
Lecture slides by Kevin Wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Apr 15, 2013 6:59 AM

FIBONACCI HEAPS

‣ preliminaries

‣ insert

‣ extract the minimum

‣ decrease key

‣ bounding the rank

‣ meld and delete



2

Ahead.  O(1) INSERT and DECREASE-KEY, O(log n) EXTRACT-MIN.

Priority queues performance cost summary

operation linked list binary heap binomial heap Fibonacci heap †

MAKE-HEAP O(1) O(1) O(1) O(1)

IS-EMPTY O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

MELD O(1) O(n) O(log n) O(1)

FIND-MIN O(n) O(1) O(log n) O(1)

†  amortized



3

Fibonacci heaps

Theorem.  [Fredman-Tarjan 1986]  Starting from an empty Fibonacci heap,

any sequence of m INSERT, EXTRACT-MIN, and DECREASE-KEY operations

involving n INSERT operations takes O(m + n log n) time.

Fibonacci Heaps and Their Uses in Improved Network 
Optimization Algorithms 

MICHAEL L. FREDMAN 

University of California, San Diego, L.a Jolla, California 

AND 

ROBERT ENDRE TARJAN 

AT&T Bell Laboratories, Murray HilI, New Jersey 

Abstract. In this paper we develop a new data structure for implementing heaps (priority queues). Our 
structure, Fibonacci heaps (abbreviated F-heaps), extends the binomial queues proposed by Vuillemin 
and studied further by Brown. F-heaps support arbitrary deletion from an n-item heap in qlogn) 
amortized time and all other standard heap operations in o( 1) amortized time. Using F-heaps we are 
able to obtain improved running times for several network optimization algorithms. In particular, we 
obtain the following worst-case bounds, where n is the number of vertices and m the number of edges 
in the problem graph: 

( 1) O(n log n + m) for the single-source shortest path problem with nonnegative edge lengths, improved 
from O(m logfmh+2)n); 

(2) O(n*log n + nm) for the all-pairs shortest path problem, improved from O(nm lo&,,,+2,n); 
(3) O(n*logn + nm) for the assignment problem (weighted bipartite matching), improved from 

O(nm log0dn+2)n); 
(4) O(mj3(m, n)) for the minimum spanning tree problem, improved from O(mloglo&,,.+2,n), where 

j3(m, n) = min {i 1 log% 5 m/n). Note that B(m, n) 5 log*n if m 2 n. 

Of these results, the improved bound for minimum spanning trees is the most striking, although all the 
results give asymptotic improvements for graphs of appropriate densities. 

Categories and Subject Descriptors: E.l [Data]: Data Structures--trees; graphs; F.2.2 [Analysis of 
Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems-computations on 
discrete structures; sorting and searching; G.2.2 [Discrete Mathematics]: Graph Theory-graph algo- 
rithms; network problems; trees 
General Terms: Algorithms, Theory 
Additional Key Words and Phrases: Heap, matching, minimum spanning tree, priority queue, shortest 
Pati 

’ A preliminary version of this paper appeared in the Proceedings of the 25th IEEE Symposium on the 
Foundations of Computer Science (Singer Island, Fla., Oct. 24-26). IEEE, New York, 1984, pp. 338- 
346, 0 IEEE. Any portion of this paper that appeared in the preliminary version is reprinted with 
permission. 
This research was supported in part by the National Science Foundation under grant MCS 82-0403 1. 
Authors’ addresses: M. L. Fredman, Electrical Engineering and Computer Science Department, Uni- 
versity of California, San Diego, La Jolla, CA 92093; R. E. Tarjan, AT&T Bell Laboratories, Murray 
Hill, NJ 07974. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association for 
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. 
0 1987 ACM 0004-541 l/87/0700-0596 $1.50 

Journal ofthe Association for Computing Machinery, Vol. 34, No. 3, July 1987, Pages 596-615. 

this statement is a bit weaker
than the actual theorem



4

Fibonacci heaps

Theorem.  [Fredman-Tarjan 1986]  Starting from an empty Fibonacci heap, 

any sequence of m INSERT, EXTRACT-MIN, and DECREASE-KEY operations

involving n INSERT operations takes O(m + n log n) time.

History.   

・Ingenious data structure and application of amortized analysis.

・Original motivation:  improve Dijkstra's shortest path algorithm

from O(m log n) to O(m + n log n).

・Also improved best-known bounds for all-pairs shortest paths, 

assignment problem, minimum spanning trees.



SECTION 19.1

FIBONACCI HEAPS

‣ structure

‣ insert

‣ extract the minimum

‣ decrease key

‣ bounding the rank

‣ meld and delete



6

Fibonacci heaps

Basic idea.

・Similar to binomial heaps, but less rigid structure.

・Binomial heap:  eagerly consolidate trees after each INSERT;

implement DECREASE-KEY by repeatedly exchanging node with its parent.

・Fibonacci heap:  lazily defer consolidation until next EXTRACT-MIN;

implement DECREASE-KEY by cutting off node and splicing into root list.

Remark.  Height of Fibonacci heap is Θ(n) in worst case, but it doesn't use 

sink or swim operations.



・Set of heap-ordered trees.

7

723

30

17

35

26 46

24

39

4118 52

3

44

Fibonacci heap:  structure

heap-ordered tree

each child no smaller
than its parent

root

heap H



・Set of heap-ordered trees.

・Set of marked nodes.

8

723

30

17

35

26 46

24

39

4118 52

3

44

Fibonacci heap:  structure

min

used to keep trees bushy
(stay tuned)

39

18

markedheap H

26



Heap representation.

・Store a pointer to the minimum node.

・Maintain tree roots in a circular, doubly-linked list.

9

723

30

17

35

26 46

24

39

4118 52

3

44

Fibonacci heap:  structure

min

39

18

heap H

26



Node representation.  Each node stores:

・A pointer to its parent.

・A pointer to any of its children.

・A pointer to its left and right siblings.

・Its rank = number of children.

・Whether it is marked.

10

723

30

17

35

26 46

24

39

4118 52

3

44

Fibonacci heap:  representation

min

39

18

heap H children are in a 
circular doubly-linked list

26

rank = 3



Operations we can do in constant time:

・Find the minimum element.

・Merge two root lists together.

・Determine rank of a root node.

・Add or remove a node from the root list.

・Remove a subtree and merge into root list.

・Link the root of a one tree to root of another tree.

11

723

30

17

35

26 46

24

39

4118 52

3

44

Fibonacci heap:  representation

min

39

18

heap H

26

rank = 3



12

723

30

17

35

26 46

24

39

4118 52

3

44

Fibonacci heap:  notation

min

39

18

rank(H) = 3    trees(H) = 5 marks(H) = 3n = 14

notation meaning

n number of nodes

rank(x) number of children of node x

rank(H) max rank of any node in heap H

trees(H) number of trees in heap H

marks(H) number of marked nodes in heap H

heap H

26

rank = 3rank = 1



Potential function.  

13

723

30

17

35

26 46

24

39

4118 52

3

44

Fibonacci heap:  potential function

min

39

18

trees(H) = 5 marks(H) = 3Φ(H) = 5 + 2⋅3 = 11

heap H

 Φ(H)  = trees(H) + 2 ⋅ marks(H)

26



SECTION 19.2

FIBONACCI HEAPS

‣ preliminaries

‣ insert

‣ extract the minimum

‣ decrease key

‣ bounding the rank

‣ meld and delete



・Create a new singleton tree.

・Add to root list; update min pointer (if necessary).

15

723

30

17

35

26 46

24

39

4118 52

3

44

Fibonacci heap:  insert

21

insert 21

min

heap H

39

18
26



・Create a new singleton tree.

・Add to root list; update min pointer (if necessary).

16

723

30

17

35

26 46

24

39

4118 52

3

44

Fibonacci heap:  insert

21

insert 21

min

heap H

39

18
26



Actual cost.  ci  = O(1).

Change in potential.  ∆Φ  =  Φ(Hi) – Φ(Hi–1)  =  +1.

Amortized cost.  ĉi  =  ci  +  ∆Φ  = O(1).

17

723

30

17

35

26 46

24

39

4118 52

3

44

Fibonacci heap:  insert analysis

min

heap H

21

39

18

 Φ(H)  = trees(H) + 2 ⋅ marks(H)

26

one more tree;
no change in marks



SECTION 19.2

FIBONACCI HEAPS

‣ preliminaries

‣ insert

‣ extract the minimum

‣ decrease key

‣ bounding the rank

‣ meld and delete



19

Linking operation

Useful primitive.  Combine two trees T1 and T2 of rank k.

・Make larger root be a child of smaller root.

・Resulting tree T ' has rank k + 1.

39

4118 52

3

4477

56 24

15

tree T1 tree T2

39

4118 52

3

44

77

56 24

15

tree T'

still heap-ordered

33

33



・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

20

Fibonacci heap:  extract the minimum

39

4118 52

3

44

1723

30

7

35

26 46

24

min

2626



・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

21

Fibonacci heap:  extract the minimum

39

411723 18 52

30

7

35

26 46

24

44

min

2626



22

Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

39

411723 18 52

30

7

35

26 46

24

44

min
current

2626



23

Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

39

411723 18 52

30

7

35

26 46

24

44

rank

min
current

0 1 2 3

2626



24

Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

39

411723 18 52

30

7

35

26 46

24

44

min
current

rank

2626

0 1 2 3



25

Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

39

411723 18 52

30

7

35

26 46

24

44

min
current

rank

2626

0 1 2 3



26

Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

39

411723 18 52

30

7

35

26 46

24

44

min
current

rank
link 23 to 17

2626

0 1 2 3



27

Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

39

4118 52

30

7

35

26 46

24

44

min
current

rank
link 17 to 7

17

232626

0 1 2 3



28

Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

39

417

30

18 52

17

35

26 46

24

44

23

min current

rank
link 24 to 7

2626

0 1 2 3



29

Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

39

417

30

18 52

23

17

35

26 46

24 44

min current

rank

2626

0 1 2 3



30

Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

39

417

30

18 52

23

17

35

26 46

24 44

min current

rank

2626

0 1 2 3



31

Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

39

417

30

18 52

23

17

35

26 46

24 44

min current

rank

2626

0 1 2 3



32

Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

39

417

30

18 52

23

17

35

26 46

24 44

min current

rank
link 41 to 18

2626

0 1 2 3



33

Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

3941

7

30

1852

23

17

35

26 46

24

44

min current

rank

2626

0 1 2 3



34

Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

7

30

52

23

17

35

26 46

24 3941

18

44

min current

rank

2626

0 1 2 3



35

Fibonacci heap:  extract the minimum

・Delete min; meld its children into root list; update min.

・Consolidate trees so that no two roots have same rank.

7

30

52

23

17

35

26 46

24 3941

18

44

min

stop (no two trees have same rank)

2626



36

Fibonacci heap:  extract the minimum analysis

Actual cost.  ci  = O(rank(H)) + O(trees(H)).

・O(rank(H)) to meld min's children into root list.

・O(rank(H))  +  O(trees(H)) to update min.

・O(rank(H))  +  O(trees(H)) to consolidate trees.

Change in potential.  ∆Φ  ≤  rank(H')  + 1 –  trees(H).

・No new nodes become marked.

・trees(H')  ≤  rank(H') + 1.

Amortized cost.  O(log n).

・ĉi  =  ci  + ∆Φ  = O(rank(H)) + O(rank(H')).

・The rank of a Fibonacci heap with n elements is O(log n).

 Φ(H)  = trees(H)  +  2 ⋅ marks(H)

≤ rank(H) + trees(H) – 1 root nodes

number of roots decreases by 1 after
each linking operation

≤ rank(H) children

no two trees have same rank after consolidation

Fibonacci lemma
(stay tuned)



37

Observation.  If only INSERT and EXTRACT-MIN operations, then all trees are 

binomial trees.

Binomial heap property.  This implies rank(H)  ≤  log2 n.

Fibonacci heap property.  Our DECREASE-KEY implementation will not preserve 

this property, but we will implement it in such a way that rank(H) ≤  logφ n.

Fibonacci heap vs. binomial heaps

B0 B1 B2 B3

we link only trees of equal rank



SECTION 19.3

FIBONACCI HEAPS

‣ preliminaries

‣ insert

‣ extract the minimum

‣ decrease key

‣ bounding the rank

‣ meld and delete



39

Intuition for deceasing the key of node x.

・If heap-order is not violated, decrease the key of x.

・Otherwise, cut tree rooted at x and meld into root list.

Fibonacci heap: decrease key

decrease-key of x from 30 to 7

24

23 22

50

48 31 17

448 29 10

6

32

30

55

45



Intuition for deceasing the key of node x.

・If heap-order is not violated, decrease the key of x.

・Otherwise, cut tree rooted at x and meld into root list.

40

Fibonacci heap: decrease key

decrease-key of x from 23 to 5

24

23 22

50

48 31 17

448 29 10

6

32

7

55

45



Intuition for deceasing the key of node x.

・If heap-order is not violated, decrease the key of x.

・Otherwise, cut tree rooted at x and meld into root list.

41

Fibonacci heap: decrease key

decrease-key of 22 to 4
decrease-key of 48 to 3
decrease-key of 31 to 2
decrease-key of 17 to 1

24

5

22

50

48 31 17

448 29 10

6

32

7

55

45



Intuition for deceasing the key of node x.

・If heap-order is not violated, decrease the key of x.

・Otherwise, cut tree rooted at x and meld into root list.

・Problem:  number of nodes not exponential in rank.

42

Fibonacci heap: decrease key

24

5 4

50

3 2 1

448 29 10

6

32

7

55

45

rank = 4, nodes = 5



43

Intuition for deceasing the key of node x.

・If heap-order is not violated, decrease the key of x.

・Otherwise, cut tree rooted at x and meld into root list.

・Solution:  as soon as a node has its second child cut,

cut it off also and meld into root list (and unmark it).

24

46

17

30

23

7

88

26

21

52

39

18

41

38

72

Fibonacci heap: decrease key

35

marked node:
one child already cut

min



44

Case 1.  [heap order not violated]

・Decrease key of x.

・Change heap min pointer (if necessary).

24

46

17

30

23

7

88

26

21

52

39

18

41

38

72

Fibonacci heap: decrease key

35

min

x

decrease-key of x from 46 to 29



45

Case 1.  [heap order not violated]

・Decrease key of x.

・Change heap min pointer (if necessary).

24

29

17

30

23

7

88

26

21

52

39

18

41

38

72

Fibonacci heap: decrease key

35

min

x

decrease-key of x from 46 to 29



46

Case 2a.  [heap order violated]

・Decrease key of x.

・Cut tree rooted at x, meld into root list, and unmark.

・If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

24

29

17

30

23

7

88

26

21

52

39

18

41

38

72

Fibonacci heap: decrease key

35

min

x

p

decrease-key of x from 29 to 15



47

Case 2a.  [heap order violated]

・Decrease key of x.

・Cut tree rooted at x, meld into root list, and unmark.

・If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

24

15

17

30

23

7

88

26

21

52

39

18

41

38

72

Fibonacci heap: decrease key

35

min

x

p

decrease-key of x from 29 to 15



48

Case 2a.  [heap order violated]

・Decrease key of x.

・Cut tree rooted at x, meld into root list, and unmark.

・If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

24

15

17

30

23

7

88

26

21

52

39

18

41

38

72

Fibonacci heap: decrease key

35

min

x

p

decrease-key of x from 29 to 15



49

Case 2a.  [heap order violated]

・Decrease key of x.

・Cut tree rooted at x, meld into root list, and unmark.

・If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

24 17

30

23

7

88

26

21

52

39

18

41

38

Fibonacci heap: decrease key

35

15

72

min

p

x

decrease-key of x from 29 to 15



50

Case 2a.  [heap order violated]

・Decrease key of x.

・Cut tree rooted at x, meld into root list, and unmark.

・If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

24 17

30

23

7

88

26

21

52

39

18

41

38

Fibonacci heap: decrease key

35

15

72

min

p

x

decrease-key of x from 29 to 15

24



Case 2b.  [heap order violated]

・Decrease key of x.

・Cut tree rooted at x, meld into root list, and unmark.

・If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

51
35

24

15

17

30

23

7

88

26

21

52

39

18

41

38

72 24

Fibonacci heap: decrease key

min

decrease-key of x from 35 to 5

p

x



Case 2b.  [heap order violated]

・Decrease key of x.

・Cut tree rooted at x, meld into root list, and unmark.

・If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

52
5

24

15

17

30

23

7

88

26

21

52

39

18

41

38

72 24

Fibonacci heap: decrease key

min

decrease-key of x from 35 to 5

p

x



53

Case 2b.  [heap order violated]

・Decrease key of x.

・Cut tree rooted at x, meld into root list, and unmark.

・If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

24

15

17

30

23

7

88

26

21

52

39

18

41

38

72 24

Fibonacci heap: decrease key

decrease-key of x from 35 to 5

p

x

5

min



54

Case 2b.  [heap order violated]

・Decrease key of x.

・Cut tree rooted at x, meld into root list, and unmark.

・If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

24

15

17

30

23

7

88

26

21

52

39

18

41

38

72 24

Fibonacci heap: decrease key

decrease-key of x from 35 to 5

p

x

5

min

second child cut



55

Case 2b.  [heap order violated]

・Decrease key of x.

・Cut tree rooted at x, meld into root list, and unmark.

・If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

24

26

17

30

23

7

21

52

39

18

41

38

88 24

5

Fibonacci heap: decrease key

15

72

min

decrease-key of x from 35 to 5

x p



56

Case 2b.  [heap order violated]

・Decrease key of x.

・Cut tree rooted at x, meld into root list, and unmark.

・If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

24

26

17

30

23

7

21

52

39

18

41

38

88 24

5

Fibonacci heap: decrease key

15

72

min

decrease-key of x from 35 to 5

x p

second child cut

p'



57

Case 2b.  [heap order violated]

・Decrease key of x.

・Cut tree rooted at x, meld into root list, and unmark.

・If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

26

17

30

23

7

21

52

39

18

41

38

88

5

Fibonacci heap: decrease key

15

72

min

decrease-key of x from 35 to 5

x p p'

24

but don't
mark parent
if it's a root

p''



58

Actual cost.  ci  = O(c), where c is the number of cuts.

・O(1) time for changing the key.

・O(1) time for each of c cuts, plus melding into root list.

Change in potential.  ∆Φ  =  O(1)  –  c.

・trees(H')  = trees(H) +  c.

・marks(H')  ≤  marks(H)  –  c  +  2.

・ΔΦ  ≤  c  +  2 ⋅ (-c + 2)  =  4  –  c.

Amortized cost.  ĉi  =  ci  +  ∆Φ  = O(1).

Fibonacci heap: decrease key analysis

 Φ(H)  = trees(H) + 2 ⋅ marks(H)

each cut (except first) unmarks a node
last cut may or may not mark a node



SECTION 19.4

FIBONACCI HEAPS

‣ preliminaries

‣ insert

‣ extract the minimum

‣ decrease key

‣ bounding the rank

‣ meld and delete



60

Analysis summary

Insert.   O(1).
Delete-min.  O(rank(H)) amortized.

Decrease-key. O(1) amortized.

Fibonacci lemma.  Let H be a Fibonacci heap with n elements.

Then, rank(H) = O(log n).

number of nodes is
exponential in rank



61

Bounding the rank

Lemma 1.  Fix a point in time. Let x be a node of rank k, and let y1, …, yk  

denote its current children in the order in which they were linked to x.  
Then:

Pf.  

・When yi was linked into x, x had at least i  – 1 children y1, …, yi–1.

・Since only trees of equal rank are linked, at that time

rank(yi)  =  rank(x)  ≥  i  – 1.

・Since then, yi  has lost at most one child (or yi would have been cut).

・Thus, right now rank(yi)  ≥   i  –  2.  ▪

x

y1 y2 yk…

rank(yi) �
�

0 i = 1

i � 2 i � 2



62

Bounding the rank

Lemma 1.  Fix a point in time. Let x be a node of rank k, and let y1, …, yk  

denote its current children in the order in which they were linked to x.  
Then:

Def.  Let Tk be smallest possible tree of rank k satisfying property.  

T0 T1 T2 T3 T4 T5

F2 = 1 F3 = 2 F4 = 3 F5 = 5 F6 = 8 F7 = 13

x

y1 y2 yk…

rank(yi) �
�

0 i = 1

i � 2 i � 2



63

Bounding the rank

Lemma 1.  Fix a point in time. Let x be a node of rank k, and let y1, …, yk  

denote its current children in the order in which they were linked to x.  
Then:

Def.  Let Tk be smallest possible tree of rank k satisfying property.  

T4 T5

F6 = 8 F7 = 13

T6

F8 = F6 + F7 = 8 + 13 = 21

x

y1 y2 yk…

rank(yi) �
�

0 i = 1

i � 2 i � 2



64

Bounding the rank

Lemma 2.  Let sk be minimum number of elements in any Fibonacci heap of 

rank k. Then sk   ≥  Fk+2, where Fk is the kth Fibonacci number.

Pf.  [by strong induction on k]

・Base cases: s0 = 1 and s1 = 2.

・Inductive hypothesis:  assume si  ≥  Fi+2 for i = 0, …, k – 1.

・As in Lemma 1, let let y1, …, yk  denote its current children in the order in 

which they were linked to x.

sk ≥ 1  + 1 +  (s0  +  s1  + … +  sk–2) (Lemma 1)

≥ (1  + F1)  +  F2  +  F3  + … +  Fk (inductive hypothesis)

= Fk+2.   ▪ (Fibonacci fact 1)



65

Bounding the rank

Fibonacci lemma.  Let H be a Fibonacci heap with n elements.

Then, rank(H)  ≤  logφ n,  where φ is the golden ratio =  (1 + √5) / 2 ≈ 1.618.

Pf.

・Let H is a Fibonacci heap with n elements and rank k.

・Then  n  ≥   Fk+2   ≥   φk.

・Taking logs, we obtain rank(H) = k  ≤  logφ n.  ▪

Lemma 2 Fibonacci
Fact 2



66

Fibonacci fact 1

Def.  The Fibonacci sequence is:  0, 1, 1, 2, 3, 5, 8, 13, 21, …

Fibonacci fact 1.  For all integers k ≥ 0,  Fk+2  =  1 + F0 + F1 + … + Fk.

Pf.  [by induction on k]

・Base case: F2 = 1 + F0 = 2.

・Inductive hypothesis:  assume Fk+1  =  1 + F0 + F1 + … + Fk–1.

Fk+2 = Fk   +   Fk+1 (definition)

= Fk   +  (1 + F0 + F1 + … + Fk–1) (inductive hypothesis)

= 1 + F0 + F1 + … + Fk–1 + Fk.   ▪ (algebra)

Fk =

�
��

��

0 k = 0

1 k = 1

Fk�1 + Fk�2 k � 2



67

Fibonacci fact 2

Def.  The Fibonacci sequence is:  0, 1, 1, 2, 3, 5, 8, 13, 21, …

Fibonacci fact 2.   Fk+2  ≥  φk, where φ  =  (1 + √5) / 2 ≈ 1.618.

Pf.  [by induction on k]

・Base cases:  F2 = 1 ≥ 1,  F3 = 2  ≥  φ.

・Inductive hypotheses:  assume Fk  ≥  φk  and Fk+1 ≥  φk + 1

Fk+2 = Fk   +   Fk+1 (definition)

≥ φk – 1  +  φk – 2 (inductive hypothesis)

= φk – 2 (1 +  φ) (algebra)

= φk – 2  φ2 (φ2 = φ + 1)

= φk.   ▪ (algebra)

Fk =

�
��

��

0 k = 0

1 k = 1

Fk�1 + Fk�2 k � 2



Fibonacci numbers arise both in nature and algorithms.

68

Fibonacci numbers and nature

pinecone

cauliflower



SECTION 19.2, 19.3

FIBONACCI HEAPS

‣ preliminaries

‣ insert

‣ extract the minimum

‣ decrease key

‣ bounding the rank

‣ meld and delete



70

Fibonacci heap:  meld

Meld.  Combine two Fibonacci heaps (destroying old heaps).

Recall.  Root lists are circular, doubly-linked lists.

39

41

717

18 52

3

30

23

35

26 46

24

44

21

heap H1

min

heap H2

min



71

Fibonacci heap:  meld

Meld.  Combine two Fibonacci heaps (destroying old heaps).

Recall.  Root lists are circular, doubly-linked lists.

39

41

717

18 52

3

30

23

35

26 46

24

44

21

heap H

min



72

Fibonacci heap:  meld analysis

Actual cost.  ci  = O(1).
Change in potential.  ∆Φ  =  0.

Amortized cost.  ĉi  =  ci  +  ∆Φ  = O(1).

39

41

717

18 52

3

30

23

35

26 46

24

44

21

heap H

min

 Φ(H)  = trees(H) + 2 ⋅ marks(H)



73

Delete.  Given a handle to an element x, delete it from heap H.

・DECREASE-KEY(H, x, -∞).

・EXTRACT-MIN(H).

Amortized cost.  ĉi  = O(rank(H)).

・O(1) amortized for DECREASE-KEY.

・O(rank(H)) amortized for EXTRACT-MIN.

Fibonacci heap:  delete

 Φ(H)  = trees(H) + 2 ⋅ marks(H)



74

Accomplished.  O(1) INSERT and DECREASE-KEY, O(log n) EXTRACT-MIN.

Priority queues performance cost summary

operation linked list binary heap binomial heap Fibonacci heap †

MAKE-HEAP O(1) O(1) O(1) O(1)

IS-EMPTY O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

MELD O(1) O(n) O(log n) O(1)

FIND-MIN O(n) O(1) O(log n) O(1)

†  amortized



PRIORITY QUEUES

‣ binary heaps

‣ d-ary heaps

‣ binomial heaps

‣ Fibonacci heaps 

‣ advanced topics



・b-heaps.

・Fat heaps.

・2-3 heaps.

・Leaf heaps.

・Thin heaps.

・Skew heaps.

・Splay heaps.

・Weak heaps.

・Leftist heaps.

・Quake heaps.

・Pairing heaps.

・Violation heaps.

・Run-relaxed heaps.

・Rank-pairing heaps.

・Skew-pairing heaps.

・Rank-relaxed heaps.

・Lazy Fibonacci heaps.
76

Heaps of heaps



Q.  Can we achieve same running time as for Fibonacci heap but with

worst-case bounds per operation (instead of amortized)? 

Theory.  [Brodal 1996]  Yes.

Practice.  Ever implemented? Constants are high (and requires RAM model).

77

Brodal queues



Q.  Can we achieve same running time as for Fibonacci heap but with

worst-case bounds per operation (instead of amortized) in pointer model? 

Theory.  [Brodal-Lagogiannis-Tarjan 2002]  Yes.

78

Strict Fibonacci heaps

Strict Fibonacci Heaps

Gerth Stølting Brodal
MADALGO∗

Dept. of Computer Science
Aarhus University

Åbogade 34, 8200 Aarhus N
Denmark

gerth@cs.au.dk

George Lagogiannis
Agricultural University

of Athens
Iera Odos 75, 11855 Athens

Greece
lagogian@aua.gr

Robert E. Tarjan†

Dept. of Computer Science
Princeton University

and HP Labs
35 Olden Street, Princeton
New Jersey 08540, USA
ret@cs.princeton.edu

ABSTRACT
We present the first pointer-based heap implementation with
time bounds matching those of Fibonacci heaps in the worst
case. We support make-heap, insert, find-min, meld and
decrease-key in worst-case O(1) time, and delete and delete-
min in worst-case O(lg n) time, where n is the size of the
heap. The data structure uses linear space.

A previous, very complicated, solution achieving the same
time bounds in the RAM model made essential use of arrays
and extensive use of redundant counter schemes to maintain
balance. Our solution uses neither. Our key simplification
is to discard the structure of the smaller heap when doing
a meld. We use the pigeonhole principle in place of the
redundant counter mechanism.

Categories and Subject Descriptors
E.1 [Data Structures]: Trees; F.2.2 [Theory of Compu-
tation]: Analysis of Algorithms and Problem Complexity—
Nonnumerical Algorithms and Problems

General Terms
Algorithms

Keywords
Data structures, heaps, meld, decrease-key, worst-case com-
plexity

∗Center for Massive Data Algorithmics, a Center of the Dan-
ish National Research Foundation.
†Partially supported by NSF grant CCF-0830676, US-Israel
Binational Science Foundation Grant 2006204, and the
Distinguished Visitor Program of the Stanford University
Computer Science Department. The information contained
herein does not necessarily reflect the opinion or policy of
the federal government and no official endorsement should
be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC.12,May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

1. INTRODUCTION
Williams in 1964 introduced binary heaps [25]. Since then

the design and analysis of heaps has been thoroughly inves-
tigated. The most common operations supported by the
heaps in the literature are those listed below. We assume
that each item stored contains an associated key. No item
can be in more than one heap at a time.

makeheap() Create a new, empty heap and return a ref-
erence to it.

insert(H, i) Insert item i, not currently in a heap, into
heap H , and return a reference to where i is stored
in H .

meld(H1,H2) Return a reference to a new heap containing
all items in the two heaps H1 and H2 (H1 and H2

cannot be accessed after meld).

find-min(H) Return a reference to where the item with
minimum key is stored in the heap H .

delete-min(H) Delete the item with minimum key from
the heap H .

delete(H,e) Delete an item from the heap H given a ref-
erence e to where it is stored.

decrease-key(H,e, k) Decrease the key of the item given
by the reference e in heap H to the new key k.

There are many heap implementations in the literature,
with a variety of characteristics. We can divide them into
two main categories, depending on whether the time bounds
are worst case or amortized. Most of the heaps in the lit-
erature are based on heap-ordered trees, i.e. tree structures
where the item stored in a node has a key not smaller than
the key of the item stored in its parent. Heap-ordered trees
give heap implementations that achieve logarithmic time for
all the operations. Early examples are the implicit binary
heaps of Williams [25], the leftist heaps of Crane [5] as modi-
fied by Knuth [20], and the binomial heaps of Vuillemin [24].

The introduction of Fibonacci heaps [15] by Fredman and
Tarjan was a breakthrough since they achieved O(1) amor-
tized time for all the operations above except for delete and
delete-min, which require O(lg n) amortized time, where n
is the number of items in the heap and lg the base-two log-
arithm. The drawback of Fibonacci heaps is that they are
complicated compared to existing solutions and not as ef-
ficient in practice as other, theoretically less efficient solu-
tions. Thus, Fibonacci heaps opened the way for further

Strict Fibonacci Heaps

Gerth Stølting Brodal
MADALGO∗

Dept. of Computer Science
Aarhus University

Åbogade 34, 8200 Aarhus N
Denmark

gerth@cs.au.dk

George Lagogiannis
Agricultural University

of Athens
Iera Odos 75, 11855 Athens

Greece
lagogian@aua.gr

Robert E. Tarjan†

Dept. of Computer Science
Princeton University

and HP Labs
35 Olden Street, Princeton
New Jersey 08540, USA
ret@cs.princeton.edu

ABSTRACT
We present the first pointer-based heap implementation with
time bounds matching those of Fibonacci heaps in the worst
case. We support make-heap, insert, find-min, meld and
decrease-key in worst-case O(1) time, and delete and delete-
min in worst-case O(lg n) time, where n is the size of the
heap. The data structure uses linear space.

A previous, very complicated, solution achieving the same
time bounds in the RAM model made essential use of arrays
and extensive use of redundant counter schemes to maintain
balance. Our solution uses neither. Our key simplification
is to discard the structure of the smaller heap when doing
a meld. We use the pigeonhole principle in place of the
redundant counter mechanism.

Categories and Subject Descriptors
E.1 [Data Structures]: Trees; F.2.2 [Theory of Compu-
tation]: Analysis of Algorithms and Problem Complexity—
Nonnumerical Algorithms and Problems

General Terms
Algorithms

Keywords
Data structures, heaps, meld, decrease-key, worst-case com-
plexity

∗Center for Massive Data Algorithmics, a Center of the Dan-
ish National Research Foundation.
†Partially supported by NSF grant CCF-0830676, US-Israel
Binational Science Foundation Grant 2006204, and the
Distinguished Visitor Program of the Stanford University
Computer Science Department. The information contained
herein does not necessarily reflect the opinion or policy of
the federal government and no official endorsement should
be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC.12,May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

1. INTRODUCTION
Williams in 1964 introduced binary heaps [25]. Since then

the design and analysis of heaps has been thoroughly inves-
tigated. The most common operations supported by the
heaps in the literature are those listed below. We assume
that each item stored contains an associated key. No item
can be in more than one heap at a time.

makeheap() Create a new, empty heap and return a ref-
erence to it.

insert(H, i) Insert item i, not currently in a heap, into
heap H , and return a reference to where i is stored
in H .

meld(H1,H2) Return a reference to a new heap containing
all items in the two heaps H1 and H2 (H1 and H2

cannot be accessed after meld).

find-min(H) Return a reference to where the item with
minimum key is stored in the heap H .

delete-min(H) Delete the item with minimum key from
the heap H .

delete(H,e) Delete an item from the heap H given a ref-
erence e to where it is stored.

decrease-key(H,e, k) Decrease the key of the item given
by the reference e in heap H to the new key k.

There are many heap implementations in the literature,
with a variety of characteristics. We can divide them into
two main categories, depending on whether the time bounds
are worst case or amortized. Most of the heaps in the lit-
erature are based on heap-ordered trees, i.e. tree structures
where the item stored in a node has a key not smaller than
the key of the item stored in its parent. Heap-ordered trees
give heap implementations that achieve logarithmic time for
all the operations. Early examples are the implicit binary
heaps of Williams [25], the leftist heaps of Crane [5] as modi-
fied by Knuth [20], and the binomial heaps of Vuillemin [24].

The introduction of Fibonacci heaps [15] by Fredman and
Tarjan was a breakthrough since they achieved O(1) amor-
tized time for all the operations above except for delete and
delete-min, which require O(lg n) amortized time, where n
is the number of items in the heap and lg the base-two log-
arithm. The drawback of Fibonacci heaps is that they are
complicated compared to existing solutions and not as ef-
ficient in practice as other, theoretically less efficient solu-
tions. Thus, Fibonacci heaps opened the way for further



Q.  Are Fibonacci heaps useful in practice?

A.  They are part of LEDA and Boost C++ libraries.

      (but other heaps seem to perform better in practice)

79

Fibonacci heaps:  practice



80

Pairing heap.  A self-adjusting heap-ordered general tree.

Theory. Same amortized running times as Fibonacci heaps for all operations 

except DECREASE-KEY.

・O(log n) amortized.  [Fredman et al. 1986]

・Ω(log log n) lower bound on amortized cost.  [Fredman 1999] 

・                        amortized.  [Pettie 2005]

Pairing heaps

2
�

O(log log n)



81

Pairing heap.  A self-adjusting heap-ordered general tree.

Practice. As fast as (or faster than) the binary heap on some problems.

Included in GNU C++ library and LEDA.

Pairing heaps

RESEARCH CONlRlWlIONS 

Algorithms and 
Data Structures Pairing Heaps: 
G. Scott Graham 
Editor Experiments and Analysis 

JOHN T. STASKO and JEFFREY SCOTT VlllER 

ABSTRACT: The pairing heap has recently been 
introduced as a new data structure for priority queues. 
Pairing heaps are extremely simple to implement and 
seem to be very efficient in practice, but they are difficult 
to analyze theoretically, and open problems remain. It 
has been conjectured that they achieve the same 
amortized time bounds as Fibonacci heaps, namely, 
O(log n) time for delete and delete-min and O(1) for 
all other operations, where n is the size of the priority 
queue at the time of the operation. We provide empirical 
evidence that supports this conjecture. The most 
promising algorithm in our simulations is a new variant 
of the twopass method, called auxiliary twopass. We 
prove that, assuming no decrease-key operations are 
performed, it achieves the same amortized time bounds as 
Fibonacci heaps. 

1. INTRODUCTION 
A priority queue is an abstract data type for main- 
taining and manipulating a set of items based on 
priority [I]. Prio’rity queues derive great theoretical 

Support was provided in part by NSF research grant DCR-84-03613, an NSF 
Presidential Young Investigator Award, an IBM Faculty Development Award, 
and a Guggenheim Fellowship. 
Part of this research was performed at Mathematical Sciences Research Insti- 
tute. Berkeley, Calif., and the Institut National de Recherche en Informatique 
et en Automatique, Rocquencourt. France. 

0 1987 ACM OOOl-0782/87/0300-0234 75a: 

and practical importance from their use in solving a 
wide range of combinatorial problems, including job 
scheduling, minimal spanning tree, shortest path, 
and graph traversal. 

Priority queues support the operations insert, 
find-min, and delete-min; additional operations often 
include decrease-key and delete. The insert(t, v) opera- 
tion adds item t with key value v to the priority 
queue. The find-min operation returns the item 
with minimum key value. The delete-min operation 
returns the item with minimum key value and 
removes it from the priority queue. The decrease- 
key(t, d) operation reduces item t’s key value by d. 
The delete(t) operation removes item t from the 
priority queue. The decrease-key and delete opera- 
tions require that a pointer to the location in the 
priority queue of item t be supplied explicitly, since 
priority queues do not support searching for arbi- 
trary items by value. Some priority queues also sup- 
port the merge operation, which combines two item- 
disjoint priority queues. 

We will concentrate on the insert, delete-min, and 
decrease-key operations because they are the opera- 
tions that primarily distinguish priority queues from 
other set manipulation algorithms and because they 
are the critical operations as far as the time bounds 
are concerned. 

Communications of the ACM March 1987 Volume 30 Number 3 



82

Priority queues performance cost summary

operation linked list binary heap binomial 
heap

pairing 
heap †

Fibonacci 
heap †

Brodal 
queue

MAKE-HEAP O(1) O(1) O(1) O(1) O(1) O(1)

IS-EMPTY O(1) O(1) O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1) O(1) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n) O(log n) O(log n)

DECREASE-KEY O(1) O(log n) O(log n) O(1) O(1)

DELETE O(1) O(log n) O(log n) O(log n) O(log n) O(log n)

MELD O(1) O(n) O(log n) O(1) O(1) O(1)

FIND-MIN O(n) O(1) O(log n) O(1) O(1) O(1)

†  amortized

2
�

O(log log n)



Assumption. Keys are integers between 0 and C.

Theorem. [Thorup 2004]  There exists a priority queue that supports INSERT, 

FIND-MIN, and DECREASE-KEY in constant time and EXTRACT-MIN and DELETE-KEY 

in either O(log log n) or O(log log C) time.

83

Priority queues with integer priorities

http://www.elsevier.com/locate/jcss
Journal of Computer and System Sciences 69 (2004) 330–353

Integer priority queues with decrease key in constant time and
the single source shortest paths problem

Mikkel Thorup

AT&T Labs Research, Shannon Laboratory, 180 Park Avenue, Florham Park, NJ 07932, USA

Received 22 July 2003; revised 8 March 2004

Available online 20 July 2004

Abstract

We consider Fibonacci heap style integer priority queues supporting find-min, insert, and decrease key
operations in constant time. We present a deterministic linear space solution that with n integer keys
supports delete in Oðlog log nÞ time. If the integers are in the range ½0;NÞ; we can also support delete in
Oðlog logNÞ time.

Even for the special case of monotone priority queues, where the minimum has to be non-decreasing, the

best previous bounds on delete were Oððlog nÞ1=ð3$eÞÞ and OððlogNÞ1=ð4$eÞÞ: These previous bounds used
both randomization and amortization. Our new bounds are deterministic, worst-case, with no restriction to
monotonicity, and exponentially faster.

As a classical application, for a directed graph with n nodes and m edges with non-negative integer
weights, we get single source shortest paths in Oðmþ n log log nÞ time, or Oðmþ n log logCÞ if C is the
maximal edge weight. The latter solves an open problem of Ahuja, Mehlhorn, Orlin, and Tarjan from 1990.
r 2004 Elsevier Inc. All rights reserved.

Keywords: Integer priority queues; Decrease key; Fibonacci heaps; Single source shortest paths

1. Introduction

In 1984, Fredman and Tarjan introduced Fibonacci heaps [15], which is a priority queue over a
dynamic ordered set H supporting the following operations:

find-minðHÞ Returns an element from H with minimum key value in constant time.
insertðH; aÞ Adds the element a to H in constant time.
dec-keyðH; a; xÞ Reduces the key value of element a to x in constant time. If the current key

value of a was smaller than x; it is an error.

ARTICLE IN PRESS

E-mail address: mthorup@research.att.com.

0022-0000/$ - see front matter r 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2004.04.003



Assumption. Keys are integers between 0 and C.

Theorem. [Thorup 2004]  There exists a priority queue that supports INSERT, 

FIND-MIN, and DECREASE-KEY in constant time and EXTRACT-MIN and DELETE-KEY 

in either O(log log n) or O(log log C) time.

Corollary 1. Can implement Dijkstra's algorithm in either O(m log log n) or

O(m log log C) time.

Corollary 2. Can sort n integers in O(n log log n) time.

Computational model. Word RAM.

84

Priority queues with integer priorities



Goal.  Break information-theoretic lower bound by allowing priority queue to 

corrupt 10% of the keys (by increasing them).

85

Soft heaps

0

57

11

66

22

77

44

88
88  11  22  99  44  33  77  66  0  55

soft heap

elements inserted 55

99

corrupted



Goal.  Break information-theoretic lower bound by allowing priority queue to 

corrupt 10% of the keys (by increasing them).

Representation.

・Set of binomial trees (with some subtrees missing).

・Each node may store several elements.

・Each node stores a value that is an upper bound on the original keys.

・Binomial trees are heap-ordered with respect to these values.

86

Soft heaps



Goal.  Break information-theoretic lower bound by allowing priority queue to 

corrupt 10% of the keys (by increasing them).

Theorem. [Chazelle 2000]  Starting from an empty soft heap, any sequence 

of n INSERT, MIN, EXTRACT-MIN, MELD, and DELETE operations takes O(n) time 

and at most 10% of its elements are corrupted at any given time.

87

Soft heaps

The Soft Heap: An Approximate Priority Queue with
Optimal Error Rate

BERNARD CHAZELLE

Princeton University, Princeton, New Jersey, and NEC Research Institute

Abstract. A simple variant of a priority queue, called a soft heap, is introduced. The data structure
supports the usual operations: insert, delete, meld, and findmin. Its novelty is to beat the logarithmic
bound on the complexity of a heap in a comparison-based model. To break this information-theoretic
barrier, the entropy of the data structure is reduced by artificially raising the values of certain keys.
Given any mixed sequence of n operations, a soft heap with error rate ! (for any 0 ! ! " 1/2) ensures
that, at any time, at most !n of its items have their keys raised. The amortized complexity of each
operation is constant, except for insert, which takes O(log 1/!) time. The soft heap is optimal for any
value of ! in a comparison-based model. The data structure is purely pointer-based. No arrays are
used and no numeric assumptions are made on the keys. The main idea behind the soft heap is to
move items across the data structure not individually, as is customary, but in groups, in a
data-structuring equivalent of “car pooling.” Keys must be raised as a result, in order to preserve the
heap ordering of the data structure. The soft heap can be used to compute exact or approximate
medians and percentiles optimally. It is also useful for approximate sorting and for computing
minimum spanning trees of general graphs.

Categories and Subject Descriptors: E.1 [Data Structures]: Nonnumerical Algorithms and Problems

General Terms: Theory

Additional Key Words and Phrases: Amortization, heap, priority queue, soft heap

1. Introduction

We design a simple variant of a priority queue, called a soft heap. The data
structure stores items with keys from a totally ordered universe, and supports the
operations:

A preliminary version of this paper as CHAZELLE, B. 1998. Car-pooling as a data structuring device:
The soft heap. In Proceedings of the 6th Annual European Symposium on Algorithms, pp. 35– 42.
This work was supported in part by National Science Foundation (NSF) Grants CCR 93-01254 and
CCR 96-23768, ARO Grant DAAH04-96-1-0181, and NEC Research Institute.
Author’s address: Department of Computer Science, Princeton University, 35 Olden Street, Prince-
ton, NJ 08544-2087, e-mail: chazelle@cs.princeton.edu or NEC Research Institute, e-mail: chazelle@
research.nj.nec.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 0004-5411/00/1100-1012 $05.00

Journal of the ACM, Vol. 47, No. 6, November 2000, pp. 1012–1027.



88

Goal.  Break information-theoretic lower bound by allowing priority queue to 

corrupt 10% of the keys (by increasing them).

Q.  Brilliant. But how could it possibly be useful?

Ex.  Linear-time deterministic selection. To find kth smallest element:

・Insert the n elements into soft heap.

・Extract the minimum element n / 2 times.

・The largest element deleted  ≥ 4n / 10 elements and ≤ 6n / 10 elements.

・Can remove ≥ 5n / 10 of elements and recur.

・T(n)  ≤  T(3n / 5) + O(n)  ⇒  T(n) = O(n).  ▪

Soft heaps



89

Theorem. [Chazelle 2000]  There exists an O(m α(m, n)) time deterministic 

algorithm to compute an MST in a graph with n nodes and m edges.

Algorithm.  Borůvka + nongreedy + divide-and-conquer + soft heap +  …

Soft heaps

A Minimum Spanning Tree Algorithm with Inverse-
Ackermann Type Complexity

BERNARD CHAZELLE

Princeton University, Princeton, New Jersey, and NEC Research Institute

Abstract. A deterministic algorithm for computing a minimum spanning tree of a connected graph is
presented. Its running time is O(m!(m, n)), where ! is the classical functional inverse of
Ackermann’s function and n (respectively, m) is the number of vertices (respectively, edges). The
algorithm is comparison-based: it uses pointers, not arrays, and it makes no numeric assumptions on
the edge costs.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems.

General Terms: Theory

Additional Key Words and Phrases: Graphs, matroids, minimum spanning trees

1. Introduction

The history of the minimum spanning tree (MST) problem is long and rich, going
as far back as Borůvka’s work in 1926 [Borůvka 1926; Graham and Hell 1985;
Nešetřil 1997]. In fact, MST is perhaps the oldest open problem in computer
science. According to Nešetřil [1997], “this is a cornerstone problem of combina-
torial optimization and in a sense its cradle.” Textbook algorithms run in O(m
log n) time, where n and m denote, respectively, the number of vertices and
edges in the graph. Improvements to O(m log log n) were given independently
by Yao [1975] and by Cheriton and Tarjan [1976]. In the mid-eighties, Fredman
and Tarjan [1987] lowered the complexity to O(m"(m, n)), where "(m, n) is
the number of log-iterations necessary to map n to a number less than m/n. In
the worst case, m ! O(n) and the running time is O(m log* m). Soon after, the

A preliminary version of this paper appeared as CHAZELLE, B. 1997. A faster deterministic algorithm
for minimum spanning trees. In Proceedings of the 38th Annual IEEE Symposium on Foundations of
Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., pp. 22–31.
This work was supported in part by the National Science Foundation (NSF) Grants CCR 93-01254
and CCR 96-23768, ARO Grant DAAH04-96-1-0181, and NEC Research Institute.
Author’s address: Department of Computer Science, Princeton University, 35 Olden Street, Prince-
ton, NJ 083-44-2087, e-mail: chazelle@cs.princeton.edu and NEC Research Institute, e-mail:
chazelle@research.nj.nec.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 0004-5411/00/1100-1028 $05.00

Journal of the ACM, Vol. 47, No. 6, November 2000, pp. 1028 –1047.


