(®' | 4= true) RETURN true.
IF 3-SAT(®' | 4= false, U2=true) RETURN true.
IF 3-SAT(®' | 4= false, ¥>=false, €3=true) RETURN frue.

RETURN false.

43

Exact algorithms for 3-satisfiability

Theorem. There exists a O(1.33334 ") deterministic algorithm for 3-SAT.

A Full Derandomization of Schoning’s k-SAT Algorithm

Robin A. Moser and Dominik Scheder

Institute for Theoretical Computer Science
Department of Computer Science
ETH Ziirich, 8092 Ziirich, Switzerland
{robin.moser, dominik.scheder}@inf.ethz.ch

August 25, 2010

Abstract

Schoning [7] presents a simple randomized algorithm for k-SAT with running time
O(ayppoly(n)) for ar = 2(k — 1)/k. We give a deterministic version of this algorithm
running in time O((ax + €)™poly(n)), where € > 0 can be made arbitrarily small.

44

Exact algorithms for satisfiability

DPPL algorithm. Highly-effective backtracking procedure.
« Splitting rule: assign truth value to literal; solve both possibilities.
* Unit propagation: clause contains only a single unassigned literal.
» Pure literal elimination: if literal appears only negated or unnegated.

A Computing Procedure for Quantification Theory*

Masm Davis A Machine Program for
Rensselaer Polytechnic Institute, Hartord Division, East Windsor Hill, Conn. Theorem-Pr OVIngT
AND

Hirary Purnam Martin Davis, George Logemann, and

Princeton University, Princeton, New Jersey DOhOId Lovelcmd

The hope that mathematical methods employed in the investigation of formal
logic would lead to purely computational methods for obtaining mathematical
theorems goes back to Leibniz and has been revived by Peano around the turn
of the century and by Hilbert’s school in the 1920’s. Hilbert, noting that all of
classical mathematics could be formalized within quantification theory, declared
that the problem of finding an algorithm for determining whether or not a given

Institute of Mathematical Sciences, New York University

The programming of a proof procedure is discussed in

formula of quantification theory is valid was the central problem of mathe- connection with trial runs and possible improvements.

matical logic. And indeed, at one time it seemed as if investigations of this “‘de- e) . . §
cision” problem were on the verge of success. However, it was shown by Church In [1] 18 ‘set forth an a}gorlthm for proving theorems of
and by Turing that such an algorithm can not exist. This result led to consider- quantification theory which is an improvement in certain
able pessimism regarding the possibility of using modern digital computers in respects over previously available algorithms such as that
deciding significant mathematical questions. However, recently there has been of [2] Th t b deal ith th . .

a revival of interest in the whole question. Specifically, it has been realized that : e present paper deals with the programming of
while no decision procedure exists for quantification theory there are many proof the algorithm of [1] for the New York University , In-

procedures available—that is, uniform procedures which will ultimately locate stitute of Mathematical Sciences’ IBM 704 computer
a proof for any formula; of quantification theory which is valid but which will ’

usually involve seeking “forever” in the case of a formula which is not valid— Wl_th some n‘mdlﬁcations in the algorithm suggested by
and that some of these proof procedures could well turn out to be feasible for this work, with the results obtained using the completed

use with modern computing machinery. algorithm. Familiarity with [1] is assumed throughout.

Exact algorithms for satisfiability

Chaff. State-of-the-art SAT solver.
» Solves real-world SAT instances with ~ 10K variable.
Developed at Princeton by undergrads.

Chaff: Engineering an Efficient SAT Solver

Matthew W. Moskewicz Conor F. Madigan Ying Zhao, Lintao Zhang, Sharad Malik
Department of EECS Department of EECS Department of Electrical Engineering

UC Berkeley MIT

moskewcz @ alumni.princeton.edu cmadigan@mit.edu

ABSTRACT

Boolean Satisfiability is probably the most studied of
combinatorial optimization/search problems. Significant effort
has been devoted to trying to provide practical solutions to this
problem for problem instances encountered in a range of
applications in Electronic Design Automation (EDA), as well as
in Artificial Intelligence (AI). This study has culminated in the

Princeton University
{yingzhao, lintaoz, sharad}@ee.princeton.edu

Many publicly available SAT solvers (e.g. GRASP [8],
POSIT [5], SATO [13], rel_sat [2], WalkSAT [9]) have been
developed, most employing some combination of two main
strategies: the Davis-Putnam (DP) backtrack search and heuristic
local search. Heuristic local search techniques are not
guaranteed to be complete (i.e. they are not guaranteed to find a
satisfying assignment if one exists or prove unsatisfiability); as a

46

Exact algorithms for TSP and Hamilton cycle

Theorem. The brute-force algorithm for TSP (or HAM-CYCLE) takes O(n!) time.
Pf.

* There are 5 (n—1)! tours.

* Computing the length of a tour takes O(n) time. =

Note. The function n! grows exponentially faster than 2~.
* 240=1099511627776 ~ 1012,
* 40! =815915283247897734345611269596115894272000000000 ~ 1048 ,

47

Exact algorithms for TSP and Hamilton cycle

Theorem. [Bellman 1962, Held-Karp 1962] There exists a O(n? 27) time
algorithm for TSP (and HAMILTON-CYCLE).

J. Soc. INpUsT. APPL. MATH.
Vol. 10, No. 1, March, 1962
Printed in U.S.A.

A DYNAMIC PROGRAMMING APPROACH TO
SEQUENCING PROBLEMS*

MICHAEL HELDt anp RICHARD M. KARP?
INTRODUCTION

Many interesting and important optimization problems require the
determination of a best order of performing a given set of operations.
This paper is concerned with the solution of three such sequencing problems:
a scheduling problem involving arbitrary cost functions, the traveling-
salesman problem, and an assembly-line balancing problem. Each of these
problems has a structure permitting solution by means of recursion schemes
of the type associated with dynamic programming. In essence, these re-
cursion schemes permit the problems to be treated in terms of combinations,
rather than permutations, of the operations to be performed. The dynamic
programming formulations are given in §1, together with a discussion of
various extensions such as the inclusion of precedence constraints. In each
case the proposed method of solution is computationally effective for
problems in a certain limited range. Approximate solutions to larger
problems may be obtained by solving sequences of small derived problems,
each having the same structure as the original one. This procedure of suc-
cessive approximations is developed in detail in §2 with specific reference
to the traveling-salesman problem, and §3 summarizes computational ex-
perience with an IBM 7090 program using the procedure.

Dynamic Programming Treatment of the

Travelling Salesman Problem™

RicHARD BELLMAN

RAND Corporation, Santa Monica, California

Introduction

The well-known travelling salesman problem is the following: “A salesman is
required to visit once and only once each of n different cities starting from a base
city, and returning to this city. What path minimizes the total distance travelled
by the salesman?”’

The problem has been treated by a number of different people using a variety
of techniques; ef. Dantzig, Fulkerson, Johnson [1], where a combination of
ingenuity and linear programming is used, and Miller, Tucker and Zerlin [2],
whose experiments using an all-integer program of Gomory did not produce
results in cases with ten cities although some success was achieved in cases of
simply four cities. The purpose of this note is to show that this problem can
easily be formulated in dynamic programming terms [3], and resolved computa-
tionally for up to 17 cities. For larger numbers, the method presented below,
combined with various simple manipulations, may be used to obtain quick
approximate solutions. Results of this nature were independently obtained by
M. Held and R. M. Karp, who are in the process of publishing some extensions
and computational results.

48

Exact algorithms for TSP and Hamilton cycle

Theorem. [Bellman 1962, Held-Karp 1962] There exists a O(n? 27) time
algorithm for TSP (and HAMILTON-CYCLE).

Pf. [dynamic programming]
* Define c(s,v,X) = cost of cheapest path between s and v that visits every

node in X exactly once (and uses only nodes in X).

* Observe OPT = m;n c(s,v,V) + ¢(v,).

* There are n 2" subproblems and they satisfy the recurrence:

c(s,v) if | X|=2
0@) =6 el w0\ T o) K] 2
ueX\{s,v}

* The values c(s, v, X) can be computed increasing
order of the cardinality of X. =

49

Exact algorithms for Hamilton cycle

Theorem. [Bjorklund 2010] There exists a O(1.657") time randomized
algorithm for HAMILTON-CYCLE.

2010 IEEE 51st Annual Symposium on Foundations of Computer Science

Determinant Sums for Undirected Hamiltonicity

Andreas Bjorklund
Department of Computer Science
Lund University
Lund, Sweden
Email: andreas.bjorklund@yahoo.se

Abstract—We present a Monte Carlo algorithm for Hamil-
tonicity detection in an n-vertex undirected graph running in
0*(1.657™) time. To the best of our knowledge, this is the
first superpolynomial improvement on the worst case runtime
for the problem since the O*(2") bound established for TSP
almost fifty years ago (Bellman 1962, Held and Karp 1962).
It answers in part the first open problem in Woeginger’s 2003
survey on exact algorithms for NP-hard problems.

For bipartite graphs, we improve the bound to O (1.414™)
time. Both the bipartite and the general algorithm can be
implemented to use space polynomial in n.

We combine several recently resurrected ideas to get the
results. Our main technical contribution is a new reduction
inspired by the algebraic sieving method for k-Path (Koutis
ICALP 2008, Williams IPL 2009). We introduce the Labeled
Cycle Cover Sum in which we are set to count weighted arc
labeled cycle covers over a finite field of characteristic two. We
reduce Hamiltonicity to Labeled Cycle Cover Sum and apply
the determinant summation technique for Exact Set Covers
(Bjorklund STACS 2010) to evaluate it.

Euclidean traveling salesperson problem

Euclidean TSP. Given n points in the plane and a real number L, is there a
tour that visit every city exactly once that has distance < L?

Proposition. EUCLIDEAN-TSP is NP-hard. B+ VB4V < VAt V4T
Remark. Not known to be in NP. i 8928198407 < 8.928203230

135009 cities in the USA and an optimal tour

51

Euclidean traveling salesperson problem

Theorem. [Arora 1998, Mitchell 1999] Given n points in the plane, for any
constant € >0, there exists a poly-time algorithm to find a tour whose length
is at most (1 + ¢) times that of the optimal tour.

Pf idea. Structure theorem + dynamic programming.

Polynomial Time Approximation Schemes for
Euclidean Traveling Salesman and other Geometric
Problems

Sanjeev Arora
Princeton University

Association for Computing Machinery, Inc., 1515 Broadway, New York, NY 10036, USA
Tel: (212) 555-1212; Fax: (212) 555-2000

‘We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For
every fixed ¢ > 1 and given any n nodes in R2, a randomized version of the scheme finds a
(1 + 1/c)-approximation to the optimum traveling salesman tour in O(n(log n)O(“)) time. When
the nodes are in R¢, the running time increases to O(n(log n)(o(ﬁc))dil). For every fixed ¢, d the
running time is n - poly(logn), i.e., nearly linear in n. The algorithm can be derandomized, but
this increases the running time by a factor O(n,d)A The previous best approximation algorithm
for the problem (due to Christofides) achieves a 3/2-approximation in polynomial time.

GUILLOTINE SUBDIVISIONS APPROXIMATE POLYGONAL
SUBDIVISIONS: A SIMPLE POLYNOMIAL-TIME
APPROXIMATION SCHEME FOR GEOMETRIC TSP, K-MST, AND
RELATED PROBLEMS

JOSEPH S. B. MITCHELL*

Abstract. We show that any polygonal subdivision in the plane can be converted into an “m-
guillotine” subdivision whose length is at most (1 + ﬁ) times that of the original subdivision, for a
small constant ¢. “m-Guillotine” subdivisions have a simple recursive structure that allows one to
search for shortest such subdivisions in polynomial time, using dynamic programming. In particular,
a consequence of our main theorem is a simple polynomial-time approximation scheme for geometric
instances of several network optimization problems, including the Steiner minimum spanning tree,
the traveling salesperson problem (TSP), and the k-MST problem.

52

Concorde TSP solver

Concorde TSP solver. [Applegate-Bixby-Chvatal-Cook]

* Linear programming + branch-and-bound + polyhedral combinatorics.

« Greedy heuristics, including Lin-Kernighan.

« MST, Delaunay triangulations, fractional b-matchings, ...

Remarkable fact. Concorde has solved all 110 TSPLIB instances.

>
)
)
.7‘
o)
=<
>
=
I
m
>
=
(9]
]

wi. AT&T 7T 12:42 PM [l

30 random cities #Cities: 30

The Traveling
Salesman Problem

David L. Applegate,
Robert E. Bixby, Vasek Chvatal,
and William J. Cook

53

TSP line art

.

Continuous line drawings via the TSP by Robert Bosch and Craig Kaplan

54

That's all, folks: keep searching]!

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,

There would still be papers left to write.
I have a weakness;

I'm addicted to completeness,

<)

And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree.

But it's elusive:

Nobody has found conclusive

Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done: GPA 2.1

Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.

Am I a mad fool

If I spend my life in grad school,

Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

Written by Dan Barrett in 1988 while a student
at Johns Hopkins during a difficult algorithms take-home final

55

